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Lysine-specific demethylase 1 controls key OSCC preneoplasia
inducer STAT3 through CDK7 phosphorylation during
oncogenic progression and immunosuppression
Amit Kumar Chakraborty 1, Rajnikant Dilip Raut1, Kisa Iqbal1,2, Chumki Choudhury1, Thabet Alhousami 1,2,5, Sami Chogle2,
Alexa S. Acosta3, Lana Fagman3, Kelly Deabold3, Marilia Takada3, Bikash Sahay3, Vikas Kumar4 and Manish V. Bais 1✉

Oral squamous cell carcinoma (OSCC) progresses from preneoplastic precursors via genetic and epigenetic alterations. Previous
studies have focused on the treatment of terminally developed OSCC. However, the role of epigenetic regulators as therapeutic
targets during the transition from preneoplastic precursors to OSCC has not been well studied. Our study identified lysine-specific
demethylase 1 (LSD1) as a crucial promoter of OSCC, demonstrating that its knockout or pharmacological inhibition in mice
reversed OSCC preneoplasia. LSD1 inhibition by SP2509 disrupted cell cycle, reduced immunosuppression, and enhanced CD4+
and CD8+ T-cell infiltration. In a feline model of spontaneous OSCC, a clinical LSD1 inhibitor (Seclidemstat or SP2577) was found to
be safe and effectively inhibit the STAT3 network. Mechanistic studies revealed that LSD1 drives OSCC progression through STAT3
signaling, which is regulated by phosphorylation of the cell cycle mediator CDK7 and immunosuppressive CTLA4. Notably, LSD1
inhibition reduced the phosphorylation of CDK7 at Tyr170 and eIF4B at Ser422, offering insights into a novel mechanism by which
LSD1 regulates the preneoplastic-to-OSCC transition. This study provides a deeper understanding of OSCC progression and
highlights LSD1 as a potential therapeutic target for controlling OSCC progression from preneoplastic lesions.
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INTRODUCTION
Oral squamous cell carcinoma (OSCC) is an aggressive type of
cancer. Tongue dysplasia and preneoplasia originate from the
epithelial layer and migrate to the adjacent tissues. Dysplastic
epithelial changes in the tongue are confined to the overlying
epithelium of OSCC and are characterized by infiltration of the
underlying connective tissue.1 Recent statistics show that oral
cavity-related cancers account for 53 000 cases and 10 860 deaths
annually in the United States.2 The limited understanding of OSCC
preneoplasia, as well as its mechanisms and progression, interferes
with early detection and intervention.
Aberrant epigenetic reprogramming and clonal proliferation of

cancer stem cells promote cancer.3 Precancerous lesions have diverse
signaling mechanisms and immune infiltration, and there is limited
understanding of which lesions progress to invasive lesions.4–6 A
recent study implied predictability in the earliest stages of
tumorigenesis and showed evolutionary constraints and barriers to
malignant transformation, with implications for earlier detection and
interception of aggressive, genome-unstable tumors.7 OSCC often
develops from precancerous lesions through a multistep process that
involves genetic and epigenetic changes. Previous studies have
shown that OSCC often develops from precancerous lesions through
a multi-step process that includes EGFR overexpression,8 histone
modifications.9 and loss of cell cycle regulation.10 However, all of

these mechanisms are observed in OSCC and not in precancer, which
could be different. Investigating small molecules and drugs that target
epigenetic changes could open new avenues for treatment and
prevention, especially for early-stage diseases.
A proteogenomic study on clinical cancer demonstrated that

lysine-specific demethylase 1 (LSD1), encoded by KDM1A gene, is
critical in Lung Squamous Cell Carcinoma (LSCC) and head and neck
cancer and shares tissue and cell type of origin.11 LSD1 controls
SOX2 expression and is currently being investigated in a clinical
context in conjunction with immunotherapy to reduce SOX2
expression in LSCC (NCT04350463). Our study showed that the
aberrantly upregulated epigenetic regulator, LSD1, promotes OSCC
development. LSD1 expression increases during dysplasia and
progressively increases with advanced tumor grade and stage in
mouse and human OSCC.12,13 LSD1 promotes cancer stem cells,14

chemoresistance, and relapse.15 LSD1 attenuation inhibits patient-
derived xenografts and epidermal growth factor receptor (EGFR) and
yes-associated protein (YAP) signaling, which are critical in OSCC.12,16

However, how LSD1-induced epigenetic changes reprogram pre-
neoplasia into OSCC by acting on specific gene networks,
phosphoprotein activation, and immune cells remains unclear.
Constitutive activation of signal transducer and activator of

transcription 3 (STAT3) in OSCC preneoplasia is predicted to
initiate malignant transformation.17–19 STAT3 is a transcription
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factor that is involved in this process. Various oncogenic pathways
converge to STAT3. Although STAT3 is an attractive target, it is
difficult to target OSCC cells because of its various modes of
regulation.20,21 The interaction between EGFR and STAT3 pro-
motes malignancy.22 This study aimed to evaluate how LSD1
initiates preneoplastic changes by activating early events such as
STAT3 signaling, cell cycle mediators, and tumor immunity, which
are useful for understanding progressive OSCC lesions from
precancer and therapeutic intervention. STAT3 signaling regulates
antitumor immunity and promotes an immunosuppressive tumor
environment. CTLA4 induces immunosuppression and is a target
for various anticancer therapies.23–25

