Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiology and Biochemistry

The impact of obesity on bone health: molecular pathways, metabolic interactions, and associated pathologies

Abstract

Obesity, characterized by excessive body fat accumulation, is a growing global health concern with significant implications for both metabolic and skeletal health. The increasing prevalence of obesity, particularly among children, adolescents, and postmenopausal women, is associated with various bone-related disorders. Obesity and non-alcoholic fatty liver disease (NAFLD) collectively influence bone metabolism through systemic factors such as chronic inflammation, insulin resistance, dyslipidemia, and alterations in adipose tissue function. Key mediators, including adipokines like leptin and adiponectin, along with pro-inflammatory cytokines, play crucial roles in modulating bone formation and resorption, thereby contributing to conditions such as osteopenia and osteoporosis. Moreover, the interplay between obesity, NAFLD, and bone health involves complex mechanisms, including gut microbiota dysbiosis and impaired vitamin D metabolism. Understanding these multifaceted interactions is essential for developing targeted interventions to prevent or mitigate the adverse effects of obesity and NAFLD on bone health. This review explores the molecular pathways, metabolic interactions, and associated pathologies linking obesity and NAFLD to bone health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Forte YS, Renovato-Martins M, Barja-Fidalgo C. Cellular and molecular mechanisms associating obesity to bone loss. Cells. 2023;12:521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10:432.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126:1477–500.

    Article  PubMed  Google Scholar 

  4. Wang T, He C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018;44:38–50.

    Article  PubMed  Google Scholar 

  5. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annu Rev Pathol Mech Dis. 2016;11:421–49.

    Article  CAS  Google Scholar 

  6. Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response?. Curr Opin Pharmacol. 2017;37:35–40.

    Article  CAS  PubMed  Google Scholar 

  7. Stern JH, Smith GI, Chen S, Unger RH, Klein S, Scherer PE. Obesity dysregulates fasting-induced changes in glucagon secretion. J Endocrinol. 2019;243:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Basolo A, Ando T, Chang DC, Hollstein T, Krakoff J, Piaggi P, et al. Reduced albumin concentration predicts weight gain and higher ad libitum energy intake in humans. Front Endocrinol. 2021;12:642568.

    Article  Google Scholar 

  9. Tanzadehpanah H, Mahaki H, Moradi M, Afshar S, Rajabi O, Najafi R, et al. Human serum albumin binding and synergistic effects of gefitinib in combination with regorafenib on colorectal cancer cell lines. Colorectal Cancer. 2018;7:CRC03.

    Article  Google Scholar 

  10. Tanzadehpanah H, Mahaki H, Moradi M, Afshar S, Moghadam NH, Salehzadeh S, et al. The use of molecular docking and spectroscopic methods for investigation of the interaction between regorafenib with human serum albumin (HSA) and calf thymus DNA (ct-DNA) in the presence of different site markers. Protein Pept Lett. 2021;28:290–303.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed B, Konje JC. The epidemiology of obesity in reproduction. Best Pract Res Clin Obstet Gynaecol. 2023;89:102342.

    Article  PubMed  Google Scholar 

  12. Ataey A, Jafarvand E, Adham D, Moradi-Asl E. The relationship between obesity, overweight, and the human development index in world health organization eastern mediterranean region countries. J Prev Med Public Health. 2020;53:98.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Organization WH. Obesity: preventing and managing the global epidemic: report of a WHO consultation. World Health Organization; 2000.

  14. Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128· 9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

    Article  Google Scholar 

  15. Chen Y, Peng Q, Yang Y, Zheng S, Wang Y, Lu W. The prevalence and increasing trends of overweight, general obesity, and abdominal obesity among Chinese adults: a repeated cross-sectional study. BMC Public Health. 2019;19:1–18.

    Article  Google Scholar 

  16. Jia W. Obesity in China: its characteristics, diagnostic criteria, and implications. Front Med. 2015;9:129–33.

    Article  PubMed  Google Scholar 

  17. Wariri O, Alhassan JAK, Mark G, Adesiyan O, Hanson L. Trends in obesity by socioeconomic status among non-pregnant women aged 15–49 y: a cross-sectional, multi-dimensional equity analysis of demographic and health surveys in 11 sub-Saharan Africa countries, 1994–2015. Int Health. 2021;13:436–45.

    Article  PubMed  Google Scholar 

  18. Tydeman-Edwards R, Van Rooyen FC, Walsh CM. Obesity, undernutrition and the double burden of malnutrition in the urban and rural southern Free State, South Africa. Heliyon. 2018;4.

  19. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36:301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, et al. The impact of exosomes on bone health: a focus on osteoporosis. Pathol Res Pract. 2024;263:155618.

    Article  PubMed  Google Scholar 

  21. Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-alcoholic fatty liver disease and bone tissue metabolism: current findings and future perspectives. Int J Mol Sci. 2023;24:8445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nachit M, Leclercq IA. Emerging awareness on the importance of skeletal muscle in liver diseases: time to dig deeper into mechanisms!. Clin Sci. 2019;133:465–81.

    Article  CAS  Google Scholar 

  23. Qiao J, Wu Y, Ren Y. The impact of a high fat diet on bones: potential mechanisms. Food Funct. 2021;12:963–75.

    Article  CAS  PubMed  Google Scholar 

  24. Hafner H, Chang E, Carlson Z, Zhu A, Varghese M, Clemente J, et al. Lactational high-fat diet exposure programs metabolic inflammation and bone marrow adiposity in male offspring. Nutrients. 2019;11:1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinhold B. Epigenetics: the science of change. National Institute of Environmental Health Sciences; Environmental Health Perspectives; 2006.

  26. Mahmoud AM. An overview of epigenetics in obesity: the role of lifestyle and therapeutic interventions. Int J Mol Sci. 2022;23:1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008;66:S7–S11.

    Article  PubMed  Google Scholar 

  28. Armutcu F, McCloskey E, Ince M. Obesity significantly modifies signaling pathways associated with bone remodeling and metabolism. J Cell Signal. 2024;5:183–94.

    Article  Google Scholar 

  29. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851–61.

    Article  CAS  PubMed  Google Scholar 

  30. Mantovani A, Petracca G, Beatrice G, Csermely A, Tilg H, Byrne CD, et al. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: a meta-analysis of observational cohort studies. Gut. 2022;71:778–88.

    Article  PubMed  Google Scholar 

  31. Liu Z, Zhang Y, Graham S, Wang X, Cai D, Huang M, et al. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J Hepatol. 2020;73:263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut. 2022;71:1867–75.

    Article  PubMed  Google Scholar 

  33. Liu Z, Suo C, Fan H, Zhang T, Jin L, Chen X. Dissecting causal relationships between nonalcoholic fatty liver disease proxied by chronically elevated alanine transaminase levels and 34 extrahepatic diseases. Metabolism. 2022;135:155270.

    Article  CAS  PubMed  Google Scholar 

  34. Zheng M, Xu J, Feng Z. Association between nonalcoholic fatty liver disease and bone mineral density: Mendelian randomization and mediation analysis. Bone Rep. 2024;22:101785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahn S, Seo D, Kim S, Nam M-S, Hong S. The relationship between fatty liver index and bone mineral density in Koreans: KNHANES 2010–2011. Osteoporos Int. 2018;29:181–90.

    Article  CAS  PubMed  Google Scholar 

  36. Kinjo M, Setoguchi S, Solomon DH. Bone mineral density in adults with the metabolic syndrome: analysis in a population-based US sample. J Clin Endocrinol Metab. 2007;92:4161–4.

    Article  CAS  PubMed  Google Scholar 

  37. Krishnan S, Anderson MP, Fields DA, Misra M. Abdominal obesity adversely affects bone mass in children. World J Clin Pediatr. 2018;7:43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94:3387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oh M-S, Kim S, Jang J-H, Park JY, Kang H-S, Lee MS, et al. Associations among the degree of nonalcoholic fatty liver disease, metabolic syndrome, degree of obesity in children, and parental obesity. Pediatr Gastroenterol Hepatol Nutr. 2016;19:199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marcovecchio ML, Chiarelli F. Obesity and growth during childhood and puberty. Nutr Growth. 2013;106:135–41.

    Article  Google Scholar 

  41. Chaplais E, Naughton G, Greene D, Dutheil F, Pereira B, Thivel D, et al. Effects of interventions with a physical activity component on bone health in obese children and adolescents: a systematic review and meta-analysis. J Bone Miner Metab. 2018;36:12–30.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Qin R, Ma X, Qin Z, Yang Z, Hong H, et al. Adiposity is not beneficial to bone mineral density in 0–5 year old Chinese children: the Jiangsu bone health study. Obes Res Clin Pract. 2020;14:39–46.

    Article  PubMed  Google Scholar 

  43. Kanis J, Burlet N, Cooper C, Delmas P, Reginster J-Y, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19:399–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Méndez JP, Rojano-Mejía D, Pedraza J, Coral-Vázquez RM, Soriano R, García-García E, et al. Bone mineral density in postmenopausal Mexican-Mestizo women with normal body mass index, overweight, or obesity. Menopause. 2013;20:568–72.

