Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Biology

Placental expression of the serotonin transporter (SERT) gene: associations with maternal overweight/obesity and neonatal anthropometry

Subjects

Abstract

Objectives

We investigated the relationship between maternal pre-pregnancy body mass index (BMI) and expression of key serotonin-regulating genes (namely, metabolic enzymes, transmembrane transporters and receptors) in term placentas, including a possible moderating effect of glucose tolerance status (normal glucose tolerance (NGT) vs. gestational diabetes mellitus (GDM)). Associations between placental expression of serotonin-regulating genes and neonatal anthropometry were also explored.

Methods

The study included 105 women with overweight/obesity (OWO) and 111 women with normal–weight (NW), all giving birth at term by planned cesarean section. Placental tissue was collected from the fetal side using a standardized protocol. Expression of serotonin-regulating genes was quantified by RT–qPCR and/or ELISA.

Results

Pre-pregnancy OWO, GDM or their interaction were not associated with mRNA levels of tryptophan hydroxylase 1 (TPH1), monoamine-oxidase A (MAOA), organic cation transporter 3 (OCT3), and serotonin receptor 2A (HTR2A) in term placentas. However, mRNA levels of plasma membrane monoamine transporter (PMAT) were significantly upregulated in association with pre-pregnancy OWO, regardless of GDM status (p = 0.014). Furthermore, in women with NGT, but not in women with GDM, pre-pregnancy OWO was associated with decreased placental serotonin transporter (SERT) mRNA levels (p = 0.001), while placental SERT protein levels were increased in women with pre-pregnancy OWO and further elevated in women with concurrent GDM (p = 0.005). In addition, higher placental SERT mRNA levels negatively predicted birth weight and newborn length and, in women with NGT, partially mediated the association between pre-pregnancy BMI and birth weight.

Conclusion

The results show associations between maternal pre-pregnancy OWO and altered expression of high- and low-affinity serotonin transport genes (SERT and PMAT, respectively). Among the genes analyzed, SERT may play a role in linking maternal OWO to fetal growth. The results underscore the importance of further functional studies into the placental serotonin system in the context of maternal OWO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of the serotonin transporter gene (SERT) in term placentas as a function of maternal metabolic state.
Fig. 2: Moderated mediation analysis.

Similar content being viewed by others

Data availability

The PlaNS datasets analyzed in the current study are not publicly available because consent for public release of data was not obtained from participants. However, data to generate figures and tables are available from the corresponding author on reasonable request and with appropriate permission from the PlaNS study team and investigators.

References

  1. Chen C, Xu X, Yan Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS One. 2018;13:e0202183 https://doi.org/10.1371/journal.pone.0202183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stival C, Lugo A, Odone A, van den Brandt PA, Fernandez E, Tigova O, et al. Prevalence and correlates of overweight and obesity in 12 european countries in 2017-2018. Obes Facts. 2022;15:655–65. https://doi.org/10.1159/000525792.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vince K, Brkić M, Poljičanin T, Matijević R. Prevalence and impact of pre-pregnancy body mass index on pregnancy outcome: a cross-sectional study in Croatia. J Obstet Gynaecol. 2021;41:55–9. https://doi.org/10.1080/01443615.2019.1706157.

    Article  PubMed  Google Scholar 

  4. Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16:621–38. https://doi.org/10.1111/obr.12288.

    Article  CAS  PubMed  Google Scholar 

  5. Shirvanifar M, Ahlqvist VH, Lundberg M, Kosidou K, Herraiz-Adillo Á, Berglind D, et al. Adverse pregnancy outcomes attributable to overweight and obesity across maternal birth regions: a Swedish population-based cohort study. Lancet Public Health. 2024;9:e776–86. https://doi.org/10.1016/S2468-2667(24)00188-9.

    Article  PubMed  Google Scholar 

  6. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diab Endocrinol. 2017;5:53–64. https://doi.org/10.1016/S2213-8587(16)30107-3.

    Article  Google Scholar 

  7. Kong L, Chen X, Gissler M, Lavebratt C. Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int J Obes. 2020;44:1981–2000. https://doi.org/10.1038/s41366-020-0609-4.

    Article  Google Scholar 

  8. Mahase E. Obesity: no European country is on track to halt rising levels by 2025, WHO warns. BMJ. 2022;377:o1107. https://doi.org/10.1136/bmj.o1107.