Studies have shown that tobacco carcinogen, 4 nitro-quinolone-
1-oxide (4NQO)-induced mouse model,26 and spontaneously
occurring feline OSCC are similar to human OSCC. The feline
OSCC model closely recapitulates several important cases of
human papillomavirus-negative (HPV-ve) OSCC.27–29 The LSD1
inhibitor SP2509 is similar to its clinical candidate SP2577
(Seclidemstat; Salarius Pharmaceutical). Its safety and efficacy
have been evaluated in phase 1/2 clinical trials,30 and it can be
used in translational studies. Feline OSCC shares common aspects
of molecular and cellular pathology, including the expression of
tyrosine kinase receptors, neo-angiogenesis, inflammatory path-
ways, and immune cell markers.27–29

Here, we evaluated the following specific mechanisms in OSCC
preneoplasia: 1) LSD1 regulates CDK7 and STAT3 to facilitate cell

cycle progression; 2) the LSD1 promotes phosphorylation of
specific cyclin-dependent kinases (CDKs) and eukaryotic transla-
tion initiation factors (eIFs); and 3) LSD1 inhibition attenuates
cytotoxic T lymphocyte-associated protein 4 (CTLA4) and pro-
motes CD8+ T cell-mediated accumulation and activation through
IFNγ production. Finally, proof-of-concept studies in feline
spontaneous OSCC were conducted to determine the safety of
Seclidemstat and its efficacy in attenuating STAT3 mechanism in
veterinary trials. Our studies in murine and feline OSCC models,
transcriptional and phospho-proteomic analyses, and their corre-
lation with human OSCC demonstrated that LSD1 plays a key role
in attenuating the novel CDK7-STAT3-CTLA4 axis and promoting
CD8+ T cell infiltration in OSCC preneoplasia.

RESULTS
LSD1 inhibitor (SP2509) reverses cancer cell division and promotes
immune response in OSCC preneoplasia
The analysis of STAT3 and LSD1 protein expression in OSCC patient
samples from clinical proteomic tumor analysis consortium (CPTAC)
identified that LSD1 and STAT3 protein expression increased with the
progressive clinical stages (Fig. 1a) and pathological grades (Fig. S1a,
b) in OSCC. RT-qPCR analysis confirmed that KDM1A and STAT3
expression levels were substantially higher in cancer cells (HSC3 and
CAL27) than in normal epithelial cells (Fig. 1b). These two cell lines
have been extensively characterized in vivo and in vitro.13,31 Hub
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gene detection analysis of differentially expressed genes from the
Cancer Genome Atlas (TCGA) patient data, which identified the
relationship between the top 10 hub genes, showed that KDM1A has
a primary interaction with STAT3, SOX2, EZH2, and HIF1A and a
secondary interaction with EGFR (Fig. S1c, d; Tables S1 and S2 for
differentially expressed genes and patient characteristics). To
determine whether LSD1 inhibition reversed OSCC and STAT3,
SP2509 was tested in a syngeneic OSCC mouse model. Treatment
with SP2509 significantly inhibited tumor growth (Fig. 1c), and H&E
staining revealed a reduction in tumor pathological changes (Fig. 1d).
SP2509 also regulated Kdm1a, Stat3, and Ctla4 expression (Fig. 2a).
STAT3 protein levels were significantly higher in cancer cells than in
normal epithelial cells and were significantly reduced in cancer cells
when KDM1A was knocked out using the CRISPR-Cas9 system
(Fig. 2b). RNA-Seq analysis revealed that SP2509 treatment altered the
expression of a subset of genes (Fig. S1f, Table S3). Gene Ontology
(GO) analysis using the Gene Set Enrichment Analysis (GSEA) tool
showed negative enrichment of cell division and cell cycle process
gene network, whereas positive enrichment of humoral and innate
immune response network with SP2509 treatment compared with
the vehicle control (Figs. 2c, S1g). To validate the effect of LSD1
inhibition and KDM1A knockout on the cell cycle process in vitro, we
performed a Propidium Iodide (PI) staining assay using the HSC3 cell
line and found that both LSD1 inhibition and KDM1A knockout
induced G0/G1-phase cell cycle arrest, thus confirming our in vivo
findings (Figs. 2d; S1h, i). Additionally, OSCC preneoplasia data32

reanalysis showed that KDM1A, STAT3, and CTLA4 expression
progressively increased in preneoplasia tissues compared to that in
normal tissues (Fig. S2a; Table S4). GSEA Hallmark analysis showed
that the STAT3 network was upregulated in human dysplasia samples
compared with that in normal samples (Fig. S2b). Ingenuity pathway
analysis (IPA) revealed increased STAT3 and an immunosuppressive
network and increased G1 to S-phase cell cycle progression (Fig. S2c,

d), and interestingly, this correlates with our in vitro cell cycle analysis
validation. Moreover, Tumor, Normal, and Metastasis (TNM) plot
analysis from TCGA showed that the expression of KDM1A network
genes, including STAT3 and CTLA4, was higher in HNSCC clinical
tumors than in normal human tissues (Fig. S2e).

