Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adipocyte and Cell Biology

Heart-guarding or heart-harming? The dual role of epicardial adipose tissue in cardiovascular health and disease

Abstract

Epicardial adipose tissue (EAT), nestled directly against the beating heart, is a fascinating paradox in cardiovascular biology. In health, this unique fat depot functions as a metabolic ally and immune modulator, safeguarding the heart through energy support, anti-inflammatory actions, and mechanical cushioning. Yet, under pathological conditions, EAT transforms from a protective “heart-guardian” into a destructive “heart-harmer,” releasing pro-inflammatory mediators, driving oxidative stress, and fueling cardiovascular diseases like coronary artery disease (CAD) and atrial fibrillation (AF). This review explores EAT’s dual role, unraveling its complex biology and the delicate balance between protection and pathology. We delve into its cellular and molecular intricacies, highlight its pivotal contributions to cardiovascular health and disease, and synthesize cutting-edge research to illuminate its clinical relevance. By identifying current knowledge gaps and proposing future directions, we aim to inspire a deeper understanding of EAT and its potential as a therapeutic target. As we navigate this duality, EAT emerges as both a challenge and an opportunity in the quest to better understand and treat cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical distribution and cross-sectional localization of EAT.
Fig. 2: Cellular composition and secretory factors of EAT.
Fig. 3: The dual role of EAT in cardiac physiology and pathology.
Fig. 4: Effects of External Interventions on EAT.

Similar content being viewed by others

References

  1. Le Jemtel TH, Samson R, Ayinapudi K, Singh T, Oparil S. Epicardial adipose tissue and cardiovascular disease. Curr Hypertens Rep. 2019;21:36.

    Article  PubMed  Google Scholar 

  2. Doukbi E, Soghomonian A, Sengenes C, Ahmed S, Ancel P, Dutour A, et al. Browning epicardial adipose tissue: friend or foe? Cells. 2022;11:991.

  3. Lin A, Wong ND, Razipour A, McElhinney PA, Commandeur F, Cadet SJ, et al. Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study. Cardiovasc Diabetol. 2021;20:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22:889–902.

    Article  PubMed  Google Scholar 

  5. Couselo-Seijas M, Rodriguez-Manero M, Gonzalez-Juanatey JR, Eiras S. Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obes Rev. 2021;22:e13277.

    Article  PubMed  Google Scholar 

  6. Abrishami A, Eslami V, Baharvand Z, Khalili N, Saghamanesh S, Zarei E, et al. Epicardial adipose tissue, inflammatory biomarkers and COVID-19: is there a possible relationship? Int Immunopharmacol. 2021;90:107174.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad I, Gupta S, Faulkner P, Mullens D, Thomas M, Sytha SP, et al. Single-nucleus transcriptomics of epicardial adipose tissue from female pigs reveals effects of exercise training on resident innate and adaptive immune cells. Cell Commun Signal. 2024;22:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carena MC, Badi I, Polkinghorne M, Akoumianakis I, Psarros C, Wahome E, et al. Role of human epicardial adipose tissue-derived miR-92a-3p in myocardial redox state. J Am Coll Cardiol. 2023;82:317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santos D, Carvalho E. Adipose-related microRNAs as modulators of the cardiovascular system: the role of epicardial adipose tissue. J Physiol. 2022;600:1171–87.

    Article  CAS  PubMed  Google Scholar 

  10. Cho DH, Park SM. Epicardial adipose tissue and heart failure, friend or foe? Diabetes Metab J. 2024;48:373–84.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8:253–61.

    Article  CAS  PubMed  Google Scholar 

  12. Yilmaz Z, Ince H, Aydin E, Yildirim Y, Yilmaz Aydin F, Yuksel E, et al. Relationship between epicardial adipose tissue and body composition as determined by multi-frequency bioelectrical impedance analysis in patients with stage 5 chronic kidney disease. Med Sci Monit. 2020;26:e920233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu J, Zhou W, Xie Z, Li W, Zhuo K. Impact of sex and menopausal status on the association between epicardial adipose tissue and diastolic function in patients with type 2 diabetes mellitus. Acad Radiol. 2023;30:823–32.

    Article  PubMed  Google Scholar 

  14. Shi KL, Qi L, Mao DB, Chen Y, Qian JY, Sun YB, et al. Impact of age on epicardial and pericoronary adipose tissue volume. Eur Rev Med. Pharmacol Sci. 2015;19:3257–65.

