Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

Age-specific childhood obesity and adult cholelithiasis: association and shared transcriptomic bases

Abstract

Objectives

The association between obesity and cholelithiasis has been identified. However, the causal relationship between age-specific childhood obesity and adult cholelithiasis remains unclear. In addition, the biological basis for the association between childhood obesity and adult cholelithiasis is poorly understood, which poses a challenge for preventing adult cholelithiasis in specific biological pathways.

Methods

Summary statistics of genome-wide association studies (GWASs) of childhood age-specific body mass index (BMI) at 12 time points and adult cholelithiasis derived from FinnGen were used in this study, with the former covering data from birth to 8 years. Linkage disequilibrium score regression (LDSC) analyses were used to assess the genetic correlations of age-specific childhood BMI to cholelithiasis. Two-sample Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) analyses were utilized to explore the causal associations. As downstream analyses, summary-based Mendelian randomization (SMR) analyses, transcriptome-wide association studies (TWAS), and Bayesian colocalization were conducted to discover the shared transcriptomic signals. The GWAS summary statistics of cholelithiasis from the UK Biobank were used for sensitivity analyses.

Results

LDSC analyses revealed significant genetic correlations between 11 age-specific childhood BMIs and adult cholelithiasis (except for birth BMI). Two-sample MR and MVMR analyses indicated causal relationships between birth BMI and BMI at 8 months, 1.5 years, 7 years, and 8 years after birth and adult cholelithiasis. SMR, TWAS, and colocalization analyses identified MLXIPL as the strongest overlapping signal between age-specific BMI and adult cholelithiasis.

Conclusion

This study provides new evidence on the relationships between childhood obesity and adult cholelithiasis, highlighting the role of early intervention for obesity in childhood at key time points. MLXIPL gene expression was identified as a potential biological pathway, suggesting potential therapeutic targets and precise intervention strategies for childhood obesity and adult cholelithiasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design.
Fig. 2: Genetic correlations between 12 age-specific childhood BMIs and adult cholelithiasis.
Fig. 3: Causal associations between 12 age-specific childhood BMIs and adult cholelithiasis revealed by the IVW or the Wald ratio method.
Fig. 4: The colocalization results of PPH4 ≥ 0.75 using GWAS and eQTL data in esophageal mucosal tissue.

Similar content being viewed by others

Data availability

GWAS summary statistics for 12 age-specific BMIs are available at: https://www.fhi.no/en/studies/moba/for-forskere-artikler/gwas-data-from-moba/. GWAS summary statistics for cholelithiasis from the FinnGen is available at: https://finngen.gitbook.io/documentation. GWAS summary statistics for cholelithiasis from the UKB is available at: https://www.leelabsg.org/resources. GWAS summary statistics for adolescent BMI is available at: EGG (Early Growth Genetics) Consortium. The eQTL summary data for GTEx are available at: https://yanglab.westlake.edu.cn/software/smr/#DataResource. The eQTL summary data for eQTLGen Consortium is available at: https://eqtlgen.org/cis-eqtls.html.The tissue weights for GTEx are available at: http://gusevlab.org/projects/fusion/.

References

  1. Lammert F, Gurusamy K, Ko CW, Miquel J-F, Méndez-Sánchez N, Portincasa P, et al. Gallstones. Nat Rev Dis Prim. 2016;2:16024.

    Article  PubMed  Google Scholar 

  2. Wang X, Yu W, Jiang G, Li H, Li S, Xie L, et al. Global epidemiology of gallstones in the 21st Century: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2024;22:1586–95.

    Article  PubMed  Google Scholar 

  3. Stinton LM, Myers RP, Shaffer EA. Epidemiology of gallstones. Gastroenterol Clin. 2010;39:157–69.

    Article  Google Scholar 

  4. Aerts R, Penninckx F. The burden of gallstone disease in Europe. Aliment Pharmacol Therapeutics. 2003;18:49–53.

    Article  Google Scholar 

  5. Russo MW, Wei JT, Thiny MT, Gangarosa LM, Brown A, Ringel Y, et al. Digestive and liver diseases statistics, 2004. Gastroenterology. 2004;126:1448–53.

    Article  PubMed  Google Scholar 

  6. Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system. Gallstone disease. BMJ (Clinical research ed). 2001;322:91–4.

  7. Schafmayer C, Hartleb J, Tepel J, Albers S, Freitag S, Völzke H, et al. Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol. 2006;6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stinton LM, Shaffer EA. Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut Liver. 2012;6:172–87.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koller T, Kollerova J, Hlavaty T, Huorka M, Payer J. Cholelithiasis and markers of nonalcoholic fatty liver disease in patients with metabolic risk factors. Scand J Gastroenterol. 2012;47:197–203.

