Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Single-cell transcriptome atlas and genome-wide Mendelian randomization reveal chemokine involvement in diverse immune cells in type 2 diabetes

Abstract

Background

Chemokine-driven immune dysregulation is increasingly recognized as a hallmark of T2D pathogenesis(T2D), where insulin resistance and metabolic stressors drive chronic inflammation. While chemokine cascades are hypothesized to mediate diabetic immunopathology, causal mediators remain undefined.

Methods

We employed Mendelian Randomization (MR) of genome-wide association studies to identify causal inflammatory mediators, serological validation in streptozotocin-induced murine T2D models, and single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMC) to map immune cell heterogeneity and intercellular communication networks.

Results

MR prioritized IFN-γ, CCL7, MIF, and CXCL9 as genetically supported T2D effectors. Murine validation confirmed CCL7 and MIF as robust circulating mediators. scRNA-seq revealed compartment-specific chemokine receptor dynamics (CCR4/5/6, CXCR3/4/5, CX3CR1), dominated by enhanced CCL5-CCR5 and CCL6-CCR2 crosstalk.

Conclusion

This work establishes a systems-level framework for chemokine signaling in T2D immunopathogenesis, identifying nodal regulators of immune crosstalk as potential therapeutic vulnerabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design for two-sample Mendelian randomization (MR) analysis.
Fig. 2: MR analysis of inflammatory cytokines and T2D.
Fig. 3: Mouse model with T2D validation and cytokine profiling.
Fig. 4: scRNA-seq of PBMCs fromT2D and control mice.
Fig. 5: NK cell subpopulation analysis.
Fig. 6: CD4+ T cell subpopulation analysis.
Fig. 7: CD8+ T cell subpopulation analysis.
Fig. 8: B cell subpopulation analysis.
Fig. 9: Myeloid cell subpopulation analysis.
Fig. 10: Chemokine crosstalk between immune cells.

Similar content being viewed by others

Data availability

All sequence data for this study have been deposited in Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274561.

References

  1. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66:241–55.

    Article  CAS  PubMed  Google Scholar 

  2. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes, Metab Syndr Obes. 2020;13:3611–6.

  3. Bartlett DB, Slentz CA, Willis LH, Hoselton A, Huebner JL, Kraus VB, et al. Rejuvenation of neutrophil functions in association with reduced diabetes risk following ten weeks of low-volume high intensity interval walking in older adults with prediabetes–a pilot study. Front Immunol. 2020;11:729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grohová A, Dáňová K, Špíšek R, Palová-Jelínková L. Cell based therapy for type 1 diabetes: should we take hyperglycemia into account?. Front Immunol. 2019;10:79.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodriguez-Sosa M, Cabellos-Avelar T, Sanchez-Zamora Y, Juarez-Avelar I, Garcia-Reyes E, Lira-Leon A, et al. Proinflammatory cytokine MIF plays a role in the pathogenesis of type-2 diabetes mellitus, but does not affect hepatic mitochondrial function. Cytokine. 2017;99:214–24.

    Article  CAS  PubMed  Google Scholar 

  6. Chang TT, Li YZ, Mo HW, Chen C, Lin LY, Chang CC, et al. Inhibition of CCL7 improves endothelial dysfunction and vasculopathy in mouse models of diabetes mellitus. Sci Transl Med. 2024;16:eadn1507.

    Article  CAS  PubMed  Google Scholar 

  7. Perez N, He N, Wright F, Condon E, Weiser S, Aouizerat B. Social determinants of inflammatory markers linking depression and type 2 diabetes among women: a scoping review. J Psychosom Res. 2024;184:111831.

    Article  PubMed  Google Scholar 

  8. Rashed AA, Saparuddin F, Rathi D-NG, Nasir NNM, Lokman EF. Effects of resistant starch interventions on metabolic biomarkers in pre-diabetes and diabetes adults. Front Nutr. 2022;8:793414.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu Y, Ma Y. CCL2-CCR2 signaling axis in obesity and metabolic diseases. J Cell Physio. 2024;239:e31192.

    Article  CAS  Google Scholar 

  10. Yousef H, Khandoker AH, Feng SF, Helf C, Jelinek HF. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front Endocrinol. 2023;14:1173402.

  11. Tagoma A, Haller-Kikkatalo K, Oras A, Roos K, Kirss A, Uibo R. Plasma cytokines during pregnancy provide insight into the risk of diabetes in the gestational diabetes risk group. J Diabetes Investig 2022;13:1596–606.