    PubMed  Google Scholar 

  15. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.

    Article  CAS  PubMed  Google Scholar 

  16. Peczkowski KK, Mashali MA, Saad NS, Hare A, Campbell CM, Whitson BA, et al. Quantification of Cardiac adipose tissue in failing and nonfailing human myocardium. J Am Heart Assoc. 2022;11:e025405.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vural M, Dolek BA, Kilickap G, Kubra Bahadir G, Celal Gunes Y. Epicardial adipose tissue (EAT) thickness on non-gated chest CT as an alternative to EAT volume on cardiac CT. Acta Radiol. 2024;65:601–8.

    Article  PubMed  Google Scholar 

  18. Gac P, Hajdusianek W, Zorawik A, Macek P, Poreba M, Poreba R. Thickness and volume of epicardial adipose tissue in relation to stiffness and elasticity of aorta assessed by computed tomography angiography. Biomedicines. 2023;11:1617.

  19. Uluca U, Demir F, Ece A, Sen V, Gunes A, Aktar F, et al. Assessment of epicardial adipose tissue thickness and the mean platelet volume in children with familial Mediterranean fever. Ital J Pediatr. 2015;41:15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Malavazos AE, Iacobellis G, Dozio E, Basilico S, Di Vincenzo A, Dubini C, et al. Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies. Eur J Prev Cardiol. 2023;30:680–93.

    Article  PubMed  Google Scholar 

  21. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536–43.

    Article  PubMed  Google Scholar 

  22. Carbone AM, Del Calvo G, Nagliya D, Sharma K, Lymperopoulos A. Autonomic nervous system regulation of epicardial adipose tissue: potential roles for regulator of G protein signaling-4. Curr Issues Mol Biol. 2022;44:6093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rozsivalova K, Pierzynova A, Kratochvilova H, Lindner J, Lips M, Kotulak T, et al. Increased Number of Mast Cells in Epicardial Adipose Tissue of Cardiac Surgery Patients With Coronary Artery Disease. Physiol Res. 2020;69:621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vyas V, Sandhar B, Keane JM, Wood EG, Blythe H, Jones A, et al. Tissue-resident memory T cells in epicardial adipose tissue comprise transcriptionally distinct subsets that are modulated in atrial fibrillation. Nat Cardiovasc Res. 2024;3:1067–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58:248–55.

    Article  CAS  PubMed  Google Scholar 

  26. Caselli C, D’Amico A, Cabiati M, Prescimone T, Del Ry S, Giannessi D. Back to the heart: the protective role of adiponectin. Pharmacol Res. 2014;82:9–20.

    Article  CAS  PubMed  Google Scholar 

  27. Park M, Sweeney G. Direct effects of adipokines on the heart: focus on adiponectin. Heart Fail Rev. 2013;18:631–44.

    Article  CAS  PubMed  Google Scholar 

  28. Samaha MM, El-Desoky MM, Hisham FA. AdipoRon, an adiponectin receptor agonist, modulates AMPK signaling pathway and alleviates ovalbumin-induced airway inflammation in a murine model of asthma. Int Immunopharmacol. 2024;136:112395.

    Article  CAS  PubMed  Google Scholar 

  29. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6.

    Article  PubMed  Google Scholar 

  30. Zhao Y, Shao C, Zhou H, Yu L, Bao Y, Mao Q, et al. Salvianolic acid B inhibits atherosclerosis and TNF-alpha-induced inflammation by regulating NF-kappaB/NLRP3 signaling pathway. Phytomedicine. 2023;119:155002.

    Article  CAS  PubMed  Google Scholar 

  31. Mahmood Z, Back M, Leanderson P, Thune R, Skoglund C, Jonasson L. Basal and exercise-induced expression of NLRP3 inflammasome-related components is increased in patients with chronic coronary syndrome. Atherosclerosis. 2025;405:119227.

    Article  CAS  PubMed  Google Scholar 

  32. Zang YH, Chen D, Zhou B, Chen AD, Wang JJ, Gao XY, et al. FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFkappaB-mediated NLRP3 upregulation. Vascul Pharmacol. 2019;121:106579.

    Article  CAS  PubMed  Google Scholar 

  33. Zangi L, Oliveira MS, Ye LY, Ma Q, Sultana N, Hadas Y, et al. Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation. 2017;135:59–72.

