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Programmed death-ligand 1 regulates ameloblastoma growth
and recurrence
Linzhou Zhang1, Hao Lin1, Jiajie Liang1, Xuanhao Liu1, Chenxi Zhang1, Qiwen Man1,2, Ruifang Li1,2, Yi Zhao1,3✉ and Bing Liu1,2✉

Tumor cell-intrinsic programmed death-ligand 1 (PD-L1) signals mediate tumor initiation, progression and metastasis, but their
effects in ameloblastoma (AM) have not been reported. In this comprehensive study, we observed marked upregulation of PD-L1 in
AM tissues and revealed the robust correlation between elevated PD-L1 expression and increased tumor growth and recurrence
rates. Notably, we found that PD-L1 overexpression markedly increased self-renewal capacity and promoted tumorigenic processes
and invasion in hTERT+-AM cells, whereas genetic ablation of PD-L1 exerted opposing inhibitory effects. By performing high-
resolution single-cell profiling and thorough immunohistochemical analyses in AM patients, we delineated the intricate cellular
landscape and elucidated the mechanisms underlying the aggressive phenotype and unfavorable prognosis of these tumors. Our
findings revealed that hTERT+-AM cells with upregulated PD-L1 expression exhibit increased proliferative potential and stem-like
attributes and undergo partial epithelial‒mesenchymal transition. This phenotypic shift is induced by the activation of the PI3K-
AKT-mTOR signaling axis; thus, this study revealed a crucial regulatory mechanism that fuels tumor growth and recurrence.
Importantly, targeted inhibition of the PD-L1-PI3K-AKT-mTOR signaling axis significantly suppressed the growth of AM patient-
derived tumor organoids, highlighting the potential of PD-L1 blockade as a promising therapeutic approach for AM.
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INTRODUCTION
Ameloblastoma (AM) is the most prevalent odontogenic epithelial
tumor and is notorious for its aggressive local bone destruction
and high recurrence rate.1,2 AM, which originates from remnants
of odontogenic epithelium, predominantly affects the jaw bones,
leading to significant facial deformities and functional impair-
ments. Despite radical surgical interventions, the recurrence rate
for conventional AM remains alarmingly high, at approximately
40%–80%.3–5 Surgical resection, while necessary, often results in
the loss of facial bones, contributing to severe disfigurement and
functional challenges. Many AM cases (33%–92%) exhibit the
BRAFV600E mutation.6–8 Vemurafenib, a targeted inhibitor of the
BRAFV600E mutation, has been explored by some clinicians as a
treatment option for patients with AM.8 However, its efficacy is
significantly compromised due to the high incidence of drug
resistance. To expand the treatment landscape, further research is
imperative to elucidate the underlying mechanisms driving AM
pathogenesis. Such insights may pave the way for the develop-
ment of novel pharmacological therapies to complement existing
surgical approaches in the management of AM.
Programmed death-ligand 1 (PD-L1) (B7-H1 or CD274) is a critical

immune signaling molecule within the B7 homology (B7-H) family
and is recognized primarily for its ability to suppress antitumor T-cell
responses by binding PD-1 on T cells.9,10 While extensive research has
focused on this immune-modulatory function, emerging evidence
highlights that PD-L1 exerts significant intrinsic effects within tumor
cells, impacting various cellular processes and supporting

tumorigenesis beyond immune suppression.11 These intrinsic roles
of PD-L1 include promotion of tumor initiation, enhancement of
metastatic potential, and promoting of tumor progression.12–14 PD-L1
has been shown to localize within different cellular compartments
(such as the nucleus, cytoplasm, and mitochondria) where it
influences diverse cellular functions.12,13,15,16 For example, nuclear
PD-L1 translocation, which is regulated by pathways involving
HDAC217 and p-STAT3,13 facilities resistance to anti-PD-1 therapies
by modulating the expression of genes related to immune responses
and DNA repair mechanisms. Moreover, PD-L1 has been reported to
promote homologous recombination repair by interacting with
BRCA1, which subsequently affects cell sensitivity to PARP inhibitors,
thus contributing to chemoresistance.18 Notably, recent findings
indicate that more than 50% of AM patients exhibit PD-L1 expression,
indicating a role for PD-L1 in AM pathogenesis.19,20 However, the
specific intrinsic roles of PD-L1 in the growth and recurrence of AM, as
well as the underlying mechanisms, remain largely unexplored.
Further studies on these aspects may provide valuable insights into
AM pathology and reveal new options for targeted therapy.