    Article  PubMed  Google Scholar 

  9. Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140066. https://doi.org/10.1098/rstb.2014.0066.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Segura MT, Demmelmair H, Krauss-Etschmann S, Nathan P, Dehmel S, Padilla MC, et al. Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta. 2017;57:144–51. https://doi.org/10.1016/j.placenta.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  11. Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol. 2023;601:1287–306. https://doi.org/10.1113/JP284139.

    Article  CAS  PubMed  Google Scholar 

  12. Beneventi F, Bellingeri C, De Maggio I, Cavagnoli C, Fumanelli S, Ligari E, et al. Placental pathologic features in obesity. Placenta. 2023;144:1–7. https://doi.org/10.1016/j.placenta.2023.10.011.

    Article  CAS  PubMed  Google Scholar 

  13. Louwen F, Kreis N-N, Ritter A, Yuan J. Maternal obesity and placental function: impaired maternal-fetal axis. Arch Gynecol Obstet. 2024;309:2279–88. https://doi.org/10.1007/s00404-024-07462-w.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang CXW, Candia AA, Sferruzzi-Perri AN. Placental inflammation, oxidative stress, and fetal outcomes in maternal obesity. Trends Endocrinol Metab. 2024;35:638–47. https://doi.org/10.1016/j.tem.2024.02.002.

    Article  CAS  PubMed  Google Scholar 

  15. Hadden C, Fahmi T, Cooper A, Savenka AV, Lupashin VV, Roberts DJ, et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway. J Cell Physiol. 2017;232:3520–9. https://doi.org/10.1002/jcp.25812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reviriego J, Fernandez-Alfonso MS, Marín J. Actions of vasoactive drugs on human placental vascular smooth muscle. Gen Pharm. 1990;21:719–27. https://doi.org/10.1016/0306-3623(90)91024-l.

    Article  CAS  Google Scholar 

  17. Thibeault A-AH, de Los Santos YL, Doucet N, Sanderson JT, Vaillancourt C. Serotonin and serotonin reuptake inhibitors alter placental aromatase. J Steroid Biochem Mol Biol. 2019;195:105470. https://doi.org/10.1016/j.jsbmb.2019.105470.

    Article  CAS  PubMed Central  Google Scholar 

  18. Mao J, Kinkade JA, Bivens NJ, Roberts RM, Rosenfeld CS. Placental changes in the serotonin transporter (Slc6a4) knockout mouse suggest a role for serotonin in controlling nutrient acquisition. Placenta. 2021;115:158–68. https://doi.org/10.1016/j.placenta.2021.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Côté F, Fligny C, Bayard E, Launay J-M, Gershon MD, Mallet J, et al. Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci USA. 2007;104:329–34. https://doi.org/10.1073/pnas.0606722104.

    Article  PubMed  Google Scholar 

  20. Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472:347–50. https://doi.org/10.1038/nature09972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goeden N, Velasquez J, Arnold KA, Chan Y, Lund BT, Anderson GM, et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J Neurosci. 2016;36:6041–9. https://doi.org/10.1523/JNEUROSCI.2534-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perić M, Bečeheli I, Čičin-Šain L, Desoye G, Štefulj J. Serotonin system in the human placenta—the knowns and unknowns. Front Endocrinol. 2022;13:1061317. https://doi.org/10.3389/fendo.2022.1061317.

    Article  Google Scholar 

  23. Laurent L, Deroy K, St-Pierre J, Côté F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–65. https://doi.org/10.1016/j.biochi.2017.07.008.

    Article  CAS  PubMed  Google Scholar 

  24. Kliman HJ, Quaratella SB, Setaro AC, Siegman EC, Subha ZT, Tal R, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159:1609–29. https://doi.org/10.1210/en.2017-03025.

    Article  CAS  PubMed  Google Scholar 

  25. Balkovetz DF, Tiruppathi C, Leibach FH, Mahesh VB, Ganapathy V. Evidence for an imipramine-sensitive serotonin transporter in human placental brush-border membranes. J Biol Chem. 1989;264:2195–8. https://doi.org/10.1016/S0021-9258(18)94161-X.

    Article  CAS  PubMed  Google Scholar 

  26. Chan JC, Alenina N, Cunningham AM, Ramakrishnan A, Shen L, Bader M, et al. Serotonin transporter-dependent histone serotonylation in placenta contributes to the neurodevelopmental transcriptome. J Mol Biol. 2024:168454. https://doi.org/10.1016/j.jmb.2024.168454.

  27. Levy M, Kovo M, Miremberg H, Anchel N, Herman HG, Bar J, et al. Maternal use of selective serotonin reuptake inhibitors (SSRI) during pregnancy-neonatal outcomes in correlation with placental histopathology. J Perinatol. 2020;40:1017–24. https://doi.org/10.1038/s41372-020-0598-0.