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Liu L, Li M, Zhu D, Tian G. Epicardial adipose tissue-derived leptin promotes myocardial injury in metabolic syndrome rats through PKC/NADPH oxidase/ROS pathway. J Am Heart Assoc. 2023;12:e029415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fragasso G, Spoladore R, Bassanelli G, Cuko A, Montano C, Salerno A, et al. New directions in the treatment of heart failure: targeting free fatty acid oxidation. Curr Heart Fail Rep. 2007;4:236–42.

    Article  CAS  PubMed  Google Scholar 

  36. Han L, Liu J, Zhu L, Tan F, Qin Y, Huang H, et al. Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart. Lipids Health Dis. 2018;17:185.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Investig. 1992;89:1767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846–50.

    Article  PubMed  Google Scholar 

  39. Wahyuni T, Kobayashi A, Tanaka S, Miyake Y, Yamamoto A, Bahtiar A, et al. Maresin-1 induces cardiomyocyte hypertrophy through IGF-1 paracrine pathway. Am J Physiol Cell Physiol. 2021;321:C82–C93.

    Article  CAS  PubMed  Google Scholar 

  40. Samarel AM. IGF-1 overexpression rescues the failing heart. Circ Res. 2002;90:631–3.

    Article  CAS  PubMed  Google Scholar 

  41. Zaman R, Hamidzada H, Kantores C, Wong A, Dick SA, Wang Y, et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity. 2021;54:2057–71.e6.

    Article  CAS  PubMed  Google Scholar 

  42. Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14:1013–22.

    CAS  PubMed  Google Scholar 

  43. Chechi K, Carpentier AC, Richard D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endocrinol Metab. 2013;24:408–20.

    Article  CAS  PubMed  Google Scholar 

  44. D’Marco L, Puchades MJ, Gorriz JL, Romero-Parra M, Lima-Martinez M, Soto C, et al. Epicardial adipose tissue, adiponectin and leptin: a potential source of cardiovascular risk in chronic kidney disease. Int J Mol Sci. 2020;21:978.

  45. Palanivel R, Ganguly R, Turdi S, Xu A, Sweeney G. Adiponectin stimulates Rho-mediated actin cytoskeleton remodeling and glucose uptake via APPL1 in primary cardiomyocytes. Metabolism. 2014;63:1363–73.

    Article  CAS  PubMed  Google Scholar 

  46. Gao X, Jakovljevic DG, Beard DA. Cardiac metabolic limitations contribute to diminished performance of the heart in aging. Biophys J. 2019;117:2295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo P, Zheng M, Zhang R, Zhang H, Liu Y, Li W, et al. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm Sin B. 2021;11:668–79.

    Article  CAS  PubMed  Google Scholar 

  48. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–71.

    Article  CAS  PubMed  Google Scholar 

  49. Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and autophagy in the Heart. Circ Res. 2016;118:1563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care. 2011;34:730–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-gamma/adiponectin signalling. Circ Res. 2016;118:842–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klein M, Varga I. Microenvironment of immune cells within the visceral adipose tissue sensu lato vs. epicardial adipose tissue: what do we know? Inflammation. 2018;41:1142–56.

    Article  CAS  PubMed  Google Scholar 

  53. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020;11:776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Furuhashi M, Fuseya T, Murata M, Hoshina K, Ishimura S, Mita T, et al. Local production of fatty acid-binding protein 4 in epicardial/perivascular fat and macrophages is linked to coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:825–34.

    Article  CAS  PubMed  Google Scholar 

  56. Choy M, Huang Y, Peng Y, Liang W, He X, Chen C, et al. Association between epicardial adipose tissue and incident heart failure mediating by alteration of natriuretic peptide and myocardial strain. BMC Med. 2023;21:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li T, Li X, Feng Y, Dong G, Wang Y, Yang J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediat Inflamm. 2020;2020:3872367.

    Article  Google Scholar 

  58. Payne GA, Kohr MC, Tune JD. Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease. Br J Pharmacol. 2012;165:659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santoro A, Kahn BB. Adipocyte regulation of insulin sensitivity and the risk of type 2 diabetes. N Engl J Med. 2023;388:2071–85.

  60. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  PubMed  Google Scholar 

  61. Naryzhnaya NV, Koshelskaya OA, Kologrivova IV, Kharitonova OA, Evtushenko VV, Boshchenko AA. Hypertrophy and insulin resistance of epicardial adipose tissue adipocytes: association with the coronary artery disease severity. Biomedicines. 2021;9:64.