    Article  PubMed  Google Scholar 

  45. Cherif R, Mahjoub F, Sahli H, Cheour E, Vico L, Sakly M, et al. Positive association of obesity and insulin resistance with bone mineral density in Tunisian postmenopausal women. J Clin Densitom. 2018;21:163–71.

    Article  PubMed  Google Scholar 

  46. Głogowska-Szeląg J, Kos-Kudła B, Marek B, Nowak M, Siemińska L. Assessment of selected adipocytokines in obese women with postmenopausal osteoporosis. Endokrynol Pol. 2019;70:478–83.

    Article  PubMed  Google Scholar 

  47. Arango-Lopera V, Arroyo P, Gutiérrez-Robledo LM, Pérez-Zepeda MU, Cesari M. Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging. 2013;17:259–62.

    Article  CAS  PubMed  Google Scholar 

  48. Chen YS, Guo Q, Guo LJ, Liu T, Wu XP, Lin ZY, et al. GDF 8 inhibits bone formation and promotes bone resorption in mice. Clin Exp Pharmacol Physiol. 2017;44:500–8.

    Article  CAS  PubMed  Google Scholar 

  49. Saad FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci. 2020;1462:37–52.

    Article  CAS  PubMed  Google Scholar 

  50. Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, et al. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors. 2023;49:21–31.

    Article  CAS  PubMed  Google Scholar 

  51. Santos VRD, Christofaro DGD, Gomes IC, Freitas Júnior IF, Gobbo LA. Relationship between obesity, sarcopenia, sarcopenic obesity, and bone mineral density in elderly subjects aged 80 years and over. Rev Bras Ortop. 2018;53:300–5.

    Article  PubMed  Google Scholar 

  52. Florencio-Silva R, Sasso GRdS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int. 2015;2015:421746.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Baniasadi M, Talebi S, Mokhtari K, Zabolian AH, Khosroshahi EM, Entezari M, et al. Role of non-coding RNAs in osteoporosis. Pathol Res Pract. 2023;253:155036.

    Article  PubMed  Google Scholar 

  54. Hou Z, Wang Z, Tao Y, Bai J, Yu B, Shen J, et al. KLF2 regulates osteoblast differentiation by targeting of Runx2. Lab Investig. 2019;99:271–80.

    Article  CAS  PubMed  Google Scholar 

  55. Chiu YH, Ritchlin CT. DC-STAMP: a key regulator in osteoclast differentiation. J Cell Physiol. 2016;231:2402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast–osteoclast interactions. Connect Tissue Res. 2018;59:99–107.

    Article  CAS  PubMed  Google Scholar 

  57. Tresguerres F, Torres J, López-Quiles J, Hernández G, Vega J, Tresguerres I. The osteocyte: a multifunctional cell within the bone. Ann Anat. 2020;227:151422.

    Article  CAS  PubMed  Google Scholar 

  58. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:1–7.

    Article  Google Scholar 

  59. Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Cappa M, et al. The bones of children with obesity. Front Endocrinol. 2020;11:200.

    Article  Google Scholar 

  60. Cao JJ, Gregoire BR, Gao H. High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone. 2009;44:1097–104.

    Article  CAS  PubMed  Google Scholar 

  61. Halade GV, El Jamali A, Williams PJ, Fajardo RJ, Fernandes G. Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol. 2011;46:43–52.

    Article  CAS  PubMed  Google Scholar 

  62. Shu L, Beier E, Sheu T, Zhang H, Zuscik MJ, Puzas EJ, et al. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int. 2015;96:313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42:606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lecka-Czernik B, Stechschulte L, Czernik P, Dowling A. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015;410:35–41.

    Article  CAS  PubMed  Google Scholar 

  65. Greco E, Lenzi A, Migliaccio S. The obesity of bone. Ther Adv Endocrinol Metab. 2015;6:273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu X, Wu Y, Li Y, Li K, Hou S, Ding M, et al. Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exosomal smooth muscle cell-associated protein 5 (SMAP-5). J Zhejiang Univ Sci B. 2023;24:248–61.

    Article  CAS  PubMed  Google Scholar 

  67. Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative stress and natural antioxidants in osteoporosis: novel preventive and therapeutic approaches. Antioxidants. 2023;12:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harrison SA, Ruane PJ, Freilich B, Neff G, Patil R, Behling C, et al. A randomized, double-blind, placebo-controlled phase IIa trial of efruxifermin for patients with compensated NASH cirrhosis. JHEP Rep. 2023;5:100563.

    Article  PubMed  Google Scholar 

  69. Jules J, Wang S, Shi Z, Liu J, Wei S, Feng X. The IVVY motif and tumor necrosis factor receptor-associated factor (TRAF) sites in the cytoplasmic domain of the receptor activator of nuclear factor κB (RANK) cooperate to induce osteoclastogenesis. J Biol Chem. 2015;290:23738–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ohori F, Kitaura H, Ogawa S, Shen W-R, Qi J, Noguchi T, et al. IL-33 inhibits TNF-α-induced osteoclastogenesis and bone resorption. Int J Mol Sci. 2020;21:1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen W-R, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front Immunol. 2019;10:2925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shinohara H, Teramachi J, Okamura H, Yang D, Nagata T, Haneji T. Double stranded RNA-dependent protein kinase is necessary for TNF-α-induced osteoclast formation in vitro and in vivo. J Cell Biochem. 2015;116:1957–67.

    Article  CAS  PubMed  Google Scholar 

  73. Jeong B-C. ATF3 mediates the inhibitory action of TNF-α on osteoblast differentiation through the JNK signaling pathway. Biochem Biophys Res Commun. 2018;499:696–701.

    Article  CAS  PubMed  Google Scholar 

  74. Ye X, Huang H, Zhao N, Zhang J, Yang P. Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation. Vitr Cell Dev Biol Anim. 2016;52:1026–33.

    Article  CAS  Google Scholar 

  75. Muluke M, Gold T, Kiefhaber K, Al-Sahli A, Celenti R, Jiang H, et al. Diet-induced obesity and its differential impact on periodontal bone loss. J Dent Res. 2016;95:223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang K, Wang C, Chen Y, Ji X, Chen X, Tian L, et al. Preservation of high-fat diet-induced femoral trabecular bone loss through genetic target of TNF-α. Endocrine. 2015;50:239–49.

    Article  CAS  PubMed  Google Scholar 

  77. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the West Virginian population. Int J Med Sci. 2016;13:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Galozzi P, Bindoli S, Doria A, Sfriso P. The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev. 2021;20:102785.

    Article  CAS  PubMed  Google Scholar 

  79. Cao Y, Jansen ID, Sprangers S, Stap J, Leenen PJ, Everts V, et al. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leucoc Biol. 2016;100:513–23.

    Article  CAS  Google Scholar 

  80. Son HS, Lee J, Lee HI, Kim N, Jo Y-J, Lee G-R, et al. Benzydamine inhibits osteoclast differentiation and bone resorption via down-regulation of interleukin-1β expression. Acta Pharm Sin B. 2020;10:462–74.

    Article  PubMed  Google Scholar 

  81. Lazzerini PE, Capperucci C, Spreafico A, Capecchi PL, Niccolini S, Ferrata P, et al. Rosuvastatin inhibits spontaneous and IL-1β-induced interleukin-6 production from human cultured osteoblastic cells. Jt Bone Spine. 2013;80:195–200.

    Article  CAS  Google Scholar 

  82. Hah Y-S, Kang H-G, Cho H-Y, Shin S-H, Kim U-K, Park B-W, et al. JNK signaling plays an important role in the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal-derived cells. Mol Biol Rep. 2013;40:4869–81.

    Article  CAS  PubMed  Google Scholar 

  83. Yang H, Liu Q, Ahn JH, Kim SB, Kim YC, Sung SH, et al. Luteolin downregulates IL-1β-induced MMP-9 and-13 expressions in osteoblasts via inhibition of ERK signalling pathway. J Enzyme Inhib Med Chem. 2012;27:261–6.

    Article  CAS  PubMed  Google Scholar 

  84. McKnight Q, Jenkins S, Li X, Nelson T, Marlier A, Cantley LG, et al. IL-1β drives production of FGF-23 at the onset of chronic kidney disease in mice. J Bone Miner Res. 2020;35:1352–62.

    Article  CAS  PubMed  Google Scholar 

  85. Rupp T, Butscheidt S, Vettorazzi E, Oheim R, Barvencik F, Amling M, et al. High FGF23 levels are associated with impaired trabecular bone microarchitecture in patients with osteoporosis. Osteoporos Int. 2019;30:1655–62.

    Article  CAS  PubMed  Google Scholar 

  86. He B, Yin X, Hao D, Zhang X, Zhang Z, Zhang K, et al. Blockade of IL-6 alleviates bone loss induced by modeled microgravity in mice. Can J Physiol Pharmacol. 2020;98:678–83.