RESULTS
PD-L1 is abnormally overexpressed in ameloblastoma, and this
phenotype is correlated with tumor growth and recurrence
To assess the expression profile of PD-L1 in ameloblastoma (AM)
tissues, we initially employed immunohistochemistry (IHC) to assess
PD-L1 expression levels in oral mucosa (OM), odontogenic keratocyst
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(OKC), and AM tissues. Our results revealed that both the percentage
and intensity of PD-L1 expression were significantly greater in AM
tissues than in OM and OKC tissues (Fig. 1a). This finding was further
corroborated by Western blot analysis, which confirmed elevated PD-
L1 levels in AM tissues relative to those in OM tissues (Fig. 1b).
Immunofluorescence (IF) analysis revealed that PD-L1 is predomi-
nantly expressed in epithelial cells within tumor tissues (Fig. S1a).
Additionally, PD-L1 expression was analyzed in human telomerase
reverse transcriptase ameloblastoma (hTERT+-AM) cell lines and
human oral keratinocyte (HOK) cell lines via IF. Confocal microscopy
revealed a significantly greater percentage and mean fluorescence
intensity (MFI) of PD-L1 expression in hTERT+-AM cells than in HOK
cells (Fig. S1b). This increase in PD-L1 expression in hTERT+-AM cells
relative to HOK cells was confirmed by Western blot analysis (Fig. 1c).
These results demonstrate that PD-L1 is predominantly and highly
expressed in AM epithelial cells.
The aggressive growth and recurrence of tumors are two critical

characteristics of AM. Given the abnormal overexpression of PD-L1
in AM, we investigated the correlation between PD-L1 expression
and clinical outcomes related to aggressive tumor growth and
recurrence. Our analysis revealed a positive correlation between
PD-L1 expression levels and the tumor growth rate in AM patients
(Fig. 1d). Notably, our findings further demonstrated that AM
patients with high PD-L1 expression had a markedly lower
disease-free survival rate than did those with low PD-L1
expression (Fig. 1e). Moreover, higher PD-L1 expression was
detected in the tissues of recurrent AM patients than in those of

primary AM patients (Fig. 1f). Collectively, these findings indicate
that elevated PD-L1 expression is associated with enhanced tumor
growth and an increased recurrence risk in AM patients.

PD-L1 regulates the self-renewal capacity, tumorigenesis, and
invasiveness of AM cells in vitro
After confirming the crucial role of PD-L1 in fostering tumor
growth and recurrent behavior in AM patients, we assessed
whether PD-L1 modulates cellular activities, including prolifera-
tion, self-renewal, and migration, in vitro. To this end, we
employed lentiviral vectors to stably overexpress PD-L1 in
hTERT+-AM cell lines (yielding PD-L1-OE cells). The efficacy of
PD-L1 overexpression was confirmed via Western blot and flow
cytometry analyses (Fig. 2a, b). Subsequent EdU proliferation
assays revealed a substantial increase in the proliferative activity
of PD-L1-OE cells compared to that of control cells (Fig. 2c).
Moreover, colony formation assays revealed that compared to PD-
L1-vector-expressing (PD-L1-VE) cells, PD-L1-OE cells possessed a
significantly greater clonogenicity, as evidenced by the formation
of larger and more numerous colonies (Fig. 2d). Sphere formation
assays further confirmed the enhanced self-renewal capacity of
PD-L1-OE cells (Fig. 2e). To assess the invasive phenotype, we
conducted wound healing and Matrigel invasion assays. Com-
pared with PD-L1-VE cells, PD-L1-OE cells exhibited notably
accelerated wound closure and a significantly greater number of
invading cells, indicating increased migratory and invasive
properties (Fig. 2f and S2).
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Fig. 1 Aberrant overexpression of PD-L1 is observed in ameloblastoma and is correlated with tumor growth and recurrence. a Representative
hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining of PD-L1 expression in oral mucosa (OM), odontogenic keratocyst
(OKC), and ameloblastoma (AM) tissues (left). Data quantification for the histoscore (H-score) is shown on the right, with each point
representing one tissue sample. Scale bar, 100 µm. b Western blot analysis of PD-L1 expression in OM and AM tissues. c Western blot analysis
of PD-L1 expression levels in HOK and hTERT+-AM cells. d Pearson correlation analysis of PD-L1 expression and the tumor growth rate. The
tumor growth rate was defined as the largest tumor diameter divided by the duration of symptoms in months (cm/month). e Disease-free
survival of AM patients with low PD-L1 expression and high PD-L1 expression. f Comparison of PD-L1 expression levels between primary and
recurrent AM tissues. Mean ± SD, two-tailed unpaired Student’s t test (a, b, c) and two-tailed unpaired Student’s t test (f). Log-rank test (e). All
results are representative of at least three independent experiments
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To validate the tumor-promoting activity of PD-L1 in hTERT+-AM
cells, we transfected cells with specific single guide RNAs (sgRNAs)
targeting PD-L1 (sgPD-L1) or a control sgRNA (sgCTL) and assessed
the differences in cell behaviors. The effect of metformin, a drug
known to reduce PD-L1 levels, was also assessed in hTERT+-AM cells.
The efficacy of PD-L1 inhibition was confirmed via Western blotting
(Fig. S3a, b). EdU assays revealed that the number of EdU-positive
hTERT+-AM cells was significantly lower in the sgPD-L1 transfection
group than in the sgCTL transfection group, indicating suppression of
proliferation (Fig. S4a). Similarly, metformin treatment led to a marked
decrease in the number of EdU-positive cells (Fig. S4b), suggesting
that this agent can suppress hTERT+-AM cell proliferation. Further-
more, colony formation assays revealed that targeting PD-L1 with
sgPD-L1 or metformin significantly reduced the number and size of
colonies formed compared with those in the control group (Fig. S4c,
d). Sphere formation assays also revealed decreased self-renewal
capabilities in sgPD-L1- and metformin-treated hTERT+-AM cells (Fig.
S4e, f), indicating the suppression of stem-like properties. In invasion
assays, sgPD-L1 and metformin treatment significantly inhibited the
migratory and invasive properties of hTERT+-AM cells (Fig. S4g, h),
further confirming that PD-L1 increases cell aggressiveness. In
summary, these findings demonstrate that PD-L1 positively regulates
hTERT+-AM cell activity, thereby promoting tumor growth and
recurrence, whereas its inhibition or downregulation through sgPD-L1
transfection or metformin treatment attenuates these aggressive
phenotypes.