  62. Xu J, Bartolome CL, Low CS, Yi X, Chien CH, Wang P, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature. 2018;556:505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boden G. Free fatty acids-the link between obesity and insulin resistance. Endocr Pract. 2001;7:44–51.

    Article  CAS  PubMed  Google Scholar 

  64. Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016;280:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edsen F, Habib P, Matz O, Nikoubashman O, Wiesmann M, Frick M, et al. Epicardial adipose tissue thickness assessed by CT is a marker of atrial fibrillation in stroke patients. Ann Clin Transl Neurol. 2022;9:1668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu R, Wang W, Gao Y, Wang J, Li B, Cheng Z, et al. Insulin resistance aggravates myocardial fibrosis in non-diabetic hypertensive patients by altering the function of epicardial adipose tissue: a cardiac magnetic resonance study. Diabetol Metab Syndr. 2025;17:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krishnan A, Chilton E, Raman J, Saxena P, McFarlane C, Trollope AF, et al. Are interactions between epicardial adipose tissue, cardiac fibroblasts and cardiac myocytes instrumental in atrial fibrosis and atrial fibrillation? Cells. 2021;10:2501.

  68. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017;3:425–35.

    Article  PubMed  Google Scholar 

  69. Yang X, An N, Zhong C, Guan M, Jiang Y, Li X, et al. Enhanced cardiomyocyte reactive oxygen species signaling promotes ibrutinib-induced atrial fibrillation. Redox Biol. 2020;30:101432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hao S, Sui X, Wang J, Zhang J, Pei Y, Guo L, et al. Secretory products from epicardial adipose tissue induce adverse myocardial remodeling after myocardial infarction by promoting reactive oxygen species accumulation. Cell Death Dis. 2021;12:848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nalliah CJ, Bell JR, Raaijmakers AJA, Waddell HM, Wells SP, Bernasochi GB, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality. J Am Coll Cardiol. 2020;76:1197–211.

    Article  CAS  PubMed  Google Scholar 

  72. Shaihov-Teper O, Ram E, Ballan N, Brzezinski RY, Naftali-Shani N, Masoud R, et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation. 2021;143:2475–93.

    Article  CAS  PubMed  Google Scholar 

  73. van Woerden G, van Veldhuisen DJ, Westenbrink BD, de Boer RA, Rienstra M, Gorter TM. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail. 2022;24:2238–50.

    Article  PubMed  Google Scholar 

  74. Ran CQ, Su Y, Li J, Wu K, Liu ZL, Yang Y, et al. Epicardial adipose tissue volume highly correlates with left ventricular diastolic dysfunction in endogenous Cushing’s syndrome. Ann Med. 2024;56:2387302.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Abdin A, Bohm M, Shahim B, Karlstrom P, Kulenthiran S, Skouri H, et al. Heart failure with preserved ejection fraction epidemiology, pathophysiology, diagnosis and treatment strategies. Int J Cardiol. 2024;412:132304.

    Article  PubMed  Google Scholar 

  76. Anthony SR, Guarnieri AR, Gozdiff A, Helsley RN, Phillip Owens A, Tranter M. Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci. 2019;133:2329–44.

    Article  CAS  Google Scholar 

  77. Chen D, Zhang Y, Yidilisi A, Xu Y, Dong Q, Jiang J. Causal associations between circulating adipokines and cardiovascular disease: a Mendelian randomization study. J Clin Endocrinol Metab. 2022;107:e2572–80.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liao GZ, Liu HH, He CH, Feng JY, Zhuang XF, Wang JX, et al. Free fatty acids: independent predictors of long-term adverse cardiovascular outcomes in heart failure patients. Lipids Health Dis. 2024;23:343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Packer M. Drugs That Ameliorate Epicardial adipose tissue inflammation may have discordant effects in heart failure with a preserved ejection fraction as compared with a reduced ejection fraction. J Card Fail. 2019;25:986–1003.

    Article  PubMed  Google Scholar 

  80. Jian M, Kwan JS, Bunting M, Ng RC, Chan KH. Adiponectin suppresses amyloid-beta oligomer (AbetaO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-kappaB signaling pathway. J Neuroinflammation. 2019;16:110.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang L, Luo Y, Luo L, Wu D, Ding X, Zheng H, et al. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J Exp Med. 2021;218:e20191054.