    Article  CAS  PubMed  Google Scholar 

  87. Graf C, Ferrari N. Metabolic health—the role of adipo-myokines. Int J Mol Sci. 2019;20:6159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holecki M, Wiecek A. Relationship between body fat mass and bone metabolism. Pol Arch Med Wewn. 2010;120:361–7.

    Article  CAS  PubMed  Google Scholar 

  89. Morcov C, Vulpoi C, Branisteanu D. Relationship between bone mineral density, weight, and estrogen levels in pre and postmenopausal women. Med Surg J. 2012;116:946–50.

    Google Scholar 

  90. Ricci R, Bevilacqua F. The potential role of leptin and adiponectin in obesity: a comparative review. Vet J. 2012;191:292–8.

    Article  CAS  PubMed  Google Scholar 

  91. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18:1321.

    Article  PubMed  PubMed Central  Google Scholar 

  92. China SP, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.

    Article  Google Scholar 

  93. Xie C, Chen Q. Adipokines: new therapeutic target for osteoarthritis?. Curr Rheumatol Rep. 2019;21:1–9.

    Article  CAS  Google Scholar 

  94. Wang F, Wang P-X, Wu X-L, Dang S-Y, Chen Y, Ni Y-Y, et al. Deficiency of adiponectin protects against ovariectomy-induced osteoporosis in mice. PLoS ONE. 2013;8:e68497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tu Q, Zhang J, Dong LQ, Saunders E, Luo E, Tang J, et al. Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J Biol Chem. 2011;286:12542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abbott MJ, Roth TM, Ho L, Wang L, O’Carroll D, Nissenson RA. Negative skeletal effects of locally produced adiponectin. PLoS ONE. 2015;10:e0134290.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Liu H, Liu S, Ji H, Zhao Q, Liu Y, Hu P, et al. An adiponectin receptor agonist promote osteogenesis via regulating bone-fat balance. Cell Prolif. 2021;54:e13035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yin G, Liu H, Li J, Liu Y, Liu X, Luo E. Adenoviral delivery of adiponectin ameliorates osteogenesis around implants in ovariectomized rats. J Gene Med. 2019;21:e3069.

    Article  PubMed  Google Scholar 

  99. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016;18:782–96.

    Article  CAS  PubMed  Google Scholar 

  100. Li W, Xu P, Wang C, Ha X, Gu Y, Wang Y, et al. The effects of fat-induced obesity on bone metabolism in rats. Obes Res Clin Pract. 2017;11:454–63.

    Article  PubMed  Google Scholar 

  101. Li J, Gao Y, Yu T, Lange JK, LeBoff MS, Gorska A, et al. Obesity and leptin influence vitamin D metabolism and action in human marrow stromal cells. J Steroid Biochem Mol Biol. 2020;198:105564.

    Article  CAS  PubMed  Google Scholar 

  102. Maggio AB, Belli DC, Puigdefabregas JWB, Rizzoli R, Farpour-Lambert NJ, Beghetti M, et al. High bone density in adolescents with obesity is related to fat mass and serum leptin concentrations. J Pediatr Gastroenterol Nutr. 2014;58:723–8.

    Article  CAS  PubMed  Google Scholar 

  103. Nakamura Y, Nakano M, Suzuki T, Sato J, Kato H, Takahashi J, et al. Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone. 2020;137:115404.

    Article  CAS  PubMed  Google Scholar 

  104. Dimitri P, Jacques R, Paggiosi M, King D, Walsh J, Taylor Z, et al. Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab. 2015;100:594–602.

    Article  CAS  PubMed  Google Scholar 

  105. Wee NK, Enriquez RF, Nguyen AD, Horsnell H, Kulkarni R, Khor EC, et al. Diet-induced obesity suppresses cortical bone accrual by a neuropeptide Y-dependent mechanism. Int J Obes. 2018;42:1925–38.

    Article  CAS  Google Scholar 

  106. Erener T, Ceritoğlu KU, Aktekin CN, Dalgic AD, Keskin D, Geneci F, et al. Investigation of the effect of ghrelin on bone fracture healing in rats. Clin Exp Pharmacol Physiol. 2021;48:1382–90.

    Article  CAS  PubMed  Google Scholar 

  107. Xiao L, Zhang H, Wang Y, Li J, Yang G, Wang L, et al. Dysregulation of the ghrelin/RANKL/OPG pathway in bone mass is related to AIS osteopenia. Bone. 2020;134:115291.

    Article  CAS  PubMed  Google Scholar 

  108. Gamberi T, Magherini F, Modesti A, Fiaschi T. Adiponectin signaling pathways in liver diseases. Biomedicines. 2018;6:52.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, et al. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta Mol Basis Dis. 2018;1864:700–8.

    Article  CAS  PubMed  Google Scholar 

  110. Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K-I, Matsuda K, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503:493–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kim Y, Lim JH, Kim MY, Kim EN, Yoon HE, Shin SJ, et al. The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes. J Am Soc Nephrol. 2018;29:1108–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Adhyatmika A, Beljaars L, Putri KS, Habibie H, Boorsma CE, Reker-Smit C, et al. Osteoprotegerin is more than a possible serum marker in liver fibrosis: a study into its function in human and murine liver. Pharmaceutics. 2020;12:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Alkhathami K, Soman A, Chandy S, Ramamoorthy B, Alqahtani B. Comparing the effects of retro and forward walking on serum adiponectin levels in obese young adults. J Taibah Univ Med Sci. 2023;18:917–25.

    PubMed  PubMed Central  Google Scholar 

  114. Kleerekoper M, Nelson DA, Peterson EL, Wilson PS, Jacobsen G, Longcope C. Body composition and gonadal steroids in older white and black women. J Clin Endocrinol Metab. 1994;79:775–9.

    CAS  PubMed  Google Scholar 

  115. Di F, Gao D, Yao L, Zhang R, Qiu J, Song L. Differences in metabonomic profiles of abdominal subcutaneous adipose tissue in women with polycystic ovary syndrome. Front Endocrinol. 2023;14:1077604.

    Article  Google Scholar 

  116. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18:388–400.

    Article  PubMed  Google Scholar 

  117. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  118. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50:1–9.

    Article  CAS  PubMed  Google Scholar 

  119. Liu H, Wang P, Cao M, Li M, Wang F. Protective role of oligomycin against intestinal epithelial barrier dysfunction caused by IFN-γ and TNF-α. Cell Physiol Biochem. 2012;29:799–808.

    Article  CAS  PubMed  Google Scholar 

  120. Saad M, Santos A, Prada P. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31:283–93.

    Article  CAS  PubMed  Google Scholar 

  121. Luo Y, Chen G-L, Hannemann N, Ipseiz N, Krönke G, Bäuerle T, et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015;22:886–94.

    Article  CAS  PubMed  Google Scholar 

  122. Rios JL, Bomhof MR, Reimer RA, Hart DA, Collins KH, Herzog W. Protective effect of prebiotic and exercise intervention on knee health in a rat model of diet-induced obesity. Sci Rep. 2019;9:3893.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Eaimworawuthikul S, Tunapong W, Chunchai T, Yasom S, Wanchai K, Suntornsaratoon P, et al. Effects of probiotics, prebiotics or synbiotics on jawbone in obese-insulin resistant rats. Eur J Nutr. 2019;58:2801–10.

    CAS  PubMed  Google Scholar 

  124. Wu X, Zhao K, Fang X, Lu F, Zhang W, Song X, et al. Inhibition of lipopolysaccharide-induced inflammatory bone loss by saikosaponin D is associated with regulation of the RANKL/RANK pathway. Drug Des Dev Ther. 2021:4741–57.

  125. Li L, Rao S, Cheng Y, Zhuo X, Deng C, Xu N, et al. Microbial osteoporosis: the interplay between the gut microbiota and bones via host metabolism and immunity. MicrobiologyOpen. 2019;8:e00810.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Grüner N, Ortlepp AL, Mattner J. Pivotal role of intestinal microbiota and intraluminal metabolites for the maintenance of gut–bone physiology. Int J Mol Sci. 2023;24:5161.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ji Y, Yin Y, Li Z, Zhang W. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD). Nutrients. 2019;11:1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ho BB, Bergwitz C. FGF23 signalling and physiology. J Mol Endocrinol. 2021;66:R23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mizokami A, Kawakubo-Yasukochi T, Hirata M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017;132:1–8.

    Article  CAS  PubMed  Google Scholar 

  131. Mosialou I, Shikhel S, Liu J-M, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guedes JAC, Esteves J, Morais M, Zorn T, Furuya DT. Osteocalcin improves insulin resistance and inflammation in obese mice: participation of white adipose tissue and bone. Bone. 2018;115:68–82.

    Article  CAS  PubMed  Google Scholar 

  133. Zhou B, Li H, Liu J, Xu L, Guo Q, Zang W, et al. Autophagic dysfunction is improved by intermittent administration of osteocalcin in obese mice. Int J Obes. 2016;40:833–43.

    Article  CAS  Google Scholar 

  134. Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutiérrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS ONE. 2015;10:e0122885.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hu X, Ma X, Luo Y, Xu Y, Xiong Q, Pan X, et al. Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin Nutr. 2018;37:223–8.