  12. Qureshi N, Desousa J, Siddiqui AZ, Drees BM, Morrison DC, Qureshi AA. Dysregulation of gene expression of key signaling mediators in PBMCs from people with type 2 diabetes mellitus. Int J Mol Sci. 2023;24:2732.

  13. Blériot C, Dalmas É, Ginhoux F, Venteclef N. Inflammatory and immune etiology of type 2 diabetes. Trends Immunol. 2023;44:101–9.

    Article  PubMed  Google Scholar 

  14. Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafo MR, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2:6.

  15. Xiang M, Wang Y, Gao Z, Wang J, Chen Q, Sun Z, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: a Mendelian randomization. Front Immunol. 2022;13:985729.

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Liu Z, Huang Y, Ding Q, Lai Z, Cai X, et al. Exploring causal association between circulating inflammatory cytokines and functional outcomes following ischemic stroke: a bidirectional Mendelian randomization study. Eur J Neurol. 2024;31:e16123.

    Article  PubMed  Google Scholar 

  17. Zhang J, Li K, Qiu X. Exploring causal correlations between inflammatory cytokines and knee osteoarthritis: a two-sample Mendelian randomization. Front Immunol. 2024;15:1362012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin Z, Chen J, Xia M, Zhang X, Li Y, Chen Z, et al. Assessing causal relationship between circulating cytokines and age-related neurodegenerative diseases: a bidirectional two-sample Mendelian randomization analysis. Sci Rep. 2023;13:12325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahola-Olli AV, Würtz P, Havulinna AS, Aalto K, Pitkänen N, Lehtimäki T, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet. 2017;100:40–50.

    Article  CAS  PubMed  Google Scholar 

  20. Shi Q, Wang Q, Wang Z, Lu J, Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: A bidirectional Mendelian randomization study. Front Immunol. 2023;14:1088778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan S, Li X, Liu Q, Wang Z, Jiang X, Burgess S, et al. Physical activity, sedentary behavior, and type 2 diabetes: Mendelian randomization analysis. J Endocr Soc. 2023;7:bvad090.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yi M, Zhao W, Fei Q, Tan Y, Liu K, Chen Z, et al. Causal analysis between altered levels of interleukins and obstructive sleep apnea. Front Immunol. 2022;13:888644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Wang S, Ren F, Yang L, Xie H, Pan L, et al. Inflammatory factors and risk of meningiomas: a bidirectional mendelian-randomization study. Front Neurosci. 2023;17:1186312.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  26. Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53:156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Liu D, Tian E, Guo ZQ, Chen JY, Kong WJ, et al. Is hearing impairment causally associated with falls? Evidence from a two-sample Mendelian randomization study. Front Neurol. 2022;13:876165.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Georgakis MK, Gill D, Rannikmäe K, Traylor M, Anderson CD, Lee JM, et al. Genetically determined levels of circulating cytokines and risk of stroke. Circulation. 2019;139:256–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen S, Zhou Y, Chen Y, Gu JJB. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–i890.

  31. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

  32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

  33. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17:1537–45.

  34. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods. 2017;14:979–82.

  35. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45:1961–74.

    PubMed  PubMed Central  Google Scholar 

  38. Gilbert ER, Fu Z, Liu D. Development of a nongenetic mouse model of type 2 diabetes. Exp Diab Res. 2011;2011:416254.

    Article  Google Scholar 

  39. Wang Y, Wang X, Jia X, Li J, Fu J, Huang X, et al. Influenza vaccination features revealed by a single-cell transcriptome atlas. J Med Virol. 2023;95:e28174.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Sun Q, Zhang Y, Li X, Liang Q, Guo R, et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect. 2023;86:421–38.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol. 2020;21:1107–18.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020;181:442–59.e29.

    Article  CAS  PubMed  Google Scholar 

  44. Crinier A, Milpied P, Escaliere B, Piperoglou C, Galluso J, Balsamo A, et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity. 2018;49:971–86.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Collier JL, Pauken KE, Lee CAA, Patterson DG, Markson SC, Conway TS et al. Single-cell profiling reveals unique features of diabetogenic T cells in anti-PD-1-induced type 1 diabetes mice. J Exp Med. 2023;220:e20221920.

  46. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Infections in patients with diabetes mellitus. N Engl J Med. 1999;341:1906–12.