  82. Ma YL, Xu M, Cen XF, Qiu HL, Guo YY, Tang QZ. Tectorigenin protects against cardiac fibrosis in diabetic mice heart via activating the adiponectin receptor 1-mediated AMPK pathway. Biomed Pharmacother. 2024;174:116589.

    Article  CAS  PubMed  Google Scholar 

  83. Thankam FG, Agrawal DK. Single cell genomics identifies unique cardioprotective phenotype of stem cells derived from epicardial adipose tissue under ischemia. Stem Cell Rev Rep. 2022;18:294–335.

    Article  CAS  PubMed  Google Scholar 

  84. Bianchi VE. Impact of nutrition on cardiovascular function. Curr Probl Cardiol. 2020;45:100391.

    Article  PubMed  Google Scholar 

  85. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25:1657–66.

    Article  CAS  PubMed  Google Scholar 

  86. Horckmans M, Bianchini M, Santovito D, Megens RTA, Springael JY, Negri I, et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation. 2018;137:948–60.

    Article  PubMed  Google Scholar 

  87. Fukushima J, Kamada Y, Matsumoto H, Yoshida Y, Ezaki H, Takemura T, et al. Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res. 2009;39:724–38.

    Article  CAS  PubMed  Google Scholar 

  88. Tu Q, Liu S, Chen T, Li Z, Lin D. Effects of adiponectin on random pattern skin flap survival in rats. Int Immunopharmacol. 2019;76:105875.

    Article  CAS  PubMed  Google Scholar 

  89. Konwerski M, Gasecka A, Opolski G, Grabowski M, Mazurek T. Role of epicardial adipose tissue in cardiovascular diseases: a review. Biology. 2022;11:355.

  90. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71:2360–72.

    Article  CAS  PubMed  Google Scholar 

  91. Liu Z, Wang S, Wang Y, Zhou N, Shu J, Stamm C, et al. Association of epicardial adipose tissue attenuation with coronary atherosclerosis in patients with a high risk of coronary artery disease. Atherosclerosis. 2019;284:230–6.

    Article  CAS  PubMed  Google Scholar 

  92. Filtz A, Lorenzatti D, Scotti A, Pina P, Fernandez-Hazim C, Huang D, et al. Relationship between epicardial adipose tissue and coronary atherosclerosis by CCTA in young adults (18-45). Am J Prev Cardiol. 2024;19:100711.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Madonna R, Massaro M, Scoditti E, Pescetelli I, De Caterina R. The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovasc Res. 2019;115:1013–25.

    Article  CAS  PubMed  Google Scholar 

  94. Iacobellis G. Aging effects on epicardial adipose tissue. Front Aging. 2021;2:666260.

    Article  PubMed  PubMed Central  Google Scholar 

  95. White IA. Cardiac Sympathetic denervation in the failing heart: a role for epicardial adipose tissue. Circ Res. 2016;118:1189–91.

    Article  CAS  PubMed  Google Scholar 

  96. Benedetti F, Davinelli S, Krishnan S, Gallo RC, Scapagnini G, Zella D, et al. Sulfur compounds block MCP-1 production by Mycoplasma fermentans-infected macrophages through NF-kappaB inhibition. J Transl Med. 2014;12:145.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhou Y, Wei Y, Wang L, Wang X, Du X, Sun Z, et al. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovasc Diabetol. 2011;10:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weber C, Habenicht AJR, von Hundelshausen P. Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond. Eur Heart J. 2023;44:2672–81.

    Article  CAS  PubMed  Google Scholar 

  99. Yan LS, Zhang SF, Luo G, Cheng BC, Zhang C, Wang YW, et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism. 2022;131:155200.

    Article  CAS  PubMed  Google Scholar 

  100. Li Y, Munoz-Mayorga D, Nie Y, Kang N, Tao Y, Lagerwall J, et al. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metab. 2024;36:1351–70.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci ((Lond)). 2013;124:491–507.

    Article  CAS  PubMed  Google Scholar 

  102. Wang L, Ye X, Hua Y, Song Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother. 2018;105:121–9.

    Article  CAS  PubMed  Google Scholar 

  103. Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002;30:1064–70.