    Article  CAS  PubMed  Google Scholar 

  10. Bortnichak EA, Freeman DH Jr., Ostfeld AM, Castelli WP, Kannel WB, Feinleib M, et al. The association between cholesterol cholelithiasis and coronary heart disease in Framingham, Massachusetts. Am J Epidemiol. 1985;121:19–30.

    Article  CAS  PubMed  Google Scholar 

  11. Frybova B, Drabek J, Lochmannova J, Douda L, Hlava S, Zemkova D, et al. Cholelithiasis and choledocholithiasis in children; risk factors for development. PloS One. 2018;13:e0196475.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fradin K, Racine AD, Belamarich PF. Obesity and symptomatic cholelithiasis in childhood: epidemiologic and case-control evidence for a strong relation. J Pediatr Gastroenterol Nutr. 2014;58:102–6.

    Article  PubMed  Google Scholar 

  13. Hendarto H, Akbar F, Muzakki J, Amri R, Nugraha S, Adlani H. Obesity, dyslipidemia, and diabetes mellitus as risk factors in cholelithiasis. Electron J Gen Med. 2023;20:em549.

    Article  CAS  Google Scholar 

  14. Chen L, Yang H, Li H, He C, Yang L, Lv G. Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study. Hepatology. 2022;75:785–96.

    Article  CAS  PubMed  Google Scholar 

  15. Kharga B, Sharma BK, Singh VK, Nishant K, Bhutia P, Tamang R, et al. Obesity not necessary, risk of symptomatic cholelithiasis increases as a function of BMI. J Clin Diagnostic Res. 2016;10:Pc28–pc32.

    Google Scholar 

  16. Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019;177:587–96.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan S, Ruan X, Sun Y, Fu T, Zhao J, Deng M, et al. Birth weight, childhood obesity, adulthood obesity and body composition, and gastrointestinal diseases: a Mendelian randomization study. Obesity. 2023;31:2603–14.

    Article  PubMed  Google Scholar 

  18. Xu X, Gao J, Sun J, Liu R, Chen W. The role of metabolic factors in the association between obesity and cholelithiasis: a two-step, two-sample multivariable Mendelian randomization study. Clinics. 2024;79:100520.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–9.

    Article  CAS  PubMed  Google Scholar 

  20. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–R98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2.

  22. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.

    Article  CAS  PubMed  Google Scholar 

  23. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Y, Broadaway KA, Raulerson CK, Scott LJ, Pan C, Ko A, et al. Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Hum Mol Genet. 2019;28:4161–72.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhu Z, Hasegawa K, Camargo CA Jr., Liang L. Investigating asthma heterogeneity through shared and distinct genetics: insights from genome-wide cross-trait analysis. J Allergy Clin Immunol. 2021;147:796–807.

    Article  CAS  PubMed  Google Scholar 

  26. Luo S, Zheng MH, Wong VW, Au Yeung SL. Drug-target Mendelian randomisation applied to metabolic dysfunction-associated steatotic liver disease: opportunities and challenges. eGastroenterology. 2024;2:e100114.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA. 2021;326:1614–21.

    Article  PubMed  Google Scholar 

  28. Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2016;45:382–8.

    Article  PubMed  Google Scholar 

  29. Helgeland Ø, Vaudel M, Sole-Navais P, Flatley C, Juodakis J, Bacelis J, et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat Metab. 2022;4:344–58.

    Article  CAS  PubMed  Google Scholar 

  30. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grotzinger AD, Fuente J, Privé F, Nivard MG, Tucker-Drob EM. Pervasive downward bias in estimates of liability-scale heritability in genome-wide association study meta-analysis: a simple solution. Biol Psychiatry. 2023;93:29–36.

    Article  CAS  PubMed  Google Scholar 

  33. Burrows K, Heiskala A, Bradfield JP, Balkhiyarova Z, Ning L, Boissel M, et al. A framework for conducting GWAS using repeated measures data with an application to childhood BMI. Nat Commun. 2024;15:10067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burgess S, Cronjé HT. Incorporating biological and clinical insights into variant choice for Mendelian randomisation: examples and principles. eGastroenterology. 2024;2:e100042.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  38. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30:543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Perry BI, Burgess S, Jones HJ, Zammit S, Upthegrove R, Mason AM, et al. The potential shared role of inflammation in insulin resistance and schizophrenia: a bidirectional two-sample mendelian randomization study. PLoS Med. 2021;18:e1003455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median Estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9:918.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kia DA, Zhang D, Guelfi S, Manzoni C, Hubbard L, Reynolds RH, et al. Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets. JAMA Neurol. 2021;78:464–72.