LSD1 reprograms tumor microenvironment to
immunosuppression
To evaluate immune response upon LSD1 inhibition, flow
cytometry analysis of single-cell suspensions from tongue tumors
and spleens was performed to identify gate-specific infiltrating
cells (Fig. S2f). The data showed that SP2509 treatment promoted
the infiltration of CD45+, TCRβ+, CD4+, and CD8+ T cells in
tongue tumors (Fig. 3a). A previous study found that CD4+ T cells
regulate other immune cells, such as CD8+ T cells, where
activated CD8+ T cell subsets produce various cytokines that
affect the tumor microenvironment.33 Interestingly, SP2509
attenuated the immunosuppressive CD25+ CTLA4+ T cells (a
subset of CD4+ T cells) (Fig. 3b). To evaluate the systemic effects,
multiplex cytokine analysis of serum and flow cytometry of spleen
immune cells from 4MOSC1 mice treated with SP2509 was
performed. Interferon γ (IFN-γ) promotes antitumor immunity.34

Serum cytokine analysis showed that SP2509 treated mouse
serum upregulated IFNβ, IFNγ, and IL9, which are known to
promote proliferation and activation of CD8+ T cells (Fig. 3c).
Spleen cell analysis showed the upregulation of CD45+, TCRβ+,
CD4+, and CD8+ T cells (Fig. S3a). To evaluate IFNγ production
status, HSC3 co-culture with human PBMCs treated with LSD1
inhibitor (Fig. 4a) and KDM1A knockout (Fig. 4b) in HSC3 cells
showed a significant increase in IFNγ+ CD4+ and IFNγ+
CD8+ T cells compared to the respective controls.
To assess the effect of anti-PD1 treatment (InVivoMAb; BioXCell

#BE0273) in combination with SP2509, we performed flow
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cytometry on 4NQO-induced oral cancer mice. We observed that
both CD4+ and CD8+ T cells were significantly increased in the
treatment groups, and IFNγ+ CD4+ and IFNγ+ CD8+ T cells were
significantly increased. Conversely, the PD1+ CD8+ T cell popula-
tion decreased significantly in both treatment groups, suggesting
that LSD1 inhibition has a direct role in PD1 regulation (Fig. 5a, b).

It was also observed that PD-L1+ epithelial cells were also
significantly decreased in all the treatment groups (Fig. 5c).
Moreover, analysis of 15-year survival data from TCGA (only
patients with OSCC) showed that the clinical survival of patients
with KDM1A and STAT3 expression and CD8A low expression was
poor, similar to that of untreated tumors. Survival analysis
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resembling the SP2509 effect as KDM1A low, STAT3 low, and CD8A
high significantly increased overall survival (Fig. 5d). Additionally,
patients with KDM1A high expression had lower survival than
KDM1A low expression (Fig. 5d). However, KDM1A (high expres-
sion), STAT3 (high expression), KDM1A (high expression), and CD8A
(low expression) showed a slightly significant effect on overall
survival (Fig. S3b). These findings strongly support our hypothesis
that LSD1 promoted network can predict patient survival;
however, this must be tested in clinical studies.

LSD1 inhibition reverses feline spontaneous clinical OSCC by
attenuating STAT3 in veterinary clinical trials
To evaluate the efficacy of LSD1 inhibition in clinical settings, the first
feline preclinical study was performed on two feline OSCC patients.
This study evaluated the safety and efficacy of another LSD1 inhibitor,
seclidemstat (SP2577). We recruited an 11-year-old female owner-
owned cat who presented with primary OSCC that was surgically
excised. To evaluate safety, the cat was treated with 10mg/kg of
Seclidemstat 10 d after surgery. The samples were analyzed for
veterinary clinical parameters such as complete blood count (CBC)
and blood chemistry panel during the routine visit (Fig. 6a). The data
showed that Seclidemstat promoted a gradual increase in lympho-
cytes to the normal range but reduced monocytes and neutrophils.
Additionally, the AST/ALT ratio, which could be a predictor of
cancer,35–38 was reduced (Fig. 6b). Visible relapsed or refractory OSCC
was not detected even after six months of observation.
To evaluate whether Seclidemstat reverses the STAT3 network,

a new feline patient with progressive OSCC and visible tongue

tumors was recruited and treated for 56 days (Fig. 7a). The biopsy
samples were collected before and after treatment and subjected
to RNA-seq, which showed that Seclidemstat attenuated the
STAT3 network and was one of the top 10 hub genes (Fig. S3d, e;
Table S5). Moreover, Seclidemstat attenuated STAT3, CTLA4, and
EGFR expression, but increased IRF3 expression (Fig. 7b). IPA
revealed that seclidemstat attenuated the EGFR-STAT3 network,
reduced cancer cell growth and T cell exhaustion, and upregu-
lated T cell activation and proliferation (Fig. 7c). Overall,
seclidemstat-mediated LSD1 inhibition affected OSCC progression
in cats.