Single-cell RNA sequencing revealed that PD-L1 regulates the
proliferation, stemness and partial epithelial‒mesenchymal
transition of ameloblastoma cells
To elucidate the mechanism underlying PD-L1-mediated tumor
cell aggressive activity in AM, we conducted single-cell RNA

sequencing on samples collected from two patients. Four major
cell types (epithelial cells, endothelial cells, myeloid cells, and
fibroblasts) were identified according to their distinct gene
expression profiles (Fig. S5a, b). Further analysis clustered
epithelial cells into two major groups according to PD-L1
expression levels (PD-L1High and PD-L1Low) (Fig. 3a). Given the
significant role of stemness in the recurrence and growth of AM,
we compared the stemness scores between the PD-L1High and PD-
L1Low groups. Compared with the PD-L1Low group, the PD-L1High

group presented significantly higher stemness scores (Fig. 3b),
suggesting that PD-L1 plays an important role in maintaining the
stemness of AM cells. Gene Ontology (GO) enrichment analysis of
the PD-L1High group further revealed that epithelial cells with high
PD-L1 levels are involved primarily in biological processes such as
cell migration, differentiation, and proliferation, as well as the
regulation of apoptotic signaling pathways (Fig. 3c). These
processes are related to partial epithelial‒mesenchymal transition
(p-EMT) (Fig. 3d). In summary, these findings indicate that PD-L1
plays a crucial role in maintaining stemness and promoting p-EMT,
thereby mediating tumor growth and recurrence in AM.

Proteins related to proliferation, stemness, and partial epithelial-
mesenchymal transition are overexpressed in human
ameloblastoma tissues and cell lines
To assess the proliferation, stemness, and p-EMT activities of AM
cells, we compared the expression levels of related proteins in OM,
OKC, and AM tissues (Fig. S6a). Our results revealed significantly
greater expression of Ki-67 and proliferating cell nuclear antigen
(PCNA), which are markers associated with cell proliferation, in AM
tissues than in OM and OKC tissues (Fig. 4a, b). These findings
indicate that AMs have a greater proliferative capacity. Addition-
ally, stemness markers such as CD44, CD133, and ALDH1A1 were
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highly expressed in AM tissues, suggesting a pronounced stem
cell-like phenotype (Fig. 4c, d). Furthermore, we assessed the
expression of p-EMT markers, including LAMB3, LAMC2, and PDPN
(Fig. S7a, b). These proteins were markedly upregulated in AM
tissues, indicating that a partial EMT phenotype likely contributes
to the invasive behavior of AMs.
To further validate these findings, we first evaluated the mRNA

levels of Ki-67, PCNA, CD44, CD133, LAMB3, and LAMC2 in
hTERT+-AM and HOK cells. The results supported the observed
upregulation of proliferation, stemness, and p-EMT markers in AM
tissues (Fig. S6b) and were further corroborated by western
blotting (Fig. S6c). Subsequently, cell immunofluorescence (IF)
staining was performed on hTERT+-AM and HOK cells. The results
revealed significantly higher levels of Ki-67, PCNA, CD44, CD133,
LAMC2 and LAMB3 in hTERT+-AM cells than in HOK cells (Fig. S6d,
e). Collectively, these data demonstrate that AM cells exhibit high
levels of proliferation, stemness, and p-EMT-related protein
expression, which likely contribute to AM tumor growth and
recurrence.