    Article  CAS  PubMed  Google Scholar 

  28. De Ponti F. Pharmacology of serotonin: what a clinician should know. Gut. 2004;53:1520–35. https://doi.org/10.1136/gut.2003.035568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Prim. 2019;5:1–19. https://doi.org/10.1038/s41572-019-0098-8.

    Article  Google Scholar 

  30. Horvatiček M, Perić M, Bečeheli I, Klasić M, Žutić M, Kesić M, et al. Maternal metabolic state and fetal sex and genotype modulate methylation of the serotonin receptor type 2A gene (HTR2A) in the human placenta. Biomedicines. 2022;10:467. https://doi.org/10.3390/biomedicines10020467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bečeheli I, Horvatiček M, Perić M, Nikolić B, Holuka C, Klasić M, et al. Methylation of serotonin regulating genes in cord blood cells: association with maternal metabolic parameters and correlation with methylation in peripheral blood cells during childhood and adolescence. Clin Epigenetics. 2024;16:4. https://doi.org/10.1186/s13148-023-01610-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye J, Zhang L, Chen Y, Fang F, Luo Z, Zhang J. Searching for the definition of macrosomia through an outcome-based approach. PLoS One. 2014;9:e100192. https://doi.org/10.1371/journal.pone.0100192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Metzger BE, Gabbe SG, Persson B, Lowe LP, Dyer AR, Oats JJN, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy: response to weinert. Diab Care. 2010;33:e98. https://doi.org/10.2337/dc10-0719.

    Article  Google Scholar 

  34. Lovrenčić MV, Honović L, Kralik S, Matica J, Prašek M, Pape-Medvidović E, et al. Redefinition of gestational diabetes mellitus: implications for laboratory practice in Croatia. Biochem Med. 2013;23:7–11. https://doi.org/10.11613/BM.2013.002.

    Article  Google Scholar 

  35. Goldberg JD, El-sayed YY. Committee Opinion No 700: methods for estimating the due date. Obstet Gynecol. 2017;129:e150–4. https://doi.org/10.1097/AOG.0000000000002046.

    Article  Google Scholar 

  36. Blazevic S, Horvaticek M, Kesic M, Zill P, Hranilovic D, Ivanisevic M, et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. PLoS One. 2017;12:e0179934. https://doi.org/10.1371/journal.pone.0179934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. https://doi.org/10.1373/clinchem.2008.112797.

    Article  CAS  PubMed  Google Scholar 

  38. Xie F, Wang J, Zhang B. RefFinder: a web-based tool for comprehensively analyzing and identifying reference genes. Funct Integr Genom. 2023;23:125. https://doi.org/10.1007/s10142-023-01055-7.

    Article  CAS  Google Scholar 

  39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  40. Hayes AF, Rockwood NJ. Regression-based statistical mediation and moderation analysis in clinical research: observations, recommendations, and implementation. Behav Res Ther. 2017;98:39–57. https://doi.org/10.1016/j.brat.2016.11.001.

    Article  PubMed  Google Scholar 

  41. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60. https://doi.org/10.3758/BRM.41.4.1149.

    Article  PubMed  Google Scholar 

  42. Karahoda R, Horackova H, Kastner P, Matthios A, Cerveny L, Kucera R, et al. Serotonin homeostasis in the materno-foetal interface at term: role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020;229:e13478. https://doi.org/10.1111/apha.13478.

    Article  CAS  Google Scholar 

  43. Baković P, Kesić M, Perić M, Bečeheli I, Horvatiček M, George M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. Int J Mol Sci. 2021;22:7807. https://doi.org/10.3390/ijms22157807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Altmäe S, Segura MT, Esteban FJ, Bartel S, Brandi P, Irmler M, et al. Maternal pre-pregnancy obesity is associated with altered placental transcriptome. PLoS One. 2017;12:e0169223. https://doi.org/10.1371/journal.pone.0169223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online. 2009;19:207–15. https://doi.org/10.1016/S1472-6483(10)60074-0.