    Article  CAS  PubMed  Google Scholar 

  136. Grethen E, Hill KM, Jones R, Cacucci BM, Gupta CE, Acton A, et al. Serum leptin, parathyroid hormone, 1, 25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol. 2012;97:1655–62.

    Article  CAS  Google Scholar 

  137. Xu L, Zhang L, Zhang H, Yang Z, Qi L, Wang Y, et al. The participation of fibroblast growth factor 23 (FGF23) in the progression of osteoporosis via JAK/STAT pathway. J Cell Biochem. 2018;119:3819–28.

    Article  CAS  PubMed  Google Scholar 

  138. Saito M, Marumo K. Bone quality in diabetes. Front Endocrinol. 2013;4:72.

    Article  Google Scholar 

  139. Liu C, Jiang D. High glucose-induced LIF suppresses osteoblast differentiation via regulating STAT3/SOCS3 signaling. Cytokine. 2017;91:132–9.

    Article  CAS  PubMed  Google Scholar 

  140. Yang L, Liu J, Shan Q, Geng G, Shao P. High glucose inhibits proliferation and differentiation of osteoblast in alveolar bone by inducing pyroptosis. Biochem Biophys Res Commun. 2020;522:471–8.

    Article  CAS  PubMed  Google Scholar 

  141. Bornstein S, Moschetta M, Kawano Y, Sacco A, Huynh D, Brooks D, et al. Metformin affects cortical bone mass and marrow adiposity in diet-induced obesity in male mice. Endocrinology. 2017;158:3369–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mosialou I, Shikhel S, Luo N, Petropoulou PI, Panitsas K, Bisikirska B, et al. Lipocalin-2 counteracts metabolic dysregulation in obesity and diabetes. J Exp Med. 2020;217:e20191261.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kim H-J, Ohk B, Kang WY, Seong SJ, Suk K, Lim M-S, et al. Deficiency of lipocalin-2 promotes proliferation and differentiation of osteoclast precursors via regulation of c-fms expression and nuclear factor-kappa B activation. J Bone Metab. 2016;23:8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Villalvilla A, García-Martín A, Largo R, Gualillo O, Herrero-Beaumont G, Gómez R. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction. Sci Rep. 2016;6:29243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Costa D, Lazzarini E, Canciani B, Giuliani A, SpanÒ R, Marozzi K, et al. Altered bone development and turnover in transgenic mice over-expressing lipocalin-2 in bone. J Cell Physiol. 2013;228:2210–21.

    Article  CAS  PubMed  Google Scholar 

  146. Rucci, Capulli N, Piperni M, Cappariello SG, Lau A, Frings P, et al. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J Bone Miner Res. 2015;30:357–68.

    Article  CAS  PubMed  Google Scholar 

  147. Tanzadehpanah H, Asoodeh A, Chamani J. An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res Int. 2012;49:105–11.

    Article  CAS  Google Scholar 

  148. Kharazmi-Khorassani J, Asoodeh A, Tanzadehpanah H. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activity of thymosin alpha-1 (Thα1) peptide. Bioorg Chem. 2019;87:743–52.

    Article  CAS  PubMed  Google Scholar 

  149. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55–74.

    Article  CAS  PubMed  Google Scholar 

  150. Engin AB, Engin A. Obesity and lipotoxicity. Cham, Switzerland: Springer; 2017.

  151. Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem. 2015;399:95–103.

    Article  CAS  PubMed  Google Scholar 

  152. Yang Y, Sun Y, Mao W-W, Zhang H, Ni B, Jiang L. Oxidative stress induces downregulation of TP53INP2 and suppresses osteogenic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway. Free Radic Biol Med. 2021;166:226–37.

    Article  CAS  PubMed  Google Scholar 

  153. Kanda Y, Hinata T, Kang SW, Watanabe Y. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci. 2011;89:250–8.

    Article  CAS  PubMed  Google Scholar 

  154. Dong X, Bi L, He S, Meng G, Wei B, Jia S, et al. FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie. 2014;101:123–31.

    Article  CAS  PubMed  Google Scholar 

  155. Mukherjee R, Moreno-Fernandez ME, Giles DA, Cappelletti M, Stankiewicz TE, Chan CC, et al. Nicotinamide adenine dinucleotide phosphate (reduced) oxidase 2 modulates inflammatory vigor during nonalcoholic fatty liver disease progression in mice. Hepatol Commun. 2018;2:546–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rahman MM, El Jamali A, Halade GV, Ouhtit A, Abou-Saleh H, Pintus G. Nox2 activity is required in obesity-mediated alteration of bone remodeling. Oxid Med Cell Longev. 2018;2018:6054361.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kang IS, Kim C. NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep. 2016;6:38014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shen C-L, Cao JJ, Dagda RY, Chanjaplammootil S, Lu C, Chyu M-C, et al. Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats. Nutr Res. 2012;32:448–57.

    Article  CAS  PubMed  Google Scholar 

  159. Cao JJ, Picklo MJ. N-acetylcysteine supplementation decreases osteoclast differentiation and increases bone mass in mice fed a high-fat diet. J Nutr. 2014;144:289–96.

    Article  CAS  PubMed  Google Scholar 

  160. Hu X, Li B, Wu F, Liu X, Liu M, Wang C, et al. GPX7 facilitates BMSCs osteoblastogenesis via ER stress and mTOR pathway. J Cell Mol Med. 2021;25:10454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Matoušková P, Hanousková B, Skálová L. MicroRNAs as potential regulators of glutathione peroxidases expression and their role in obesity and related pathologies. Int J Mol Sci. 2018;19:1199.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tanzadehpanah H, Asoodeh A, Saidijam M, Chamani J, Mahaki H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J Biomol Struct Dyn. 2018;36:3803–18.

    Article  CAS  PubMed  Google Scholar 

  163. Ali Ahmad M, Karavetian M, Moubareck CA, Wazz G, Mahdy T, Venema K. The association between peptide hormones with obesity and insulin resistance markers in lean and obese individuals in the United Arab Emirates. Nutrients. 2022;14:1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23:17–29.

    Article  CAS  PubMed  Google Scholar 

  165. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18:427–44.

    Article  CAS  PubMed  Google Scholar 

  166. López-Gómez JJ, Castrillón JLP, de Luis Román DA. Impact of obesity on bone metabolism. Endocrinol Nutr. 2016;63:551–9.

    Article  PubMed  Google Scholar 

  167. Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ, Gualillo O. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis. 2011;2011:203901.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34:376–83.

    Article  CAS  PubMed  Google Scholar 

  169. Frühbeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell MA. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab. 2001;280:E827–47.

    Article  PubMed  Google Scholar 

  170. Ponrartana S, Aggabao PC, Hu HH, Aldrovandi GM, Wren TA, Gilsanz V. Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab. 2012;97:2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci USA. 2012;109:3143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li Q, Hua Y, Yang Y, He X, Zhu W, Wang J, et al. T cell factor 7 (TCF7)/TCF1 feedback controls osteocalcin signaling in brown adipocytes independent of the wnt/β-catenin pathway. Mol Cell Biol. 2018;38;e00562–17

  173. Hou J, He C, He W, Yang M, Luo X, Li C. Obesity and bone health: a complex link. Front Cell Dev Biol. 2020;8:600181.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Tencerova M, Okla M, Kassem M. Insulin signaling in bone marrow adipocytes. Curr Osteoporos Rep. 2019;17:446–54.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone—new perspectives. J Clin Endocrinol Metab. 2013;98:935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Al Saedi A, Goodman C, Myers D, Hayes A, Duque G. Rapamycin affects palmitate-induced lipotoxicity in osteoblasts by modulating apoptosis and autophagy. J Gerontol Ser A. 2020;75:58–63.

    Article  CAS  Google Scholar 

  177. Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, et al. Bone marrow adipocytes. Adipocyte. 2017;6:193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Elbaz A, Wu X, Rivas D, Gimble JM, Duque G. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med. 2010;14:982–91.

    Article  CAS  PubMed  Google Scholar 

  179. Singh L, Tyagi S, Myers D, Duque G. Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep. 2018;16:130–7.

    Article  PubMed  Google Scholar 

  180. Kaye WH, Wierenga CE, Bischoff-Grethe A, Berner LA, Ely AV, Bailer UF, et al. Neural insensitivity to the effects of hunger in women remitted from anorexia nervosa. Am J Psychiatry. 2020;177:601–10.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94:2129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Justesen J, Stenderup K, Ebbesen E, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2:165–71.

    Article  CAS  PubMed  Google Scholar 

  183. Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield S. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18:641–7.

    Article  CAS  PubMed  Google Scholar 

  184. Li S, Jiang H, Wang B, Gu M, Zhang N, Liang W, et al. Effect of leptin on marrow adiposity in ovariectomized rabbits assessed by proton magnetic resonance spectroscopy. J Comput Assist Tomogr. 2018;42:588–93.