    Article  CAS  PubMed  Google Scholar 

  47. Guo H, Xu B, Gao L, Sun X, Qu X, Li X, et al. High frequency of activated natural killer and natural killer T-cells in patients with new onset of type 2 diabetes mellitus. Exp Biol Med. 2012;237:556–62.

    Article  CAS  Google Scholar 

  48. O’Rourke RW, Gaston GD, Meyer KA, White AE, Marks DL. Adipose tissue NK cells manifest an activated phenotype in human obesity. Metabolism. 2013;62:1557–61.

    Article  PubMed  Google Scholar 

  49. Viel S, Besson L, Charrier E, Marcais A, Disse E, Bienvenu J, et al. Alteration of Natural Killer cell phenotype and function in obese individuals. Clin Immunol. 2017;177:12–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lynch LA, O’Connell JM, Kwasnik AK, Cawood TJ, O’Farrelly C, O’Shea DB. Are natural killer cells protecting the metabolically healthy obese patient?. Obesity. 2009;17:601–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bahr I, Jahn J, Zipprich A, Pahlow I, Spielmann J, Kielstein H. Impaired natural killer cell subset phenotypes in human obesity. Immunol Res. 2018;66:234–44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T, et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 2016;23:685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Rourke RW, Meyer KA, Neeley CK, Gaston GD, Sekhri P, Szumowski M, et al. Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity. 2014;22:2109–14.

    Article  PubMed  Google Scholar 

  54. Yoon Kim D, Kwon Lee J. Type 1 and 2 diabetes are associated with reduced natural killer cell cytotoxicity. Cell Immunol. 2022;379:104578.

    Article  CAS  PubMed  Google Scholar 

  55. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37:574–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang L, Wang H, Cao K, Xu C, Ma A, Zheng M, et al. Dysfunction of circulating CD3(+)CD56(+) NKT-like cells in type 2 diabetes mellitus. Int J Med Sci. 2023;20:652–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74:5–17.

    Article  CAS  PubMed  Google Scholar 

  58. Mahlangu T, Dludla PV, Nyambuya TM, Mxinwa V, Mazibuko-Mbeje SE, Cirilli I, et al. A systematic review on the functional role of Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. Cytokine. 2020;126:154892.

    Article  CAS  PubMed  Google Scholar 

  59. Sarikonda G, Pettus J, Phatak S, Sachithanantham S, Miller JF, Wesley JD, et al. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J Autoimmun. 2014;50:77–82.

    Article  CAS  PubMed  Google Scholar 

  60. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15:914–20.

    Article  CAS  PubMed  Google Scholar 

  61. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32:451–63.

    Article  CAS  Google Scholar 

  62. Nojima I, Eikawa S, Tomonobu N, Hada Y, Kajitani N, Teshigawara S, et al. Dysfunction of CD8 + PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci Rep. 2020;10:14928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17:610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15:921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Srikakulapu P, McNamara CA. B lymphocytes and adipose tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40:1110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA. 2013;110:5133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simar D, Versteyhe S, Donkin I, Liu J, Hesson L, Nylander V, et al. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human. Metabolism. 2014;63:1188–97.

    Article  CAS  PubMed  Google Scholar 

  68. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363–74.

    Article  CAS  PubMed  Google Scholar 

  69. Lee J. Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 diabetes. Arch Pharm Res. 2013;36:208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seifarth CC, Hinkmann C, Hahn EG, Lohmann T, Harsch IA. Reduced frequency of peripheral dendritic cells in type 2 diabetes. Exp Clin Endocrinol Diab. 2008;116:162–6.

    Article  CAS  Google Scholar 

  72. Musilli C, Paccosi S, Pala L, Gerlini G, Ledda F, Mugelli A, et al. Characterization of circulating and monocyte-derived dendritic cells in obese and diabetic patients. Mol Immunol. 2011;49:234–8.

    Article  CAS  PubMed  Google Scholar 

  73. Pecht T, Haim Y, Bashan N, Shapiro H, Harman-Boehm I, Kirshtein B, et al. Circulating blood monocyte subclasses and lipid-laden adipose tissue macrophages in human obesity. PLoS One. 2016;11:e0159350.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Devevre EF, Renovato-Martins M, Clement K, Sautes-Fridman C, Cremer I, Poitou C. Profiling of the three circulating monocyte subpopulations in human obesity. J Immunol. 2015;194:3917–23.

    Article  CAS  PubMed  Google Scholar 

  75. Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007;25:787–820.

    Article  CAS  PubMed  Google Scholar 

  76. Kochetova OV, Avzaletdinova DS, Morugova TV, Mustafina OE. Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group, Russia. Mol Biol Rep. 2019;46:887–96.