PD-L1 promotes the expression of proteins related to proliferation,
stemness, and partial epithelial‒mesenchymal transition
To clarify how PD-L1 regulates the expression of proteins
associated with proliferation, stemness, and p-EMT in AM, we
conducted a comprehensive analysis. Initially, we assessed the
correlation between the expression levels of PD-L1 and those of
Ki-67, PCNA, CD44, CD133, LAMB3, and LAMC2 in human AM
tissues. Our results revealed positive associations between PD-L1
expression and the expression of these proliferation-, stemness-,
and p-EMT-related proteins (Fig. S8a, b).
To further explore the coexpression patterns, we performed

multiplex immunohistochemical (mIHC) staining of AM tissues. This
analysis revealed that PD-L1 colocalized with Ki-67 and PCNA.
Moreover, AM tissues with high PD-L1 expression presented higher
levels of Ki-67 and PCNA than those with low PD-L1 expression did,

indicating an association between PD-L1 expression and cell
proliferation (Fig. S9a, b). Similar colocalization patterns were
observed for PD-L1 with markers of stemness (CD44, CD133) (Fig.
S9c, d) and p-EMT (PDPN, LAMC2) (Fig. S9e, f), as these markers
were expressed at notably higher expression levels in tissues with
high PD-L1 levels. These findings indicate that PD-L1 may play a
pivotal role in enhancing the expression of proteins related to
proliferation, stemness, and p-EMT in AM tissues.
To validate these observations at the cellular level, we examined

the effect of PD-L1 regulation on the expression of these proteins
in hTERT+-AM cells. Cellular immunofluorescence analysis con-
firmed that PD-L1-OE hTERT+-AM cells presented stronger
expression of Ki-67 and PCNA than control cells. Conversely,
knockdown of PD-L1 resulted in downregulation of Ki-67 and
PCNA expression (Fig. 5a, b and S10a, b). Similarly, compared to
control cells, PD-L1-OE cells presented increased levels of CD44,
CD133, ALDH1A1, LAMC2, LAMB3, and PDPN, whereas PD-L1-
knockdown cells presented decreased expression of these
stemness- and p-EMT-related proteins (Fig. 5c and S10c). In
summary, our findings demonstrate that PD-L1 positively reg-
ulates the expression of proteins associated with proliferation,
stemness, and p-EMT in hTERT+-AM cells, thereby enhancing their
aggressive phenotype.

PD-L1 promotes the expression of proteins related to proliferation,
stemness and partial epithelial‒mesenchymal by activating the
PI3K-AKT-mTOR signaling pathway
Previous studies have revealed that the PD-L1-PI3K-AKT-mTOR
signaling axis is involved in tumorigenesis, progression, and a poor
prognosis in various tumors.21–25 In this study, hallmark pathway
analysis revealed the involvement of AM epithelial cells with high PD-
L1 expression in the PI3K-AKT-mTOR signaling pathway (Fig. 3d). This
observation was validated by immunohistochemistry (IHC) of AM
tissues, which revealed a positive correlation between PD-L1
expression levels and phosphorylated (p)-AKT and p-mTOR levels
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(Fig. S11a, b). Specifically, tissues exhibiting high PD-L1 expression
presented increased levels of p-AKT and p-mTOR compared with their
counterparts with low PD-L1 expression, thereby reinforcing the
functional significance of this signaling axis in AM. To further validate
whether the PD-L1-PI3K-AKT-mTOR signaling pathway contributes
to proliferation, stemness and p-EMT potential in AM, we treated
sgPD-L1 hTERT+-AM cells with PI3K-AKT-mTOR inhibitors.

Immunofluorescence (IF) revealed a decrease in the expression levels
of the proliferation markers Ki-67 and PCNA in sgPD-L1 hTERT+-AM
cells compared with those in control cells (Fig. 6a, b). Furthermore,
inhibition of AKT and mTOR phosphorylation with these inhibitors
abolished the decreases in the levels of Ki-67 and PCNA in sgPD-L1
hTERT+-AM cells. Western blotting analysis of sgPD-L1 hTERT+-AM
cells revealed decreased levels of p-AKT and p-mTOR; the stemness-
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related proteins CD44 and CD133; and the p-EMT-associated proteins
LAMB3 and LAMC2. Importantly, inhibition of AKT and mTOR
phosphorylation with the corresponding inhibitors abolished these
decreases in protein levels (Fig. S12a, b). Collectively, these results
demonstrate that PD-L1 promotes proliferation-, stemness-, and p-
EMT-related protein expression in hTERT+-AM cells by activating the
PI3K-AKT-mTOR signaling pathway.

The PD-L1-PI3K-AKT-mTOR signaling pathway is a novel
therapeutic target in ameloblastoma
Our meticulous research endeavors have revealed a pivotal role of
PD-L1 in modulating the increased proliferative potential, stem-like

features, and p-EMT phenotype of AM cells via the intricate PI3K‒
AKT‒mTOR signaling axis. This finding underscores the potential of
the PD-L1-PI3K-AKT-mTOR signaling pathway as a promising target
for AM treatment. To validate this hypothesis, we conducted a
comprehensive study involving the cultivation, rigorous validation,
and subsequent treatment of ameloblastoma patient-derived
organoids (APDOs) with either a PD-L1 inhibitor, a PI3K-AKT-
mTOR inhibitor, or a combination of both. Our findings revealed
that the pharmacological suppression of PD-L1 or the PI3K-AKT-
mTOR pathway, alone (Fig. 7a, b) or in combination (Fig. 7c),
significantly suppressed the formation and expansion of organoids
derived from AM patients. Moreover, our immunofluorescence
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staining analyses revealed a marked decrease in the expression of
the proliferative marker Ki-67 (Fig. S13a), the stemness-associated
protein CD133 (Fig. S13b), and the p-EMT indicator LAMC2 (Fig.
S13c) in APDOs subjected to pharmacological inhibition of the PD-
L1-PI3K-AKT-mTOR pathway. These results not only affirm the
intricate interplay between PD-L1 and the PI3K-AKT-mTOR signal-
ing cascade in driving AM progression but also underscore the
efficacy of targeting this axis as a therapeutic strategy. In summary,
targeted inhibitors of the PD-L1-PI3K-AKT-mTOR pathway in our
APDOs exhibited remarkable efficacy in impeding tumor growth,
thereby positioning this pathway as a promising therapeutic target
for this aggressive malignancy.