    Article  CAS  PubMed  Google Scholar 

  104. Decleves AE, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int. 2014;85:611–23.

    Article  CAS  PubMed  Google Scholar 

  105. Janani C, Ranjitha Kumari BD. PPAR gamma gene-a review. Diabetes Metab Syndr. 2015;9:46–50.

    Article  CAS  PubMed  Google Scholar 

  106. Martinez Calejman C, Trefely S, Entwisle SW, Luciano A, Jung SM, Hsiao W, et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun. 2020;11:575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ju Z, Su M, Hong J, Kim E, Jung JH. Anti-inflammatory effects of an optimized PPAR-gamma agonist via NF-kappaB pathway inhibition. Bioorg Chem. 2020;96:103611.

    Article  CAS  PubMed  Google Scholar 

  108. Liu C, Xu X, He X, Ren J, Chi M, Deng G, et al. Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med. 2023;55:2284890.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Huang CY, Deng JS, Huang WC, Jiang WP, Huang GJ. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy. Nutrients 2020;12:1742.

  110. Han J, Shi X, Xu J, Lin W, Chen Y, Han B, et al. DL-3-n-butylphthalide prevents oxidative stress and atherosclerosis by targeting Keap-1 and inhibiting Keap-1/Nrf-2 interaction. Eur J Pharm Sci. 2022;172:106164.

    Article  CAS  PubMed  Google Scholar 

  111. El-Sahar AE, Bekhit N, Eissa NM, Abdelsalam RM, Essam RM. Targeting HMGB1/PI3K/Akt and NF-kappaB/Nrf-2 signaling pathways by vildagliptin mitigates testosterone-induced benign prostate hyperplasia in rats. Life Sci. 2023;322:121645.

    Article  CAS  PubMed  Google Scholar 

  112. Calcaterra V, Cena H, Garella V, Loperfido F, Chillemi C, Manuelli M, et al. Assessment of epicardial fat in children: its role as a cardiovascular risk factor and how it is influenced by lifestyle habits. Nutrients. 2024;16:420.

  113. van Eyk HJ, van Schinkel LD, Kantae V, Dronkers CEA, Westenberg JJM, de Roos A, et al. Caloric restriction lowers endocannabinoid tonus and improves cardiac function in type 2 diabetes. Nutr Diabetes. 2018;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Barrio-Lopez MT, Ruiz-Canela M, Goni L, Valiente AM, Garcia SR, de la OV, et al. Mediterranean diet and epicardial adipose tissue in patients with atrial fibrillation treated with ablation: a substudy of the ‘PREDIMAR’ trial. Eur J Prev Cardiol. 2024;31:348–55.

    Article  PubMed  Google Scholar 

  115. Christensen RH, Wedell-Neergaard AS, Lehrskov LL, Legaard GE, Dorph E, Larsen MK, et al. Effect of aerobic and resistance exercise on cardiac adipose tissues: secondary analyses from a randomized clinical trial. JAMA Cardiol. 2019;4:778–87.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Launbo N, Zobel EH, von Scholten BJ, Faerch K, Jorgensen PG, Christensen RH. Targeting epicardial adipose tissue with exercise, diet, bariatric surgery or pharmaceutical interventions: a systematic review and meta-analysis. Obes Rev. 2021;22:e13136.

    Article  PubMed  Google Scholar 

  117. Angulo J, El Assar M, Alvarez-Bustos A, Rodriguez-Manas L. Physical activity and exercise: strategies to manage frailty. Redox Biol. 2020;35:101513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19:593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nauck MA, D’Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. She J, Tuerhongjiang G, Guo M, Liu J, Hao X, Guo L, et al. Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner. Cell Metab. 2024;36:408–21.e5.

    Article  CAS  PubMed  Google Scholar 

  121. Bray JJH, Foster-Davies H, Salem A, Hoole AL, Obaid DR, Halcox JPJ, et al. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Diabetes Obes Metab. 2021;23:1806–22.

    Article  CAS  PubMed  Google Scholar 

  122. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006;43:173–81.

    Article  CAS  PubMed  Google Scholar 

  123. Sheikhbahaei E, Tavassoli Naini P, Agharazi M, Pouramini A, Rostami S, Bakhshaei S, et al. Cardiac fat pat change after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass surgery: a systematic review and meta-analysis. Surg Obes Relat Dis. 2023;19:653–64.

    Article  PubMed  Google Scholar 

  124. Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol. 2023;19:164–76.