    Article  CAS  PubMed  Google Scholar 

  77. Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y et al. The role of CXC chemokines in cardiovascular diseases. Front Pharmacol. 2022;12:765768.

  78. Matsushita Y, Hasegawa Y, Takebe N, Onodera K, Shozushima M, Oda T, et al. Serum C-X-C motif chemokine ligand 14 levels are associated with serum C-peptide and fatty liver index in type 2 diabetes mellitus patients. J Diab Investig. 2021;12:1042–9.

    Article  CAS  Google Scholar 

  79. Chen L, Yang Z, Lu B, Li Q, Ye Z, He M, et al. Serum CXC ligand 5 is a new marker of subclinical atherosclerosis in type 2 diabetes. Clin Endocrinol. 2011;75:766–70.

    Article  CAS  Google Scholar 

  80. Mir MM, Alfaifi J, Sohail SK, Rizvi SF, Akhtar MT, Alghamdi MAA et al. The role of pro-inflammatory chemokines CCL-1, 2, 4, and 5 in the etiopathogenesis of type 2 diabetes mellitus in subjects from the Asir Region of Saudi Arabia: correlation with different degrees of obesity. J Pers Med. 2024;14:743.

  81. Chan PC, Hung LM, Huang JP, Day YJ, Yu CL, Kuo FC, et al. Augmented CCL5/CCR5 signaling in brown adipose tissue inhibits adaptive thermogenesis and worsens insulin resistance in obesity. Clin Sci. 2022;136:121–37.

    Article  CAS  Google Scholar 

  82. Zhou H, Liao X, Zeng Q, Zhang H, Song J, Hu W, et al. Metabolic effects of CCL5 deficiency in lean and obese mice. Front Immunol. 2022;13:1059687.

    Article  CAS  PubMed  Google Scholar 

  83. Liang YC, Jia MJ, Li L, Liu DL, Chu SF, Li HL. Association of circulating inflammatory proteins with type 2 diabetes mellitus and its complications: a bidirectional Mendelian randomization study. Front Endocrinol. 2024;15:1358311.

    Article  Google Scholar 

  84. Zhao JH, Stacey D, Eriksson N, Macdonald-Dunlop E, Hedman AK, Kalnapenkis A, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol. 2023;24:1540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen Z, Jiang G, Jiang G, Ma S, Zhu Y, Zhao M. Circulating inflammatory cytokines and gestational diabetes mellitus: Unraveling the role of macrophage migration inhibitory factor (MIF) through a bidirectional mendelian randomization study. Cytokine. 2024;182:156734.

    Article  CAS  PubMed  Google Scholar 

  86. Uchi H, Terao H, Koga T, Furue M. Cytokines and chemokines in the epidermis. J Dermatol Sci. 2000;24:S29–38.

    Article  CAS  PubMed  Google Scholar 

  87. Speyer CL, Ward PA. Role of endothelial chemokines and their receptors during inflammation. J Invest Surg. 2011;24:18–27.

    Article  PubMed  Google Scholar 

  88. Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 1997;151:317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Yang Liu, Tao Wang and Rong Wu contributed equally to this work. Thanks to my Twelve-year-old daughter Qianshu Yao for her contribution in the mouse observation.

Funding

National Natural Science of China [No.31870886], National Science and Technology Major Project [2023ZD0509802], Natural Science Foundation of Zhejiang Province [No.LY22H050006], Medical Science and Technology Project of Zhejiang Province [No.2023KY324] and Huzhou Municipal Science and Technology Bureau [No.2023YZ52].

Author information

Authors and Affiliations

Contributions

YL conceived the study and drafted the manuscript. TW and RW performed experiments and analyzed data. JG conducted bioinformatics analysis. JC established animal models. LH and XL performed data visualization and statistical analysis. JL and JW processed GWAS datasets. ZW helped write the manuscript. XW acquired funding and administered the project. YY supervised research and finalized the manuscript.

Corresponding author

Correspondence to Yunliang Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All animal procedures were approved by and performed according to guidelines of the Institutional Animal Care and Use Committee at the Huzhou University (IRB approval no.202203-27).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, T., Wu, R. et al. Single-cell transcriptome atlas and genome-wide Mendelian randomization reveal chemokine involvement in diverse immune cells in type 2 diabetes. Int J Obes (2025). https://doi.org/10.1038/s41366-025-01846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-025-01846-x

Search

Quick links