DISCUSSION
Ameloblastoma (AM), similar to oral squamous cell carcinoma
(OSCC), is a typical epithelium-derived tumor with clinical
characteristics of local invasiveness and a high recurrence rate.26

Research has confirmed that PD-L1 is widely expressed in OSCC
tissues.27,28 On the one hand, membrane PD-L1 mediates immune
evasion by binding to CD8+ T cells. Thus, targeting the PD-L1/PD-
1 signaling axis yields benefits for OSCC patients; however, only
15%–20% of patients respond to anti-PD-1 therapy.29,30 Increasing
research indicates that intrinsic PD-L1 mediates tumor resistance
to anti-PD-1 therapy by regulating tumor cell metabolism31 and
stemness.32 Notably, PD-L1 promotes metabolic competition by
increasing tumor cell glucose uptake while limiting glucose
availability to T cells, thereby suppressing T-cell function and
facilitating tumor progression.31 Additionally, PD-L1 can enhance
tumor stemness by driving tumor-initiating cell (TIC) formation,
increasing self-renewal capacity, and conferring resistance to
immune attacks, which contributes to tumor recurrence and
therapy resistance.32 Previous studies have reported high levels of
PD-L1 expression in AM tissues, but its role and mechanism in AM
remain unclear. In this study, we first revealed that intrinsic PD-L1
mediates the growth and recurrence of AM by regulating
proliferation, stemness, and partial epithelial‒mesenchymal transi-
tion (p-EMT) via the PI3K‒AKT‒mTOR pathway.
Stemness is the ability of cells to self-renew and differentiate

into various cell types, a characteristic typically associated with
stem cells. In malignant tumors, cancer stem cells can mediate
tumor development and growth and are highly correlated with
metastasis, treatment resistance, and recurrence, enhancing
tumor heterogeneity and environmental adaptability. CD44,
CD133, and ALDH1A1 are widely used as stem cell markers and
play critical roles in promoting tumor growth, invasion, and
recurrence. CD44 enhances invasive phenotypes by regulating
tumor cell adhesion, migration, and interactions with the
extracellular matrix.33 CD133, a marker closely associated with

cancer stem cell properties, promotes tumor recurrence by
maintaining self-renewal capabilities and increasing resistance to
chemotherapy and radiotherapy.34 ALDH1A1 sustains cancer stem
cell survival and proliferation by modulating reactive oxygen
species (ROS) metabolism and retinoic acid signaling while also
driving drug resistance and recurrence.35 Increasing research
indicates that stemness-related proteins may play a significant
role in the progression of benign jawbone tumors. Eleni-Marina
Kalogirou et al. reported the upregulation of various embryonic
stem cell markers (EPHA1 and SCNN1A) and detected the
expression of SOX2 in the epithelium of odontogenic keratocysts
(OKCs).36 Additionally, studies have shown that stemness markers
such as CD44, SOX2, and OCT-4 are overexpressed in the epithelial
components of AMs, although their regulatory mechanisms
remain unexplored.37–39 Gan Xiong et al. classified AM cells into
five subgroups at single-cell resolution and reported that the cell
cycle subgroup contained cells exhibited stemness features and
contributed to tumor recurrence.40 These findings indicate the
significant impact of stemness on tumor biological activity.
Similarly, in our study, higher levels of these stemness markers
were observed in AM tissues than in OKC and OM tissues. When
the expression of PD-L1 was upregulated or decreased in
hTERT+-AM cells, we observed corresponding changes in the
expression of stemness-related proteins. We further revealed that
PD-L1, an upstream key factor, regulates stemness, thereby
influencing the self-renewal, migration, and invasion abilities of
hTERT+-AM cells.
Epithelial‒mesenchymal transition (EMT) is a biological process

in which epithelial cells lose their cell polarity and adhesion ability,
resulting in the acquisition of mesenchymal traits.41 EMT has been
confirmed to be closely associated with tumor initiation, progres-
sion, and metastasis. The association between EMT and the
acquisition of stem-like characteristics has been documented in
several cancers, including breast, pancreatic, and colon cancers.42

Recent studies have revealed that cancer cells can exhibit a
mixture of epithelial and mesenchymal characteristics.43,44