    Article  PubMed  Google Scholar 

  185. Putignano P, Dubini A, Toja P, Invitti C, Bonfanti S, Redaelli G, et al. Salivary cortisol measurement in normal-weight, obese and anorexic women: comparison with plasma cortisol. Eur J Endocrinol. 2001;145:165–71.

    Article  CAS  PubMed  Google Scholar 

  186. Cândido FG, Bressan J. Vitamin D: link between osteoporosis, obesity, and diabetes?. Int J Mol Sci. 2014;15:6569–91.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wamberg L, Pedersen SB, Rejnmark L, Richelsen B. Causes of vitamin D deficiency and effect of vitamin D supplementation on metabolic complications in obesity: a review. Curr Obes Rep. 2015;4:429–40.

    Article  PubMed  Google Scholar 

  188. Sukumar D, Schlussel Y, Riedt C, Gordon C, Stahl T, Shapses S. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int. 2011;22:635–45.

    Article  CAS  PubMed  Google Scholar 

  189. Gonzalez-Campoy JM, Castorino K, Ebrahim A, Hurley D, Jovanovic L, Mechanick JI, et al. Clinical practice guidelines for healthy eating for the prevention and treatment of metabolic and endocrine diseases in adults: cosponsored by the American Association of Clinical Endocrinologists/the American College of Endocrinology and the Obesity Society. Endocr Pract. 2013;19:1–82.

    Article  PubMed  Google Scholar 

  190. Bartrina JA, Majem LS. Objetivos nutricionales para la población española: Consenso de la Sociedad Española de Nutrición Comunitaria 2011. Revista Española de Nutrición Comunitaria. 2011;17:178–99.

    Google Scholar 

  191. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.

    Article  CAS  PubMed  Google Scholar 

  192. Drincic A, Fuller E, Heaney RP, Armas LA. 25-Hydroxyvitamin D response to graded vitamin D3 supplementation among obese adults. J Clin Endocrinol Metab. 2013;98:4845–51.

    Article  CAS  PubMed  Google Scholar 

  193. Shapses S, Sukumar D, Schneider S, Schlussel Y, Brolin R, Taich L. Hormonal and dietary influences on true fractional calcium absorption in women: role of obesity. Osteoporos Int. 2012;23:2607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Calvo MS, Tucker KL. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health?. Ann N Y Acad Sci. 2013;1301:29–35.

    Article  CAS  PubMed  Google Scholar 

  195. Rosato V, Masarone M, Dallio M, Federico A, Aglitti A, Persico M. NAFLD and extra-hepatic comorbidities: current evidence on a multi-organ metabolic syndrome. Int J Environ Res Public Health. 2019;16:3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang X, Li W, Zhang Y, Yang Y, Qin G. Association between vitamin D and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: results from a meta-analysis. Int J Clin Exp Med. 2015;8:17221.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Jamialahmadi H, Nazari SE, TanzadehPanah H, Saburi E, Asgharzadeh F, Khojasteh-Leylakoohi F, et al. Targeting transforming growth factor beta (TGF-β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer. Sci Rep. 2023;13:14357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mahdavinejad L, Alahgholi-Hajibehzad M, Eftekharian MM, Zaerieghane Z, Salehi I, Hajilooi M, et al. Extremely low frequency electromagnetic fields decrease serum levels of interleukin-17, transforming growth factor-β and downregulate Foxp3 expression in the spleen. J Interferon Cytokine Res. 2018;38:457–62.

    Article  CAS  PubMed  Google Scholar 

  199. Sun S, Xu M, Zhuang P, Chen G, Dong K, Dong R, et al. Effect and mechanism of vitamin D activation disorder on liver fibrosis in biliary atresia. Sci Rep. 2021;11:19883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. He R, Fan L, Song Q, Diao H, Xu H, Ruan W, et al. Protective effect of active vitamin D on liver fibrosis induced by sodium arsenite in SD rats. Wei Sheng yan jiu J Hyg Res. 2022;51:926–33.

    Google Scholar 

  201. Ibrahim MN, Khalifa AA, Hemead DA, Alsemeh AE, Habib MA. 1, 25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease. J Mol Histol. 2023;54:119–34.

    Article  CAS  PubMed  Google Scholar 

  202. Thomas RL, Jiang L, Adams JS, Xu ZZ, Shen J, Janssen S, et al. Vitamin D metabolites and the gut microbiome in older men. Nat Commun. 2020;11:5997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang X-L, Chen L, Yang J, Zhao S-S, Jin S, Ao N, et al. Vitamin D alleviates non-alcoholic fatty liver disease via restoring gut microbiota and metabolism. Front Microbiol. 2023;14:1117644.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Saberi B, Dadabhai AS, Nanavati J, Wang L, Shinohara RT, Mullin GE. Vitamin D levels do not predict the stage of hepatic fibrosis in patients with non-alcoholic fatty liver disease: a PRISMA compliant systematic review and meta-analysis of pooled data. World J Hepatol. 2018;10:142.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Jaruvongvanich V, Ahuja W, Sanguankeo A, Wijarnpreecha K, Upala S. Vitamin D and histologic severity of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Dig Liver Dis. 2017;49:618–22.

    Article  CAS  PubMed  Google Scholar 

  206. Kumar M, Parchani A, Kant R, Das A. Relationship between vitamin D deficiency and non-alcoholic fatty liver disease: a cross-sectional study from a tertiary care center in Northern India. Cureus. 2023;15.

  207. da Silva TBP, Luiz MM, Delinocente MLB, Steptoe A, de Oliveira C, Alexandre TdS. Is abdominal obesity a risk factor for the incidence of vitamin D insufficiency and deficiency in older adults? Evidence from the ELSA study. Nutrients. 2022;14:4164.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Su T, Xiao Y, Xiao Y, Guo Q, Li C, Huang Y, et al. Bone marrow mesenchymal stem cells-derived exosomal MiR-29b-3p regulates aging-associated insulin resistance. ACS Nano. 2019;13:2450–62.

    CAS  PubMed  Google Scholar 

  209. Hosseini N, Tanzadehpanah H, Mansoori A, Sabzekar M, Ferns GA, Esmaily H, et al. Using a robust model to detect the association between anthropometric factors and T2DM: machine learning approaches. BMC Med Inform Decis Mak. 2025;25:49.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N, et al. Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res. 2014;29:796–803.

    Article  CAS  PubMed  Google Scholar 

  212. Shanbhogue VV, Mitchell DM, Rosen CJ, Bouxsein ML. Type 2 diabetes and the skeleton: new insights into sweet bones. Lancet Diab Endocrinol. 2016;4:159–73.

    Article  CAS  Google Scholar 

  213. Kanazawa I, Yamaguchi T, Sugimoto T. Effects of intensive glycemic control on serum levels of insulin-like growth factor-I and dehydroepiandrosterone sulfate in type 2 diabetes mellitus. J Endocrinol Investig. 2012;35:469–72.

    CAS  Google Scholar 

  214. Zhang M, Xuan S, Bouxsein ML, Von Stechow D, Akeno N, Faugere MC, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277:44005–12.

    Article  CAS  PubMed  Google Scholar 

  215. Borges JLC, Bilezikian J, Jones-Leone A, Acusta A, Ambery P, Nino A, et al. A randomized, parallel group, double-blind, multicentre study comparing the efficacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long-term glycaemic control and bone mineral density after 80 weeks of treatment in drug-naive type 2 diabetes mellitus patients. Diab Obes Metab. 2011;13:1036–46.

    Article  CAS  Google Scholar 

  216. Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60:1163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Dormuth CR, Carney G, Carleton B, Bassett K, Wright JM. Thiazolidinediones and fractures in men and women. Arch Intern Med. 2009;169:1395–402.

    Article  CAS  PubMed  Google Scholar 

  218. Zhu Z-N, Jiang Y-F, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115–23.

    Article  CAS  PubMed  Google Scholar 

  219. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.

    Article  CAS  PubMed  Google Scholar 

  220. Sayed SA, Khaliq A, Mahmood A. Evaluating the risk of osteoporosis through bone mass density. J Ayub Med Coll Abbottabad. 2016;28:730–3.

    PubMed  Google Scholar 

  221. Muka T, Trajanoska K, Kiefte-de Jong JC, Oei L, Uitterlinden AG, Hofman A, et al. The association between metabolic syndrome, bone mineral density, hip bone geometry and fracture risk: the Rotterdam study. PLoS ONE. 2015;10:e0129116.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001;45:S116–S24.

    Article  CAS  PubMed  Google Scholar 

  223. Qiao D, Li Y, Liu X, Zhang X, Qian X, Zhang H, et al. Association of obesity with bone mineral density and osteoporosis in adults: a systematic review and meta-analysis. Public Health. 2020;180:22–8.

    Article  CAS  PubMed  Google Scholar 

  224. Kim HY, Choe JW, Kim HK, Bae SJ, Kim BJ, Lee SH, et al. Negative association between metabolic syndrome and bone mineral density in Koreans, especially in men. Calcif Tissue Int. 2010;86:350–8.