KDM1A knockout or LSD1 pharmacological inhibition in mice
tongue attenuates OSCC preneoplasia and STAT3 phosphorylation
To evaluate whether there was a correlation between STAT3
phosphorylation and LSD1 activity in human tumors, phospho-
STAT3 levels were measured by phospho-flow cytometry. Over-
night exposure of SP2509 to HSC3 and CAL27 (OSCC cell lines)
treated with the STAT3 activator IL6 at 30 min and 1 h had a
negative impact on the phosphorylation of STAT3, where it was
observed that SP2509 treatment significantly reduced STAT3
phosphorylation at Tyr705 (Fig. 8a, b) (please also see Fig. S4a for
CAL27 treatment with IL6 for 1 h). Experimental design showing
Keratin promoter 14 specific conditional Kdm1a knockout in mice
tongue epithelium to evaluate the effect of genetic deletions
LSD1, as well as pharmacological inhibition using SP2509 in the
4NQO mouse model were evaluated in OSCC precancer (Fig. S4b).
Kdm1a−/− mouse tongue tissues showed reduced OSCC
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pathology at week 18 post-4NQO treatment compared to
Kdm1afl/fl mice (Figs. 8c; S4c). Similarly, SP2509 application during
dysplasia prevented the progression of OSCC preneoplasia
(Figs. 8d; S4c) as well as OSCC pathological lesions and reduced
high-grade dysplasia and squamous cell carcinoma in the group
treated with SP2509. Quantification of percentages in the cohorts
was performed blindly by a board-certified oral pathologist
(Figs. 8c, d; S4d, e). Immunostaining of Kdm1a−/−+ 4NQO mice
and SP2509 treated mice tongue sections showed inhibition of
phosho-STAT3 (Fig. 9a). To evaluate the CTLA4+ immune cell
population, we performed immunostaining with an APC anti-
mouse CD152 (CTLA4) antibody on Kdm1afl/fl and Kdm1a−/−

mouse tongues. We observed a significant decrease in CTLA4+
immune cells after Kdm1a deletion (Figs. 9b; S4f). To further
evaluate the effect of Kdm1a knockout, we performed a co-culture
experiment with CRISPR-Cas9 knockout (KDM1A−/−) in HSC3 cells
and observed a significant decrease in CTLA4+ immune cells
(Fig. S4g). This finding suggests a functional relationship between
LSD1 and CTLA4 in OSCC.

Kdm1a knockout results in a reduced Stat3 and STAT3-related
protein network
To evaluate changes in the overall microenvironment via an
unbiased approach, we performed global proteomic analysis of

protein lysates isolated from the tongues of Kdm1afl/fl and
Kdm1a−/− mice at week 18 post-4NQO treatment (n= 7/condi-
tion) (Table S6). Kdm1a deletion in 4NQO mouse tongue lysate
reduced STAT3 protein expression (Fig. 10a). Moreover, differential
expression analysis followed by IPA revealed a dysregulated IL6-
JAK2-STAT3 network, including the nuclear translocation of STAT3
(Fig. S5a) and EGFR-STAT3 network (Fig. 10b), which are key
promoters of OSCC. Furthermore, STAT3 associated events were
reduced (Figs. 10c; S5b), thus validating our finding that LSD1
regulates STAT3 and its pathways. Therefore, it can be concluded
that LSD1 promotes STAT3 and STAT3-related networks through a
novel key oncogenic mechanism.

SP2509 attenuates total STAT3 network proteins activity
Global proteomics analysis showed that SP2509 attenuates
various epigenetic regulators (LSD1, HDAC1, HDAC2, and KDM3B),
cyclin-dependent kinases (CDK9, CDK12, and CDK13), immune
regulators (PDCD1 and CD274), and STAT3. SP2509 increased the
levels of specific immune regulators, such as IRF3, IRF9, CD34, CD5,
STAT5A, and STAT5B (Fig. 11a, Table S7). Phosphoproteomic
analysis showed that SP2509-treated OSCC cells inhibited various
cyclins at specific functional sites, including (CDK12 at Ser382,
CDK4 at Ser300, CDK13 at Ser384, CDK7 at Tyr170, CDK9 at
Tyr186), proliferation markers (Mki67 at Ser337, and Ser2333) and
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eukaryotic initiation factors (eIF3G, eIF4B, eIF5B, and eIF6)
(Fig. 11b, Table S8). Kinase-substrate analysis (KSEA) showed that
LSD1-mediated inhibition of phospho-STAT3 also attenuated
cyclin-dependent kinases involved in cell cycle regulation
(Fig. 11c). A negative z-score indicates inhibition of kinase activity.
Phosphomatic predictive analysis of phosphoproteomics data
showed that the CDK2-CDK7 interaction was inhibited, resulting in
reduced CDK7 activity in the overall network (Fig. 12a) (Fig. S6a).
The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) (Fig. S6b) and IPA (Fig. 12b) (Fig. S6c) analysis showed
that the inhibition of LSD1 promoted an increase in NFATc1,
accumulation of inflammatory leukocytes, and an inflammatory
response, whereas it inhibited the EGFR, STAT3 network, and
CD274 expression.