Research on AM has revealed that EMT plays a critical role in
both tooth development and tumor invasion. Jie Zhang et al.
revealed that interleukin-8 (IL-8) drives the EMT process by
activating β-catenin and its downstream transcription factor
ZEB1.45 Similarly, Chunmiao Jiang et al. demonstrated that IL-6
secreted by ameloblastoma-derived mesenchymal stromal cells
(AM-MSCs) induces EMT in ameloblastoma epithelial cells (AM-
EpiCs), promoting the formation of tumor stem-like cells and
contributing to the pathogenesis and progression of this locally
invasive tumor.46 Partial EMT (p-EMT) represents an intermediate
hybrid state with both epithelial and mesenchymal phenotypes,47

enabling tumor cells to gain stronger migratory abilities. However,
Chong Huat Siar reported that although mesenchymal markers
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such as a-SMA, osteonectin, and N-cadherin are expressed, AM
tumor cells largely retain their epithelial morphology, indicating
the presence of intermediate hybrid phenotypes with both
epithelial and mesenchymal characteristics.48 Our study is the
first to definitively establish the presence of a p-EMT state in AM.
Furthermore, we revealed that PD-L1 is a pivotal regulatory
protein that governs the p-EMT process in AM.
To date, traditional treatments for AM lead to high recurrence

rates,3–5 and repeated curettage in the same area can lead to
malignant transformation. Lesion excision reduces the recurrence
rate to approximately 10%, but it causes facial deformities and
significant physical and psychological trauma to patients due to
bone grafting. Recent advances in understanding the molecular
pathogenesis of AM have highlighted the use of BRAF inhibitors as
a novel therapeutic approach. In a study on neoadjuvant BRAF-
targeted therapy, 11 patients received dabrafenib or dabrafenib
with trametinib, and all these patients achieved radiological
responses and subsequently underwent successful mandible
preservation surgery.49 While neoadjuvant BRAF inhibition holds
promising potential as an organ-sparing treatment strategy for
AM, its clinical application is hindered by limitations such as the
acquisition of resistance and adverse effects.50–52 These observa-
tions underscore the need to explore alternative molecular targets
that may regulate the biological behavior of AM. Our ground-
breaking research reveals the critical role of intrinsic PD-L1 in
modulating the growth and recurrence patterns of AM. Specifi-
cally, we demonstrated that PD-L1 exerts its effects by regulating
cell stemness, proliferation, and p-EMT via the PI3K-AKT-mTOR
signaling pathway. Notably, targeted inhibition of the PD-L1-PI3K-
AKT-mTOR signaling axis in AM patient-derived organoids
significantly attenuated tumor growth, indicating the therapeutic
potential of PD-L1 blockade as a novel and promising approach
for the treatment of AM. These findings not only improve our
understanding of the molecular mechanisms underlying AM
progression but also reveal new opportunities for the develop-
ment of targeted therapies that may disrupt these oncogenic
signaling cascades.

METHODS
Tissue sample collection
The study received ethical approval from the Medical Ethical
Committees of the Hospital of Stomatology at Wuhan University.
Informed consent was obtained from all participants. Specimens
of human oral mucosa, odontogenic keratocysts, and ameloblas-
tomas were collected from patients at the Department of Oral &
Maxillofacial Head and Neck Oncology, School and Hospital of
Stomatology, Wuhan University. Each diagnosis was validated by
two independent pathologists, including a board-certified oral and
maxillofacial pathologist, in accordance with the 2017 WHO
classification guidelines for odontogenic tumors. Recurrence was
defined as development of a tumor at the same site after surgery,
with pathological results confirming it as AM. The detailed
clinicopathological characteristics of the AM patients are pre-
sented in Table S1, and those of the OKC patients are shown in
Table S2.

RNA extraction and RT-qPCR analysis
Total RNA was carefully extracted from three oral mucosa clinical
samples and three AM clinical samples using the RNeasy Mini Kit
(Qiagen, Carlsbad, CA, USA). To ensure the integrity and purity of
the RNA, rigorous quality control measures were implemented.
The extracted total RNA samples (2 μg per sample) were then
converted into complementary DNA (cDNA) using the PrimeScript
First-strand cDNA Synthesis Kit (Takara, Otsu, Japan) following the
manufacturer’s protocol. One-fifth of the synthesized cDNA was
subsequently utilized for quantitative polymerase chain reaction
(qPCR) analysis. qPCR was performed using FastStart Universal

SYBR Green Master Mix (Roche, Basel, Switzerland) on a 7900HT
Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA,
USA). This system offers high sensitivity and reproducibility for
accurate quantification of gene expression. The primer sequences
utilized for the RT‒qPCRs were specifically designed to target the
genes of interest. These primer sequences were selected on the
basis of their specificity, efficiency, and ability to generate reliable
results. The sequences of primers used were as follows: MKI67: 5′-
ACGCCTGGTTACTATCAAAAGG-3′ and 5′-CAGACCCATTTACTTGTG
TTGGA-3′, PCNA: 5′-CCTGCTGGGATATTAGCTCCA-3′ and 5′-
CAGCGGTAGGTGTCGAAGC-3′, CD44: 5′-CTGCCGCTTTGCAGGTG
TA-3′ and 5′-CATTGTGGGCAAGGTGCTATT-3′, CD133: 5′-AGTCG-
GAAACTGGCAGATAGC-3′ and 5′-GGTAGTGTTGTACTGGGCCAAT-
3′, LAMB3: 5′-GCAGCCTCACAACTACTACAG-3′ and 5′-CCAGGTCT-
TACCGAAGTCTGA-3′, LAMC2: 5′- GACAAACTGGTAATGGATTCCGC-
3′ and 5′- TTCTCTGTGCCGGTAAAAGCC-3′. GAPDH served as the
internal control for normalization to accurately quantify gene
expression. Target mRNA levels were assessed using CT values
with GAPDH as the reference gene. The 2−ΔΔCT method was
applied to calculate relative mRNA quantities, providing reliable
fold-change estimates.