    Article  PubMed  Google Scholar 

  44. Reilly JJ, Armstrong J, Dorosty AR, Emmett PM, Ness A, Rogers I, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330:1357.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ståhlberg D, Rudling M, Angelin B, Björkhem I, Forsell P, Nilsell K, et al. Hepatic cholesterol metabolism in human obesity. Hepatology. 1997;25:1447–50.

    Article  PubMed  Google Scholar 

  46. Mathus-Vliegen EM, Van Ierland-Van Leeuwen ML, Terpstra A. Determinants of gallbladder kinetics in obesity. Digest Dis Sci. 2004;49:9–16.

    Article  CAS  PubMed  Google Scholar 

  47. Wang HH, Liu M, Clegg DJ, Portincasa P, Wang DQ. New insights into the molecular mechanisms underlying effects of estrogen on cholesterol gallstone formation. Biochim Biophys Acta. 2009;1791:1037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kansra AR, Lakkunarajah S, Jay MS. Childhood and adolescent obesity: a review. 2021;8:2020.

  49. Su Y, Zhang Y, Chai Y, Xu J. Autoimmune diseases and their genetic link to bronchiectasis: insights from a genetic correlation and Mendelian randomization study. Front Immunol. 2024;15:1343480.

  50. Gluckman PD, Hanson MAJElooh, disease. The developmental origins of health and disease. 2006:1–7.

  51. Lacagnina S. The Developmental Origins of Health and Disease (DOHaD). Am J Lifestyle Med. 2020;14:47–50.

  52. Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27:358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev. 2010;68:87–98.

    Article  PubMed  Google Scholar 

  54. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aris IM, Block JP. Childhood obesity interventions—going beyond the individual. JAMA Pediatr. 2022;176:e214388–e.

    Article  PubMed  Google Scholar 

  56. Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet. 2008;40:149–51.

    Article  CAS  PubMed  Google Scholar 

  57. Smelt AH. Triglycerides and gallstone formation. Clin Chim Acta. 2010;411:1625–31.

    Article  CAS  PubMed  Google Scholar 

  58. Nicolopoulos K, Mulugeta A, Zhou A, Hyppönen E. Association between habitual coffee consumption and multiple disease outcomes: a Mendelian randomisation phenome-wide association study in the UK Biobank. Clin Nutr. 2020;39:3467–76.

    Article  PubMed  Google Scholar 

  59. Chen VL, Du X, Chen Y, Kuppa A, Handelman SK, Vohnoutka RB, et al. Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology. Nat Commun. 2021;12:816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the patients and investigators who have contributed to MoBa Cohort, the FinnGen Consortium, the UK Biobank (UKB), the Genotype-Tissue Expression Project (GTEx), the eQTLGen Consortium and the Early Growth Genetics Consortium.

Funding

This study was supported by the Sichuan Provincial Science and Technology Support Program (2023YFH0097, Yu Tong).

Author information

Authors and Affiliations

Authors

Contributions

Lihua Liu, Writing - original draft, Conceptualization, Formal analysis, Validation. Lu Zhang, Supervision, Writing –review & editing. Yiwen Liao, Formal analysis, Investigation. Xin Jin, Resources, Validation. Yunzhu Chen, Resources, Software. Tian Yang, Visualization. Xingxing Li, Supervision. Yuheng Cao, Validation. Chuan Yu, Supervision. Chenghan Xiao, Methodology, Conceptualization. Zhenmi Liu, Writing - review & editing, Supervision. Yu Tong, Writing –review & editing, Supervision. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Chenghan Xiao, Zhenmi Liu or Yu Tong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study adheres to the STROBE-MR guidelines. Each included GWAS was conducted with institutional review board approval and informed participant consent. The MoBa study protocol was approved by the administrative board of the Norwegian Institute of Public Health, with data collection authorized by the Norwegian Data Protection Agency and the Regional Committee for Medical Research Ethics (approval number: 2012/67). The UK Biobank received ethics approval from the North West Multi-Centre Research Ethics Committee. The FinnGen GWAS data were approved by the Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS; approval number: HUS/990/2017). The GWAS data for adolescent BMI from the EGG Consortium were obtained from ethically approved studies, with each contributing cohort receiving approval from its respective local ethics committee. Other datasets used (GTEx, eQTLGen, and tissue weight data) are publicly available summary-level data generated from studies conducted under appropriate ethical approvals and informed consent. No new ethical approval was required for this analysis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, L., Liao, Y. et al. Age-specific childhood obesity and adult cholelithiasis: association and shared transcriptomic bases. Int J Obes (2025). https://doi.org/10.1038/s41366-025-01877-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-025-01877-4

Search

Quick links