    Article  CAS  PubMed  Google Scholar 

  225. Nanes MS. Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;321:1–15.

    Article  CAS  PubMed  Google Scholar 

  226. Pinheiro MB, Oliveira J, Bauman A, Fairhall N, Kwok W, Sherrington C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: a systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act. 2020;17:1–53.

    Article  Google Scholar 

  227. Marini S, Barone G, Masini A, Dallolio L, Bragonzoni L, Longobucco Y, et al. The effect of physical activity on bone biomarkers in people with osteoporosis: a systematic review. Front Endocrinol. 2020;11:585689.

    Article  Google Scholar 

  228. Rapp K, Cameron ID, Kurrle S, Klenk J, Kleiner A, Heinrich S, et al. Excess mortality after pelvic fractures in institutionalized older people. Osteoporos Int. 2010;21:1835–9.

    Article  CAS  PubMed  Google Scholar 

  229. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev. 2014;15:51–60.

    Article  CAS  PubMed  Google Scholar 

  230. Tarantino U, Piccirilli E, Fantini M, Baldi J, Gasbarra E, Bei R. Sarcopenia and fragility fractures: molecular and clinical evidence of the bone-muscle interaction.J Bone Joint Surg Am. 2015;97:429–37.

  231. Scott D, Chandrasekara SD, Laslett LL, Cicuttini F, Ebeling PR, Jones G. Associations of sarcopenic obesity and dynapenic obesity with bone mineral density and incident fractures over 5–10 years in community-dwelling older adults. Calcif Tissue Int. 2016;99:30–42.

    Article  CAS  PubMed  Google Scholar 

  232. Cao JJ, Picklo MJ. Involuntary wheel running improves but does not fully reverse the deterioration of bone structure of obese rats despite decreasing adiposity. Calcif Tissue Int. 2015;97:145–55.

    Article  CAS  PubMed  Google Scholar 

  233. Tang X, Liu G, Kang J, Hou Y, Jiang F, Yuan W, et al. Obesity and risk of hip fracture in adults: a meta-analysis of prospective cohort studies. PLoS ONE. 2013;8:e55077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. De Laet C, Kanis J, Odén A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.

    Article  PubMed  Google Scholar 

  235. Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27:294–300.

    Article  PubMed  Google Scholar 

  236. Kang D, Guo L, Guo T, Wang Y, Liu T, Feng X, et al. Association of body composition with bone mineral density in northern Chinese men by different criteria for obesity. J Endocrino Investig. 2015;38:323–31.

    Article  CAS  Google Scholar 

  237. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115–26.

    Article  PubMed  Google Scholar 

  239. Koskinen A, Vuolteenaho K, Nieminen R, Moilanen T, Moilanen E. Leptin enhances MMP-l, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from OA patients. Clin Exp Rheumatol Incl Suppl. 2011;29:57.

    Google Scholar 

  240. Reyes C, Leyland KM, Peat G, Cooper C, Arden NK, Prieto-Alhambra D. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol. 2016;68:1869–75.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Scotece M, Conde J, Gómez R, López V, Lago F, Gómez-Reino JJ, et al. Beyond fat mass: exploring the role of adipokines in rheumatic diseases. Sci World J. 2011;11:1932–47.

    Article  CAS  Google Scholar 

  242. Gremese E, Tolusso B, Gigante MR, Ferraccioli G. Obesity as a risk and severity factor in rheumatic diseases (autoimmune chronic inflammatory diseases). Front Immunol. 2014;5:576.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Rong B, Feng R, Liu C, Wu Q, Sun C. Reduced delivery of epididymal adipocyte-derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice. J Pineal Res. 2019;66:e12561.

    Article  PubMed  Google Scholar 

  244. Alissa EM, Alzughaibi LS, Marzouki ZM. Relationship between serum resistin, body fat and inflammatory markers in females with clinical knee osteoarthritis. Knee. 2020;27:45–50.

    Article  PubMed  Google Scholar 

  245. Bao J-P, Chen W-P, Feng J, Hu P-F, Shi Z-L, Wu L-D. Leptin plays a catabolic role on articular cartilage. Mol Biol Rep. 2010;37:3265–72.

    Article  CAS  PubMed  Google Scholar 

  246. Kang EH, Lee YJ, Kim TK, Chang CB, Chung J-H, Shin K, et al. Adiponectin is a potential catabolic mediator in osteoarthritis cartilage. Arthritis Res Ther. 2010;12:1–11.

    Article  Google Scholar 

  247. Otero M, Lago R, Gómez R, Lago F, Gomez-Reino JJ, Gualillo O. Phosphatidylinositol 3-kinase, MEK-1 and p38 mediate leptin/interferon-gamma synergistic NOS type II induction in chondrocytes. Life Sci. 2007;81:1452–60.

    Article  CAS  PubMed  Google Scholar 

  248. Kalichman L, Kobyliansky E. Hand osteoarthritis in Chuvashian population: prevalence and determinants. Rheumatol Int. 2009;30:85–92.

    Article  PubMed  Google Scholar 

  249. Minamino H, Katsushima M, Yoshida T, Hashimoto M, Fujita Y, Shirakashi M, et al. Increased circulating adiponectin is an independent disease activity marker in patients with rheumatoid arthritis: a cross-sectional study using the KURAMA database. PLoS ONE. 2020;15:e0229998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Nam JL, Takase-Minegishi K, Ramiro S, Chatzidionysiou K, Smolen JS, Van Der Heijde D, et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2017;76:1113–36.

    Article  PubMed  Google Scholar 

  251. Zhang Y, Liu J, Yao J, Ji G, Qian L, Wang J, et al. Obesity: pathophysiology and intervention. Nutrients. 2014;6:5153–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Feng X, Xu X, Shi Y, Liu X, Liu H, Hou H, et al. Body mass index and the risk of rheumatoid arthritis: an updated dose-response meta-analysis. BioMed Res Int. 2019;2019:3579081.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Coelho M, Oliveira T, Fernandes R. State of the art paper Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Lee YH, Bae SC. Circulating adiponectin and visfatin levels in rheumatoid arthritis and their correlation with disease activity: a meta-analysis. Int J Rheum Dis. 2018;21:664–72.

    Article  CAS  PubMed  Google Scholar 

  255. Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21:1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Liu R, Wu Q, Su D, Che N, Chen H, Geng L, et al. A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis. Arthritis Res Ther. 2012;14:1–12.

    Article  Google Scholar 

  257. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29:138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Liu R, Zhao P, Zhang Q, Che N, Xu L, Qian J, et al. Adiponectin promotes fibroblast-like synoviocytes producing interleukin-6 to enhance T follicular helper cells response in rheumatoid arthritis. Clin Exp Rheumatol. 2020;38:11–8.

    PubMed  Google Scholar 

  259. Liu Y, Hazlewood GS, Kaplan GG, Eksteen B, Barnabe C. Impact of obesity on remission and disease activity in rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res. 2017;69:157–65.

    Article  Google Scholar 

  260. Fujita Y, Watanabe K, Maki K. Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice. J Musculoskelet Neuronal Interact. 2012;12:84–94.

    CAS  PubMed  Google Scholar 

  261. Scheller EL, Khoury B, Moller KL, Wee NK, Khandaker S, Kozloff KM, et al. Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Front Endocrinol. 2016;7:102.

    Article  Google Scholar 

  262. Inzana JA, Kung M, Shu L, Hamada D, Xing LP, Zuscik MJ, et al. Immature mice are more susceptible to the detrimental effects of high fat diet on cancellous bone in the distal femur. Bone. 2013;57:174–83.

    Article  CAS  PubMed  Google Scholar 

  263. Choi HS, Park SJ, Lee ZH, Lim S-K. The effects of a high fat diet containing diacylglycerol on bone in C57BL/6J mice. Yonsei Med J. 2015;56:951–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Silva MJ, Eekhoff JD, Patel T, Kenney-Hunt JP, Brodt MD, Steger-May K, et al. Effects of high-fat diet and body mass on bone morphology and mechanical properties in 1100 advanced intercross mice. J Bone Miner Res. 2019;34:711–25.

    Article  CAS  PubMed  Google Scholar 

  265. Ionova-Martin S, Wade J, Tang S, Shahnazari M, Ager J, Lane N, et al. Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int. 2011;22:2283–93.

    Article  CAS  PubMed  Google Scholar 

  266. Chen R, Armamento-Villareal R. Obesity and skeletal fragility. J Clin Endocrinol Metab. 2024;109:e466–77.

    Article  CAS  PubMed  Google Scholar 

  267. López-Gómez JJ, Pérez-Castrillón JL, García de Santos I, Pérez-Alonso M, Izaola-Jauregui O, Primo-Martín D, et al. Influence of obesity on bone turnover markers and fracture risk in postmenopausal women. Nutrients. 2022;14:1617.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Turcotte A-F, O’Connor S, Morin SN, Gibbs JC, Willie BM, Jean S, et al. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: a systematic review and meta-analysis. PLoS ONE. 2021;16:e0252487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kim MJ, Kim S, Jung HN, Jung CH, Lee WJ, Cho YK. Effects of anti-obesity strategies on bone mineral density: a comprehensive meta-analysis of randomized controlled trials. J Obes Metab Syndr. 2025;34:41−53.