Cell culture and treatments
Human oral keratinocytes (HOKs) were obtained from the American
Type Culture Collection (ATCC). The immortalized hTERT+-AM cell
line was graciously provided by Professor Qian Tao of Sun Yat-sen
Memorial Hospital. These hTERT+ -AM cells were maintained in
DMEM (Thermo Fisher Scientific, #C11995500BT) supplemented with
10% fetal bovine serum (FBS) (Thermo Fisher Scientific, #A3160801)
and 1% penicillin/streptomycin (Thermo Fisher Scientific, #15140-
122). All the cell cultures were incubated at 37 °C in a humidified
atmosphere with 5% CO2 until experiments were performed.
To suppress PD-L1 expression in hTERT+-AM cells, 50 µmol/L

metformin was used. To inhibit the PI3K-AKT-mTOR signaling
pathway, a combination of 50 mmol/L LY294002 and 100 nmol/L
rapamycin (both sourced from EMD Calbiochem-Millipore, USA)
was utilized.

Single-cell RNA sequencing
Following surgical resection, two fresh tissue samples were
preserved in tissue preservation solution (2–8 °C) (Singleron
Biotechnologies, China) and quickly transported to the laboratory.
Single-cell suspensions were prepared and loaded onto micro-
fluidic chips. Using the GEXSCOPE® Single-Cell RNA Library Kit
(Singleron Biotechnologies), scRNA-seq libraries were constructed.
Each library, prepared at 4 nmol/L, was pooled and sequenced on
the Illumina HiSeq X platform with 150 bp paired-end reads.

ScRNA-seq data quality control, processing, and cell type
identification
We utilized Seurat (v4.0.0) in R (v4.0.2) to process each sample’s
gene-barcode expression matrix. Quality control measures
included filtering out cells with fewer than 200 or more than
9 000 expressed genes, cells with over 10% mitochondrial gene
content, and those with more than 7% hemoglobin gene content.
Ribosomal and mitochondrial genes were subsequently removed
from the dataset. To ensure data integrity, potential doublets were
identified and excluded using DoubletFinder (v2.0.3).
Normalization and variance stabilization of the data were

performed using sctransform (v0.3.2). Following these preproces-
sing steps, the samples were integrated into a single Seurat object
using the IntegrateData function. For dimensionality reduction, we
applied principal component analysis (PCA) to the top 3 000 highly
variable genes (HVGs). The ElbowPlot function was employed to
identify the principal components that significantly contributed to
the variance in the data. Cell type assignment was performed via
Seurat’s FindAllMarkers function to identify differentially expressed
genes (DEGs) with default parameters. Cluster annotation was
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conducted on the basis of established marker genes from the
literature. Specifically, we identified the following cell types: tumor
epithelial cells expressing the markers KRT14, KRT15, KRT19, and
KRT6A; myeloid cells characterized by CD74, HLA-DRA, HLA-DB1,
and LYZ expression; endothelial cells characterized by PECAM1,
ENG, and VWF expression; and fibroblasts characterized by COL3A1,
COL1A1, COL1A2, and LUM expression.

Western blotting
Western blotting was conducted following established proto-
cols.53,54 In brief, proteins were extracted from both tissues and
cultured cells. The total protein concentration was measured via a
BCA Assay Kit. Proteins were then separated by SDS‒polyacryla-
mide gel electrophoresis and transferred onto polyvinylidene
fluoride (PVDF) membranes. The membranes were blocked with
5% nonfat milk for 1 h at room temperature. Following blocking,
the membranes were incubated overnight at 4 °C with primary
antibodies. The next day, the membranes were incubated with
HRP-conjugated secondary antibodies for 1 h at room temperature.
Detection was carried out using enhanced chemiluminescence
(ECL) Western blotting detection reagents. The following primary
antibodies were utilized in the study: anti-human PD-L1 (Cell
Signaling Technology, #13684), anti-human CD44 (Cell Signaling
Technology, #3570), anti-human/mouse CD133 (Proteintech,
#18470-1-AP), anti-human/mouse ALDH1A1 (Proteintech, #60171-
1-Ig), anti-human LAMC2 (Abcam, #ab210959), anti-human LAMB3
(Abcam, #ab97765), anti-human PDPN (Cell Signaling Technology,
#9047S), and anti-human/mouse GAPDH (ABclonal, #AC002).