LSD1 promotes CDK7, which induces STAT3-related OSCC
preneoplasia
We used specific inhibitors of LSD1, STAT3, and CDK7 to
understand the regulatory relationship in OSCC cell lines HSC3
and CAL27 (Fig. 13a, b). LSD1 inhibitors attenuated the expression
of KDM1A, STAT3, and CDK7, STAT3 inhibitors inhibited STAT3
only, and CDK7 inhibitors attenuated STAT3 and CDK7. Thus, we
identified that LSD1 inhibition attenuates CDK7 activating
phosphorylation (Fig. 13b) and CDK7 expression (Fig. 13a, b),
leading to STAT3 inhibition, where STAT3 promotes immunosup-
pression and OSCC preneoplasia progression to OSCC. Similar
findings were observed when KDM1A, STAT3, and CDK7 were
knocked out using the CRISPR-Cas9 system in HSC3 and CAL27
cells. Briefly, KDM1A, STAT3, and CDK7 were significantly

downregulated upon KDM1A depletion. However, STAT3 depletion
did not show a synergistic effect on KDM1A and CDK7, and CDK7
depletion only affected STAT3 expression (Fig. 13c, d). Next, LSD1
and CDK7 inhibition resulted in significant changes in
pCDK7(T170) levels compared to STAT3 inhibition (Fig. 14a).
Furthermore, to evaluate the methylation status of STAT3 and
CDK7, we performed ChIP analysis and found that the binding of
STAT3 and CDK7 with H3K4me2 was significantly reduced after
LSD1 inhibition, whereas binding with H3K9me2 was significantly
increased (Fig. 14b). Thus, LSD1 affected the chromatin states of
STAT3 and CDK7.

DISCUSSION
Previous studies have shown that LSD1 is a key promoter of
OSCC;12,16 however, the mechanisms underlying its role in OSCC
progression are not fully understood. This study aimed to
investigate the role of LSD1 in OSCC progression, and the
potential of LSD1 inhibition as a therapeutic strategy. Our
unbiased proteomics and transcriptomics approaches identified
LSD1 as a key regulator of the CDK7-STAT3-CTLA4 axis in OSCC
precancers, which has not been shown in any other study. In
addition, we used feline OSCC patients to evaluate the clinical
candidate, Seclidemstat (an LSD1 inhibitor), which has transla-
tional importance. Additionally, the feline model for evaluating
anticancer drugs can be used as a reference for OSCC. KDM1A
knockout has been demonstrated to reduce both STAT3 and CDK7,
whereas STAT3 knockout has no effect on KDM1A expression and
CDK7 knockout attenuates STAT3. This establishes a chain of
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events in which KDM1A regulates CDK7 and CDK7 regulates STAT3
expression. KDM1A and STAT3 were significantly higher in cancer
cells than in normal cells. A study showed that SP2509 attenuates
STAT3 in DU145 prostate cancer cell lines in vitro and in nude
mice.39 However, the role of LSD1 in regulating STAT3 mediated
by CDK7 is not known in HNSCC and other cancer types.
Interestingly, we evaluated the detailed mechanism by which
LSD1 inhibition regulates the phosphorylation of CDK7 during
HNSCC progression and LSD1 regulates STAT3 and CDK7 by
regulating the methylation status of H3K4 and H3K9, which are
unique findings demonstrating the specific role of LSD1 in HNSCC.
Previously, a direct interaction has also been observed between

LSD1 and STAT3 using affinity capture western blotting.40 Our
study showed that LSD1 regulates CDK7, STAT3, and CTLA4, key
players in cell proliferation and immune suppression, compared to
the STAT3 inhibitor alone. Additionally, baseline phosphorylated
STAT3 and total STAT3 levels have been proposed as predictive
biomarkers for the clinical drug ruxolitinib in patients.41 The STAT3
antisense nucleotides, decoy receptors, and STAT3 sh2 domains
(NCT02549651, NCT00955812, and NCT00696176, respectively)
have been tested in clinical studies.42 STAT3 inhibitor and STAT3
knockout had no significant effect on KDM1A expression. Thus, our

data suggest that LSD1 inhibition may be a more viable option
than STAT3 inhibition alone. However, LSD1 inhibitors need to be
compared with STAT3 inhibitors in clinical trials. We demonstrated
that LSD1 attenuation inhibited STAT3 at both mRNA and total
protein levels. Our earlier studies showed that LSD1 acts as a
histone demethylase, promoting demethylation at the H3k4
level,16 and by others.43

Our study showed that treatment with the LSD1 inhibitor
SP2509 reduced cancer cell division. The cell cycle is controlled by
cyclin-dependent kinase (CDK) activity, and CDK7 inhibitors have
been proven to be effective in cancer treatment.44 CDK7 is a key
regulator of RNA polymerase II (RNA Pol II)-dependent transcrip-
tion via the phosphorylation of RNA Pol II and CDK9.45 CDK7 is
activated upon phosphorylation of T170, which is associated with
cell growth,46 was reduced upon SP2509 treatment advocating
the association between LSD1 and CDK7 phosphorylation. The
CDK7 inhibitor YKL-5-124 activates proinflammatory IFNγ signaling
and predominantly disrupts cell cycle progression, causing DNA
replication stress and genome instability in small-cell lung cancer
(SCLC), while simultaneously triggering immune response signal-
ing and provoking T-cell responses.47 Interestingly, LSD1 inhibition
resulted in elevated IFNγ production in T cells as well as G0/G1 cell
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cycle arrest, while restricting the transition to the S-phase, which
mostly involved DNA replication. Transcription-associated CDK7
promotes initiation and transcription by regulating eukaryotic
translation initiation factors (eIFs) such as eIF4B and eIF5B, which
promote cancer and immunosuppression.48,49 CDK13 directly
phosphorylates eIF4B at S422 and promotes tumorigenesis.50