    Article  PubMed  Google Scholar 

  125. Iannelli A, Anty R, Schneck AS, Tran A, Hebuterne X, Gugenheim J. Evolution of low-grade systemic inflammation, insulin resistance, anthropometrics, resting energy expenditure and metabolic syndrome after bariatric surgery: a comparative study between gastric bypass and sleeve gastrectomy. J Visc Surg. 2013;150:269–75.

    Article  CAS  PubMed  Google Scholar 

  126. Kelly AS, Ryder JR, Marlatt KL, Rudser KD, Jenkins T, Inge TH. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity. Int J Obes. 2016;40:275–80.

    Article  CAS  Google Scholar 

  127. Baba S, Jacene HA, Engles JM, Honda H, Wahl RL. CT Hounsfield units of brown adipose tissue increase with activation: preclinical and clinical studies. J Nucl Med. 2010;51:246–50.

    Article  PubMed  Google Scholar 

  128. Gashi G, Madoerin P, Maushart CI, Michel R, Senn JR, Bieri O, et al. MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults. J Magn Reson Imaging. 2019;50:1160–8.

    Article  PubMed  Google Scholar 

  129. West HW, Siddique M, Williams MC, Volpe L, Desai R, Lyasheva M, et al. Deep-learning for epicardial adipose tissue assessment with computed tomography: implications for cardiovascular risk prediction. JACC Cardiovasc Imaging. 2023;16:800–16.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Neeland IJ, Ross R, Despres JP, Matsuzawa Y, Yamashita S, Shai I, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7:715–25.

    Article  PubMed  Google Scholar 

  131. Bachar GN, Dicker D, Kornowski R, Atar E. Epicardial adipose tissue as a predictor of coronary artery disease in asymptomatic subjects. Am J Cardiol. 2012;110:534–8.

    Article  PubMed  Google Scholar 

  132. Fukushima T, Maetani T, Chubachi S, Tanabe N, Asakura T, Namkoong H, et al. Epicardial adipose tissue measured from analysis of adipose tissue area using chest CT imaging is the best potential predictor of COVID-19 severity. Metabolism. 2024;150:155715.

    Article  CAS  PubMed  Google Scholar 

  133. Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis. 2010;210:150–4.

    Article  CAS  PubMed  Google Scholar 

  134. Hassan M, Said K, Rizk H, ElMogy F, Donya M, Houseni M, et al. Segmental peri-coronary epicardial adipose tissue volume and coronary plaque characteristics. Eur Heart J Cardiovasc Imaging. 2016;17:1169–77.

    Article  PubMed  Google Scholar 

  135. Sang C, Hu X, Zhang D, Shao Y, Qiu B, Li C, et al. The predictive value of left atrium epicardial adipose tissue on recurrence after catheter ablation in patients with different types of atrial fibrillation. Int J Cardiol. 2023;379:33–39.

    Article  PubMed  Google Scholar 

  136. Wang X, Leng S, Adamson PD, Greer CE, Huang W, Lee HK, et al. Characterizing cardiac adipose tissue in post-acute myocardial infarction patients via CT imaging: a comparative cross-sectional study. Eur Heart J Cardiovasc Imaging. 2025;26:733–40.

    Article  PubMed  Google Scholar 

  137. Hammache N, Pegorer-Sfes H, Benali K, Magnin Poull I, Olivier A, Echivard M, et al. Is There an Association between Epicardial Adipose Tissue and Outcomes after Paroxysmal Atrial Fibrillation Catheter Ablation?. J. Clin. Med. 2021;10:3037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all of our colleagues from our research group who provided insightful feedback and suggestions during the preparation of this review.

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 32400767) and General Program of Basic Science (Natural Sciences) Research for Higher Education Institutions in Jiangsu Province (24KJB180001).

Author information

Authors and Affiliations

Authors

Contributions

Yu Tian: Writing—original draft, Visualization. Pingping Wang: Supervision, Writing—Review and editing. Zhifeng Dong: Project administration, Conceptualization. Yu Tian and Pingping Wang contributed equally.

Corresponding author

Correspondence to Zhifeng Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, P. & Dong, Z. Heart-guarding or heart-harming? The dual role of epicardial adipose tissue in cardiovascular health and disease. Int J Obes (2025). https://doi.org/10.1038/s41366-025-01852-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-025-01852-z

Search

Quick links