    Article  CAS  PubMed  Google Scholar 

  46. Song JY, Lee KE, Byeon EJ, Choi J, Kim SJ, Shin JE. Maternal gestational diabetes influences DNA methylation in the serotonin system in the human placenta. Life. 2022;12:1869. https://doi.org/10.3390/life12111869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Hadden C, Singh P, Mercado CP, Murphy P, Dajani NK, et al. GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake. Proc Natl Acad Sci USA. 2014;111:E5697–705. https://doi.org/10.1073/pnas.1416675112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao X, Liu Q, Cao S, Pang J, Zhang H, Feng T, et al. A meta-analysis of selective serotonin reuptake inhibitors (SSRIs) use during prenatal depression and risk of low birth weight and small for gestational age. J Affect Disord. 2018;241:563–70. https://doi.org/10.1016/j.jad.2018.08.061.

    Article  CAS  PubMed  Google Scholar 

  49. Desaunay P, Eude L-G, Dreyfus M, Alexandre C, Fedrizzi S, Alexandre J, et al. Benefits and risks of antidepressant drugs during pregnancy: a systematic review of meta-analyses. Paediatr Drugs. 2023;25:247–65. https://doi.org/10.1007/s40272-023-00561-2.

    Article  PubMed  Google Scholar 

  50. Alfadhli EM. Maternal obesity influences birth weight more than gestational diabetes. BMC Pregnancy Childbirth. 2021;21:111. https://doi.org/10.1186/s12884-021-03571-5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mitsuda N, Eitoku M, Yamasaki K, J-P NA, Fujieda M, Maeda N, et al. Association between maternal cholesterol level during pregnancy and placental weight and birthweight ratio: data from the Japan environment and children’s study. BMC Pregnancy Childbirth. 2023;23:484. https://doi.org/10.1186/s12884-023-05810-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang K, Jia X, Yu W, Cheng X, Li Y, Wang X, et al. The associations of gestational weight gain and midpregnancy lipid levels with placental size and placental-to-birth weight ratio: findings from a chinese birth cohort study. BMC Pregnancy Childbirth. 2023;23:725. https://doi.org/10.1186/s12884-023-05991-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sonier B, Lavigne C, Arseneault M, Ouellette R, Vaillancourt C. Expression of the 5-HT2A serotoninergic receptor in human placenta and choriocarcinoma cells: mitogenic implications of serotonin. Placenta. 2005;26:484–90. https://doi.org/10.1016/j.placenta.2004.08.003.

    Article  CAS  PubMed  Google Scholar 

  54. Oufkir T, Arseneault M, Sanderson JT, Vaillancourt C. The 5-HT2A serotonin receptor enhances cell viability, affects cell cycle progression and activates MEK–ERK1/2 and JAK2–STAT3 signalling pathways in human choriocarcinoma cell lines. Placenta. 2010;31:439–47. https://doi.org/10.1016/j.placenta.2010.02.019.

    Article  CAS  PubMed  Google Scholar 

  55. Perić M, Horvatiček M, Tandl V, Bečeheli I, Majali-Martinez A, Desoye G, et al. Glucose, insulin and oxygen modulate expression of serotonin-regulating genes in human first-trimester trophoblast cell line ACH-3P. Biomedicines. 2023;11:1619. https://doi.org/10.3390/biomedicines11061619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Barros Mucci D, Kusinski LC, Wilsmore P, Loche E, Pantaleão LC, Ashmore TJ, et al. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes. 2020;44:1087–96. https://doi.org/10.1038/s41366-020-0561-3.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Croatian Science Foundation grants IP-2018-01-6547 and IP-2024-05-4961 (to JŠ). MP was supported by the Croatian Science Foundation grant DOK-2018-09-7794. We are grateful to all women who generously participated in this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JŠ; Data curation: MP, MH, MŽ, JŠ; Formal analysis: MP, MŽ, JŠ; Funding acquisition: JŠ; Investigation: MP, MH, MK; Methodology: MP, MŽ, JŠ, LČŠ; Project administration: JŠ; Writing original draft: MP, JŠ; Writing review & editing: JŠ, LČŠ. All authors approved final version.

Corresponding author

Correspondence to Jasminka Štefulj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the University Clinical Hospital Centre Zagreb (class: 8.1-18/162-2, number: 02/21 AG, approved on 18.07.2018) and the Bioethics Committee of the Ruđer Bošković Institute, Zagreb (BEP-8761/2-2018, approved on 26.11.2018). Written informed consent to participate in the study was obtained from all participants. All procedures complied with the ethical standards outlined in the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perić, M., Horvatiček, M., Kesić, M. et al. Placental expression of the serotonin transporter (SERT) gene: associations with maternal overweight/obesity and neonatal anthropometry. Int J Obes (2025). https://doi.org/10.1038/s41366-025-01918-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-025-01918-y

Search

Quick links