Our study showed that SP2509 treatment reduced the activities of
eIF4B, eIF5B, and other initiation factors. Overall, our findings
indicate that SP2509 attenuates cell division to promote an
anticancer phenotype by inhibiting CDK7 activity. Impaired CDK7
activity can inhibit CDK4, CDK9, and CDK13, which act on eIF5B,
eIF3G, eIF6, and eIF4B, respectively. Therefore, it can be concluded
that LSD1 promotes the phosphorylation of key CDKs and eIFs.
STAT3 plays a role in immune modulation and upregulates the

immune checkpoint molecule CTLA4.21,51 However, our study
introduces a new dimension in which LSD1 inhibition attenuates
STAT3-induced signaling and subsequently decreases CD25+
CTLA4+ immunosuppressive cells. These changes may be
responsible for CD8+ T-cell infiltration. CD25+ CTLA4+ expression
in CD4+ T cells imparts an immunosuppressive phenotype.
SP2509 alters the levels of immunosuppressive CD25+ CTLA4+ T
cell types and promotes CD4+ and CD8+ T cell infiltration in
mouse tongue OSCC. Interestingly, SP2509-treated mice showed
upregulation of IFNγ, IFNβ, and IL9 in serum. The spleen also
showed an increase in the numbers of CD8+ and CD4+ T cells.
Overall, LSD1 inhibition attenuates the immunosuppressive
phenotype, which is critical in “cold tumors” such as OSCC,
highlighting a specific dual mechanism by which LSD1 inhibition
attenuates cancer cell division and promotes the immune
response network. IRF3 is required for T cell effector function52

to promote IFNγ-induced antitumor immunity to melanoma.53

IRF3 also inhibits colorectal54 and gastric cancer.55 These studies
are consistent with our finding that LSD1 inhibition promotes IRF3
expression in OSCC cells.
In addition, we conducted a pilot feline veterinary clinical trial of

owned feline spontaneous clinical OSCC patients. We used
Seclidemstat (SP2577), an analog of SP2509 that has been
extensively studied for its clinical safety (NCT03600649). Our
results showed the dual role of Seclidemstat, where it attenuates
STAT3 expression and the STAT3-related network and promotes
inflammatory leukocyte pathways. The safety of Seclidemstat was
also tested in a feline patient with a surgically resected tumor.
Seclidemstat did not show any adverse effects. An increased AST/
ALT ratio could be a predictor of OSCC, as shown in clinical HNSCC
studies.35–38 and, interestingly, it was reduced with Seclidemstat

treatment. In addition, no visible relapsed or refractory OSCC was
detected during the six-month trial period. This study demon-
strated that the findings from murine models strongly correlated
with those from the feline spontaneous OSCC model. Analysis of
publicly available human clinical data showed that networks that
are inhibited by LSD1 inhibition are upregulated in patients with
OSCC. Our finding that LSD1 promotes the STAT3 network and
modulates the infiltration of CD8+ T cells in the tumor micro-
environment also correlates with the overall survival of patients
with OSCC from TCGA data. Thus, LSD1 inhibition may restore
OSCC preneoplasia cells to a relatively normal state.
Our study showed that the LSD1-CDK7-STAT3 network promotes

the expression of CTLA4 (CD152) in OSCC preneoplasia. Although
these were preclinical studies, they could provide insights into the
design of clinical trials involving CTLA4-targeted therapy success
and failure. Ongoing clinical trials are targeting CTLA4 in Head and
Neck Cancer (NCT04290546 and NCT03690986). The study tested
combinations of programmed cell death protein 1 antibody
(nivolumab) versus a combination of nivolumab and ipilimumab
(NCT02823574) and did not show significant benefits56; however,
the involvement of the LSD1-CDK7-STAT3 mechanism contributing
to resistance is not known. Another study used nivolumab and
nivolumab plus ipilimumab in a phase 2 clinical trial of 29 patients
randomized trial.57 The study concluded that both nivolumab and
nivolumab plus ipilimumab were feasible in a neoadjuvant setting
and resulted in promising response rates. In addition to regulating
CTLA4, LSD1 inhibition also inhibits the expression of PD1 in
CD8+ T cells and PD-L1 in epithelial cells. Similar findings were
observed in mice treated with the anti-PD1 antibody. Thus,
understanding the LSD1 regulated mechanism could help in
combination therapies for OSCC preneoplasia in future clinical trials.

CONCLUSION
Our study sheds light on the crucial role of LSD1 in OSCC
progression and provides evidence for the potential use of LSD1
inhibition as a therapeutic strategy for this type of cancer. We
showed for the first time that blocking LSD1 inhibits CDK7
phospho-protein networks, leading to the inhibition of
STAT3 signaling, which in turn regulates cell cycle progression.
Inhibition of the LSD1-CDK7-STAT3 axis promoted CD8+ T cells by
relieving CTLA4-mediated immunosuppression (Fig. 15 for gra-
phical abstract). In a pilot veterinary clinical trial, seclidemstat was
shown to be safe. Overall, our study demonstrated that LSD1
inhibition has translational applications in OSCC neoplasia. Future
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research in this field should focus on exploring the molecular
mechanisms underlying the role of LSD1 in OSCC and investigat-
ing the efficacy of LSD1 inhibition in clinical settings. The findings
of this study are limited to animal models and may not fully reflect
the complexity of OSCC in humans, which requires further clinical
evaluation.