  270. Jensen SBK, Sørensen V, Sandsdal RM, Lehmann EW, Lundgren JR, Juhl CR, et al. Bone health after exercise alone, GLP-1 receptor agonist treatment, or combination treatment: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2024;7:e2416775.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29:1507–18.

    Article  PubMed  Google Scholar 

  272. Mele C, Caputo M, Ferrero A, Daffara T, Cavigiolo B, Spadaccini D, et al. Bone response to weight loss following bariatric surgery. Front Endocrinol. 2022;13:921353.

    Article  Google Scholar 

  273. Penna F, Garcia-Castillo L, Costelli P. Extracellular vesicles and exosomes in the control of the musculoskeletal health. Curr Osteoporos Rep. 2024;22:257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, et al. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: present and future. J Extracell Vesicles. 2021;10:e12175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, et al. Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease. Hepatology. 2019;70:2123–41.

    Article  CAS  PubMed  Google Scholar 

  276. Liu X, Miao J, Wang C, Zhou S, Chen S, Ren Q, et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int. 2020;97:1181–95.

    Article  CAS  PubMed  Google Scholar 

  277. Lei L-M, Lin X, Xu F, Shan S-K, Guo B, Li F-X-Z, et al. Exosomes and obesity-related insulin resistance. Front Cell Dev Biol. 2021;9:651996.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Deng Z-B, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58:2498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Song M, Han L, Chen F-F, Wang D, Wang F, Zhang L, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate M1 macrophage polarization-induced insulin resistance via Ptch and PI3K pathways. Cell Physiol Biochem. 2018;48:1416–32.

    Article  CAS  PubMed  Google Scholar 

  280. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 2017;171:372–84.e12.

    Article  CAS  PubMed  Google Scholar 

  281. Liu T, Sun Y-C, Cheng P, Shao H-G. Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 2019;515:352–8.

    Article  CAS  PubMed  Google Scholar 

  282. De Silva N, Samblas M, Martínez JA, Milagro FI. Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake. J Physiol Biochem. 2018;74:559–68.

    Article  PubMed  Google Scholar 

  283. Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Investig. 2019;129:834–49.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Reaven G. Why a cluster is truly a cluster: insulin resistance and cardiovascular disease. Clin Chem. 2008;54:785–7.

    Article  CAS  PubMed  Google Scholar 

  285. Kahn CR, White M. The insulin receptor and the molecular mechanism of insulin action. J Clin Investig. 1988;82:1151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Greere D, Grigorescu F, Manda D, Lautier C, Poiana C. Insulin resistance and pathogenesis of postmenopausal osteoporosis. Acta Endocrinol. 2024;19:349.

    Google Scholar 

  287. Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. The relationship between metabolic syndrome and osteoporosis: a review. Nutrients. 2016;8:347.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Lin H-H, Huang C-Y, Hwang L-C. Association between metabolic syndrome and osteoporosis in Taiwanese middle-aged and elderly participants. Arch Osteoporos. 2018;13:1–7.

    Article  Google Scholar 

  289. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27:740–56.

    Article  CAS  PubMed  Google Scholar 

  290. Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, et al. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol. 2024;15:1372399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Liu H, Tian Y, Bao X, Li Y. GLP-1RA promotes osteogenic differentiation of jaw bone marrow mesenchymal stem cells by modulating CREB/YAP/STAT3/BRD4-mediated proliferation and stemness for osteoporosis treatment. 2025.

  292. Cai T-t, Li H-q, Jiang L-l, Wang H-y, Luo M-h, Su X-f, et al. Effects of GLP-1 receptor agonists on bone mineral density in patients with type 2 diabetes mellitus: a 52-week clinical study. BioMed Res Int. 2021;2021:3361309.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Wikarek A, Grabarczyk M, Klimek K, Janoska-Gawrońska A, Suchodolska M, Holecki M. Effect of drugs used in pharmacotherapy of type 2 diabetes on bone density and risk of bone fractures. Medicina. 2024;60:393.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Wolverton D, Blair MM. Fracture risk associated with common medications used in treating type 2 diabetes mellitus. Am J Health Syst Pharm. 2017;74:1143–51.

    Article  CAS  PubMed  Google Scholar 

  295. Nelinson DS, Sosa JM, Chilton RJ. SGLT2 inhibitors: a narrative review of efficacy and safety. J Osteopath Med. 2021;121:229–39.

    Article  PubMed  Google Scholar 

  296. Zhao L-J, Liu Y-J, Liu P-Y, Hamilton J, Recker RR, Deng H-W. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92:1640–6.

    Article  CAS  PubMed  Google Scholar 

  297. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48:748–54.

    Article  PubMed  Google Scholar 

  299. Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89:1061–5.

    Article  CAS  PubMed  Google Scholar 

  300. Casagrande DS, Repetto G, Mottin CC, Shah J, Pietrobon R, Worni M, et al. Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg. 2012;22:1287–92.

    Article  PubMed  Google Scholar 

  301. Schafer AL, Kazakia GJ, Vittinghoff E, Stewart L, Rogers SJ, Kim TY, et al. Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women. J Bone Miner Res. 2018;33:975–86.

    Article  PubMed  Google Scholar 

  302. Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29:223–33.

    Article  PubMed  Google Scholar 

  303. Turcot V, Tchernof A, Deshaies Y, Pérusse L, Bélisle A, Marceau S, et al. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics. 2012;4:1–8.

    Article  Google Scholar 

  304. Petrus P, Bialesova L, Checa A, Kerr A, Naz S, Bäckdahl J, et al. Adipocyte expression of SLC19A1 links DNA hypermethylation to adipose tissue inflammation and insulin resistance. J Clin Endocrinol Metab. 2018;103:710–21.

    Article  PubMed  Google Scholar 

  305. Modi A, Khokhar M, Sharma P, Joshi R, Mishra SS, Bharshankar RN, et al. Leptin DNA methylation and its association with metabolic risk factors in a northwest Indian obese population. J Obes Metab Syndr. 2021;30:304.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Houde A-A, Légaré C, Biron S, Lescelleur O, Biertho L, Marceau S, et al. Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet. 2015;16:1–10.

    Article  CAS  Google Scholar 

  307. Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics. 2017;9:1–12.

    Article  Google Scholar 

  308. Ott R, Stupin JH, Melchior K, Schellong K, Ziska T, Dudenhausen JW, et al. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin Epigenetics. 2018;10:1–12.

    Article  Google Scholar 

  309. Kim AY, Park YJ, Pan X, Shin KC, Kwak S-H, Bassas AF, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585.

    Article  PubMed  Google Scholar 

  310. Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, et al. Insulin gene expression is regulated by DNA methylation. PLoS ONE. 2009;4:e6953.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63:2962–76.

    Article  PubMed  Google Scholar 

  312. Pinhel MA, Noronha NY, Nicoletti CF, Pereira VA, de Oliveira BA, Cortes-Oliveira C, et al. Changes in DNA methylation and gene expression of insulin and obesity-related gene PIK3R1 after Roux-en-Y gastric bypass. Int J Mol Sci. 2020;21:4476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Ahmed SAH, Ansari SA, Mensah-Brown EP, Emerald BS. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin Epigenetics. 2020;12:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gemma C, Sookoian S, Alvariñas J, García SI, Quintana L, Kanevsky D, et al. Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity. 2009;17:1032–9.

    Article  CAS  PubMed  Google Scholar 

  315. Brons C, Jacobsen S, Nilsson E, Ronn T, Jensen C, Storgaard H, et al. Deoxyribonucleic acid methylation and gene 570 expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a 571 birth-weight-dependent manner. J Clin Endocrinol Metab. 2010;95:3048–56.

    Article  PubMed  Google Scholar 

  316. Perkins E, Murphy SK, Murtha AP, Schildkraut J, Jirtle RL, Demark-Wahnefried W, et al. Insulin-like growth factor 2/H19 methylation at birth and risk of overweight and obesity in children. J Pediatr. 2012;161:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Crujeiras AB, Campion J, Díaz-Lagares A, Milagro FI, Goyenechea E, Abete I, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept. 2013;186:1–6.

    Article  CAS  PubMed  Google Scholar 

  318. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383:1990–8.

    Article  CAS  PubMed  Google Scholar 

  319. Pan H, Lin X, Wu Y, Chen L, Teh AL, Soh SE, et al. HIF3A association with adiposity: the story begins before birth. Epigenomics. 2015;7:937–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Na YK, Hong HS, Lee WK, Kim YH, Kim DS. Increased methylation of interleukin 6 gene is associated with obesity in Korean women. Mol Cells. 2015;38:452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Ali MM, Hassan C, Masrur M, Bianco FM, Naquiallah D, Mirza I, et al. Adipose tissue hypoxia correlates with adipokine hypomethylation and vascular dysfunction. Biomedicines. 2021;9:1034.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, et al. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics. 2022;17:93–109.