MATERIALS AND METHODS
4NQO mouse model
All experiments were performed with prior approval from the
Institutional Animal Care and Use Committee (BUMC IACUC) at
Boston University. C57BL/6 J mice were fed 100 μg/mL 4NQO (in
propylene glycol) in drinking water for 16 weeks, followed by
regular drinking water for the remainder of the study period.
Exposure of tongue epithelia to 4NQO results in early and
advanced stages of the disease, including hyperplasia (weeks 0–8),
papilloma/dysplasia (weeks 9–18), and OSCC (weeks 18–25).58 This
model captures pathological changes similar to those observed in
human OSCC.26

Pilot veterinary trial with naturally occurring feline OSCC
Client-owned cats diagnosed with OSCC and a visible tongue were
enrolled in the study trial and received Seclidemstat (SP2577;
10mg/kg) orally once daily. The first study was conducted to
determine the safety and relapse rate of OSCC. A second study was
performed to evaluate this effect in the short-term. Tumor biopsy
samples were collected before and after treatment and subjected
to RNA-seq analysis as previously described. The veterinary trial
was conducted in accordance with the NIH Guidelines for the Care
and Use of Laboratory Animals, with approval from the University
of Florida IACUC Committee (IACUC 202200000137).

Kdm1a knockout mice
LSD1-deficient mice were generated by crossing conditional
floxed mice [loxP-Lsd1-loxP59] with K14 promoter-driven tamox-
ifen-inducible Cre mice (K14CreERT; Jackson Laboratory, stock
#005107). The mice were fed 4NQO in drinking water. Tamoxifen
was administered to the tongue ten weeks post-4NQO (pre-
neoplasia), and the mice were sacrificed at week 18. K14
promoter-driven conditional Kdm1a-floxed mice treated with
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vehicle were designated Kdm1afl/fl, whereas tamoxifen-treated
mice were designated as Kdm1a−/−.

4NQO-primary tumor cells syngeneic mouse model
4MOSC1 primary cells were extracted by microdissection of 4NQO
treated mice 4NQO1 obtained from Gutkind laboratory, and UCSD
was used to study OSCC in mice.26 Seven-week-old C57BL/6 male and
female mice were randomized into three groups (n= 10/condition)
and implanted with 250 000 4MOSC1 cells, using a previously
published protocol.26 The mice were treated for three days post-
implantation with 1) vehicle (25 µL corn oil, 5% DMSO) or 2) SP2509
(40mg/kg) five times a week for four weeks. The mouse tongue was
measured using calipers at intervals of 4 days throughout the
experiment. At the time of sacrifice, tongue tumors were cut into
three parts: total RNA, histology, and proteomic analysis.

Cell culture
HSC3 and CAL27 cells were grown in 6-well plates in DMEM, 10%
FBS, and penicillin-streptomycin for 24 h, followed by treatment
with vehicle or LSD1 inhibitor (SP2509), and flow cytometry for
phospho-STAT3. To evaluate mRNA expression, the cells were
treated with vehicle or LSD1 inhibitor (SP2509), STAT3 inhibitor
(C188-9)60, and CDK7 inhibitor (LDC4297)61 purchased from
MedCemExpress and added to the respective groups at a final
concentration of 1-3 µmol/L final concentration in the respective
groups, followed by total RNA extraction and RT-qPCR. For genetic
knockout, we used plasmids CDK7 sgRNA (BRDN0001162216)
(Addgene #76077), EF.STAT3C.Ubc.GFP (Addgene #24983), KDM1A
sgRNA CRISPR/Cas9 All-in-one Lentivector (abm #K2776607).
For the co-culture model, 100 000 HSC3 cells per well were

grown in a 6-well plate in DMEM, 10% FBS, and 1% penicillin-
streptomycin overnight and treated as follows: 1) vehicle, 2)
SP2509 (1 µmol/L), 3) scrambled sgRNA, or 4) sgKDM1A/sgCDK7/
sgSTAT3 for 24 h. For each group. The medium was then replaced
with fresh medium, followed by the addition of 20 000 PBMCs and
incubation for another 24 h. Finally, the cells were fixed and
stained using a flow cytometer.

RNA extraction and analysis
Total RNA was extracted using TRIzol reagent. RNA-seq and gene
set enrichment analyses were performed as described in our
previous studies using 400 ng of total RNA for sequencing using
Novoseq.12,16 Raw FASTQ sequencing reads were mapped against
the reference genomes of Mus musculus (mm10), feline (Felis
catus; ASM18133v1), and humans (Hg38). Differential gene
expression analysis was performed using DESeq2 in the R/
Bioconductor software. Hub genes were identified using the
CytoHubba plugin in Cytoscape.62

Pathological characterization and immunostaining
Tongue sections were stained with H&E and evaluated for
pathology by a board-certified pathologist. Immunostaining and
H&E staining were performed on n= 5-8/group and four sections/
followed, which induced OSCC that mirrors the progressive onset
of the human disease. Mouse tissue sections were stained with
anti-LSD1 antibody (Abcam: ab17221) or anti-phospho-STAT3
(Tyr705; Abcam) antibodies in the respective groups, and images
were quantified using the ImageJ software (NIH).