    Article  PubMed  Google Scholar 

  323. You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, et al. Dnmt3a is an epigenetic mediator of adipose insulin resistance. Elife. 2017;6:e30766.

    Article  PubMed  PubMed Central  Google Scholar 

  324. Ma X, Kang S. Functional implications of DNA methylation in adipose biology. Diabetes. 2019;68:871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Castillo J, López-Rodas G, Franco L. Histone post-translational modifications and nucleosome organisation in transcriptional regulation: some open questions. Protein Rev. 2017;18:65–92.

    Article  Google Scholar 

  326. Yang H, Yang K, Gu H, Sun C. Dynamic post-translational modifications in obesity. J Cell Mol Med. 2019;24:2384.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Mikula M, Majewska A, Ledwon JK, Dzwonek A, Ostrowski J. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. Int J Mol Med. 2014;34:1647–54.

    Article  CAS  PubMed  Google Scholar 

  328. Wheatley KE, Nogueira LM, Perkins SN, Hursting SD. Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J Obes. 2011;2011:265417.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Funato H, Oda S, Yokofujita J, Igarashi H, Kuroda M. Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS ONE. 2011;6:e18950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, et al. Obesity and bone: a complex relationship. Int J Mol Sci. 2021;22:13662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015;100:3613–21.

    Article  CAS  PubMed  Google Scholar 

  333. Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99:30–8.

    Article  CAS  PubMed  Google Scholar 

  334. Bachmann KN, Fazeli PK, Lawson EA, Russell BM, Riccio AD, Meenaghan E, et al. Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women. J Clin Endocrinol Metab. 2014;99:4664–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Xue Y, Hu S, Chen C, He J, Sun J, Jin Y, et al. Myokine Irisin promotes osteogenesis by activating BMP/SMAD signaling via αV integrin and regulates bone mass in mice. Int J Biol Sci. 2022;18:572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. He X, Hua Y, Li Q, Zhu W, Pan Y, Yang Y, et al. FNDC5/irisin facilitates muscle–adipose–bone connectivity through ubiquitination-dependent activation of runt-related transcriptional factors RUNX1/2. J Biol Chem. 2022;298.

  337. Li H, Wang F, Yang M, Sun J, Zhao Y, Tang D. The effect of irisin as a metabolic regulator and its therapeutic potential for obesity. Int J Endocrinol. 2021;2021:6572342.

    Article  PubMed  PubMed Central  Google Scholar 

  338. Yuksel Ozgor B, Demiral I, Zeybek U, Celik F, Buyru F, Yeh J, et al. Effects of irisin compared with exercise on specific metabolic and obesity parameters in female mice with obesity. Metab Syndr Relat Disord. 2020;18:141–5.

    Article  CAS  PubMed  Google Scholar 

  339. Ilich JZ, Gilman JC, Cvijetic S, Boschiero D. Chronic stress contributes to osteosarcopenic adiposity via inflammation and immune modulation: the case for more precise nutritional investigation. Nutrients. 2020;12:989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Al Saedi A, Hassan EB, Duque G. The diagnostic role of fat in osteosarcopenia. J Lab Precis Med. 2019;4.

  341. Kang Y-S, Kim J-C, Kim J-S, Kim SH. Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of high-fat diet-induced osteoporosis. J Sports Sci Med. 2019;18:596.

    PubMed  PubMed Central  Google Scholar 

  342. McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N, et al. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone. 2019;118:20–31.

    Article  CAS  PubMed  Google Scholar 

  343. Xie W, Han Y, Li F, Gu X, Su D, Yu W, et al. Neuropeptide Y1 receptor antagonist alters gut microbiota and alleviates the ovariectomy-induced osteoporosis in rats. Calcif Tissue Int. 2020;106:444–54.

    Article  CAS  PubMed  Google Scholar 

  344. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9:308–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Méndez-Salazar EO, Ortiz-López MG, Granados-Silvestre MDLÁ, Palacios-González B, Menjivar M. Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children. Front Microbiol. 2018;9:2494.

    Article  PubMed  PubMed Central  Google Scholar 

  346. Palacios-González B, Ramírez-Salazar EG, Rivera-Paredez B, Quiterio M, Flores YN, Macias-Kauffer L, et al. A multi-omic analysis for low bone mineral density in postmenopausal women suggests a relationship between diet, metabolites, and microbiota. Microorganisms. 2020;8:1630.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Liu JH, Chen CY, Liu ZZ, Luo ZW, Rao SS, Jin L, et al. Extracellular vesicles from child gut microbiota enter into bone to preserve bone mass and strength. Adv Sci. 2021;8:2004831.

    Article  CAS  Google Scholar 

  348. Huck O, Mulhall H, Rubin G, Kizelnik Z, Iyer R, Perpich JD, et al. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol. 2020;47:202–12.

    Article  CAS  PubMed  Google Scholar 

  349. Keshavarz Azizi Raftar S, Hoseini Tavassol Z, Amiri M, Ejtahed HS, Zangeneh M, Sadeghi S, et al. Assessment of fecal Akkermansia muciniphila in patients with osteoporosis and osteopenia: a pilot study. J Diab Metab Disord. 2021;20:279–84.

    Article  CAS  Google Scholar 

  350. Fernández-Murga ML, Olivares M, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reverses the adverse effects of diet-induced obesity through the gut-bone axis. Bone. 2020;141:115580.

    Article  PubMed  Google Scholar 

  351. Behera J, Ison J, Voor MJ, Tyagi N. Probiotics stimulate bone formation in obese mice via histone methylations. Theranostics. 2021;11:8605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Eaimworawuthikul S, Tunapong W, Chunchai T, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, et al. Altered gut microbiota ameliorates bone pathology in the mandible of obese–insulin-resistant rats. Eur J Nutr. 2020;59:1453–62.

    Article  CAS  PubMed  Google Scholar 

  353. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li J-Y, Owens JA, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity. 2018;49:1116–31.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Kim K-J, Lee J, Wang W, Lee Y, Oh E, Park K-H, et al. Austalide K from the fungus Penicillium rudallense prevents LPS-induced bone loss in mice by inhibiting osteoclast differentiation and promoting osteoblast differentiation. Int J Mol Sci. 2021;22:5493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Goel PN, Egol AJ, Moharrer Y, Brandfield-Harvey B, Ahn J, Ashley JW. Notch signaling inhibition protects against LPS mediated osteolysis. Biochem Biophys Res Commun. 2019;515:538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Kishikawa A, Kitaura H, Kimura K, Ogawa S, Qi J, Shen W-R, et al. Docosahexaenoic acid inhibits inflammation-induced osteoclast formation and bone resorption in vivo through GPR120 by inhibiting TNF-α production in macrophages and directly inhibiting osteoclast formation. Front Endocrinol. 2019;10:157.

    Article  Google Scholar 

  357. Jin J, Machado E, Yu H, Zhang X, Lu Z, Li Y, et al. Simvastatin inhibits LPS-induced alveolar bone loss during metabolic syndrome. J Dent Res. 2014;93:294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Guo C, Yuan L, Wang J-G, Wang F, Yang X-K, Zhang F-H, et al. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation. 2014;37:621–31.

    Article  CAS  PubMed  Google Scholar 

  359. Gao A, Wang X, Yu H, Li N, Hou Y, Yu W. Effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts. Vitr Cell Dev Biol Anim. 2016;52:228–34.

    Article  CAS  Google Scholar 

  360. Chang Y, Hu C-C, Wu Y-Y, Ueng SW, Chang C-H, Chen M-F. Ibudilast mitigates delayed bone healing caused by lipopolysaccharide by altering osteoblast and osteoclast activity. Int J Mol Sci. 2021;22:1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, et al. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem. 2009;284:14637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Xing Q, de Vos P, Faas M, Ye Q, Ren Y. LPS promotes pre-osteoclast activity by up-regulating CXCR4 via TLR-4. J Dent Res. 2011;90:157–62.

    Article  CAS  PubMed  Google Scholar 

  363. Bosetti M, Sabbatini M, Nicolì E, Fusaro L, Cannas M. Effects and differentiation activity of IGF-I, IGF-II, insulin and preptin on human primary bone cells. Growth Factors. 2013;31:57–65.

    Article  CAS  PubMed  Google Scholar 

  364. Jiang S. Roles of calcitonin family of peptides in degenerative musculoskeletal diseases. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky; ediss.sub.uni-hamburg.de; 2024.

Download references

Acknowledgements

We would like to express our gratitude to BioRender (www.biorender.com) for providing the software used to create all figures in this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AH; Data curation: AB, KK, and HT; Investigation: AB and AH; Supervision: HY. Validation: KM; Writing—original draft: AB, KK, and KM; Writing—review & editing: HY and HT.

Corresponding authors

Correspondence to Hooman Yahyazedeh or Hamid Tanzadehpanah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherifard, A., Hemmatyar, A., Khosravi, K. et al. The impact of obesity on bone health: molecular pathways, metabolic interactions, and associated pathologies. Int J Obes 50, 87–115 (2026). https://doi.org/10.1038/s41366-025-01907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-025-01907-1

This article is cited by

Search

Quick links