Public data analysis
CPTAC data were accessed using the University of Alabama at
the Birmingham CANcer (UALCAN) Portal, and TCGA data were
obtained using the TCGABiolinks R/Bioconductor package.
Differential expression analysis for TCGA and precancer data
was performed using edgeR and limma pipelines, respectively.
Kaplan-Meier survival estimation was performed using cBio-
Portal. Only OSCC samples were considered for survival
analysis. First, we filtered the samples using p16 HPV testing,
followed by filtering using the HPV test. Approximately
40 samples were HPV-ve, one was HPV+ve, and the remaining
273 samples did not show HPV status; hence, they were
considered for this analysis along with HPV-ve. The analysis
was performed based on the z-score of the total mRNA
expression levels. The total number of samples collected from
each oral region is listed in Table S2.
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Proteomics analysis
The protein concentration in each sample was determined using the
BCA Protein Assay Kit (Pierce). Proteins (200 μg) were processed,
precipitated, digested with 2.5 μg trypsin per sample for 16-hour
incubation at 37 °C, and desalted using C18 spin columns (Pierce).
The TMT-16 plex kit was used for TMT-based quantitative analysis.
One hundred micrograms from the pooled mixture of each set were
earmarked, while the remainder was allocated for phosphopeptide
enrichment. Global and phosphoproteomic analyses were con-
ducted using Partek Genomics Suite 7, Phosphomatic for kinase-
substrate analysis, and Phosphosite Plus to identify the functional
phosphorylation sites. Additionally, Ingenuity Pathway Analysis (IPA)
was used to assess enrichment networks and signaling pathways.

Flow cytometry and immunostaining
In this study, we employed five laser 64-color Cytek Aurora spectral
flow cytometers to analyze the immune cells isolated from mouse
tongue tissues. The tissue was digested with Collagenase P (Sigma,
#11249002001) to prepare a single-cell suspension. The cells were
washed once with cold PBS at 1 200 r/min for 10min at 4 °C. The
cells were stained with Zombi UV (BioLegend #423108) for 10min
at 4 °C followed by washing with cold FACS buffer. For surface
staining, cells were stained with fluorochrome-conjugated anti-
bodies obtained from BioLegend, including BV650 anti-mouse
CD45 (#103151), BV421 anti-mouse CD3ε (#100335), PE Cy7 anti-
mouse TCRβ (#109221), BV785 anti-mouse CD4 (#100453), PE
Dazzle594 anti-mouse CD8 (#100761), PerCP/Cy5.5 anti-mouse
CD152 (CTLA4) (#106316), APC anti-mouse CD25 (#101909), PE/
Fire™ 700 anti-mouse CD279 (PD-1) antibody (#135268), and
Brilliant Violet 605 anti-mouse CD274 (B7-H1, PD-L1) antibody
(#124321). For internal staining with PerCP/Cyanine5.5 anti-mouse
IFN-γ Antibody (BioLegend #505822), the cells were fixed and

permeabilized using a BD Bioscience fixation/permeabilization kit
(#554714) according to the manufacturer’s instructions.
For flow cytometry analysis of human OSCC cells and human

PBMCs, we used the same BD Bioscience fixation/permeabilization kit
(#554714) for fixation and permeabilization, as per the manufac-
turer’s instructions, and employed Brilliant Violet 605™ anti-human
IFN-γ Antibody (#506542), BV510 anti-human CD4 (#300546), FITC
anti-human CD8A (#301006), and Alexa Fluor® 647 anti-human
CD152 (CTLA-4) antibody (#369626) for surface and internal staining.
We used APC anti-mouse CD152 Antibody (#106309) for immuno-
fluorescence staining of the tongues of Kdm1a−/− mice. Data analysis
was performed using FlowJo and the OMIQ software. To analyze
STAT3 protein levels in cells by flow cytometry, we used the True-
Nuclear™ Transcription Factor Buffer Set (#424401), BioLegend, to fix
and permeabilize the cells according to the manufacturer’s protocol
and then stained with APC anti-STAT3 antibody (#678014).

Cell cycle analysis
We seeded 100 000 HSC3 and CAL27 cells per well in 6 well plates
and treated them with sgscrambled, sgKDM1A, sgSTAT3, and
sgCDK7 48 h after seeding the cells. After 24 h, the cells were fixed
with 4% paraformaldehyde, stained with FxCycleTM PI/RNase
Staining Solution (Invitrogen #F10797) according to the manufac-
turer’s protocol, and analyzed using a Cytek Aurora flow cytometer.

Chromatin immunoprecipitation (ChIP)
ChIP analysis was performed using ~4× 106 cells and the
SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) according
to the manufacturer’s instructions (Cell Signaling Technology,
#9003 s). Anti H3K4me2 Recombinant Rabbit Monoclonal Antibody
(24H8L19) (Thermoscientific, #701764) and anti H3K9me2 Polyclonal
Antibody (Thermoscientific, #39239) were used for ChIP.
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