Immunohistochemistry and H&E staining
Detailed immunohistochemistry (IHC) procedures were performed
as previously described.55 In summary, the OM, OKC, and AM
tissues were fixed in 4% paraformaldehyde overnight, embedded
in paraffin, and sectioned into 4 µm thick slices. Immunohisto-
chemical staining was carried out according to the protocols
specified in the immunohistochemical kit. Chromogenic develop-
ment was achieved via the use of diaminobenzidine (DAB), and
counterstaining was performed with hematoxylin.
High-resolution images of the stained slides were captured via a

Panoramic Scanner (3DHISTECH) equipped with background
subtraction capabilities. Both cellular and membranous staining,
along with cell counts in selected regions across all tissue
microarray (TMA) tissues, were analyzed via CaseViewer software
(3DHISTECH) and NDP.view2 software (Hamamatsu). To quantify
the staining, a histoscore (H score) for each tissue core was
calculated. This score was determined by assessing the percentage
of cells exhibiting positive staining according to the following
formula: (percentage of strong positive staining) × 3+ (percentage
of moderate positive staining) × 2+ (percentage of weak po'sitive
staining) × 1). The following primary antibodies were used: anti-PD-
L1 (Cell Signaling Technology, #29122), anti-Ki-67 (ZSGB-BIO, #ZM-
0166), anti-PCNA (Cell Signaling Technology, #2586), anti-CD44
(Cell Signaling Technology, #3570), anti-CD133 (Proteintech,
#18470-1-AP), anti-ALDH1A1 (Proteintech, #60171-1-Ig), anti-
LAMC2 (Abcam, #ab210959), anti-LAMB3 (Abcam, #ab97765), and
anti-PDPN (Cell Signaling Technology, #9047S).
For the H&E assay, paraffin-embedded tumor sections were

stained with an H&E kit (Beyotime, # C0105S) following the
manufacturer’s instructions.

Cell immunofluorescence
Immunofluorescence staining was conducted on fixed cells to
visualize the expression of specific proteins. The cells were initially
permeabilized with 0.3% Triton X-100 and subsequently blocked
in bovine serum albumin (BSA) buffer for 1 h. After blocking, the
cells were incubated overnight at 4 °C with primary antibodies.
This was followed by a 1 h incubation with fluorophore-
conjugated secondary antibodies. Nuclear counterstaining was

performed using DAPI. The primary antibodies used in this study
were as follows: anti-PD-L1 (Cell Signaling Technology, #29122),
anti-Ki-67 (ZSGB-BIO, #ZM-0166), anti-PCNA (Cell Signaling Tech-
nology, #2586), anti-CD44 (Cell Signaling Technology, #3570), anti-
CD133 (Proteintech, #18470-1-AP), anti-LAMC2 (Abcam,
#ab210959), and anti-LAMB3 (Abcam, #ab97765).

Multiplex immunohistochemistry (mIHC)
mIHC was performed using a multiplex IHC kit according to the
manufacturer’s protocols (Akoya Bioscience, #NEL801001KT).56

Briefly, after deparaffinization and rehydration, antigen retrieval
was conducted using EDTA buffer and microwave heating.
Following a 10min block in blocking solution at room tempera-
ture, primary antibodies were incubated at 37 °C for 1 h.
Secondary antibodies were incubated at room temperature for
10min, followed by incubation with Opal fluorophores for 10 min.
This process of antigen retrieval, blocking, and incubation with
primary and secondary antibodies and Opal fluorophores was
repeated, followed by DAPI staining for nuclear visualization. The
slides were then scanned with a PerkinElmer Vectra Polaris
(PerkinElmer, #Vectra3). The primary antibodies used in this study
included the following: anti-PD-L1 (Cell Signaling Technology,
#29122), anti-pan cytokeratin (Pan-CK) (Cell Signaling Technology,
#4545), anti-Ki-67 (ZSGB-BIO, #ZM-0166), anti-PCNA (Cell Signaling
Technology, #2586), anti-CD44 (Cell Signaling Technology, #3570),
anti-CD133 (Proteintech, #18470-1-AP), anti-LAMC2 (Abcam,
#ab210959), and anti-PDPN (Cell Signaling Technology, #9047S).

Colony formation assay
To assess clonogenicity, the cells were plated in 6-well plates
at a density of 2 000 cells per well and cultured in DMEM
supplemented with 10% fetal bovine serum (FBS) for 10 to 14 days.
After incubation, the colonies were fixed with 4% paraformalde-
hyde for 15min and subsequently stained with 0.4% crystal violet
for 15min. After thorough washing with phosphate-buffered saline
(PBS) and air drying, colonies comprising more than 50 cells were
counted and photographed using a microscope.

Generation of PD-L1 knockout and overexpression cell lines
PD-L1 knockout in hTERT+ -AM cells. Stable knockout of PD-L1 in
hTERT+-AM cells was achieved via the CRISPR/Cas9 genome
editing system in accordance with established protocols. For
targeted disruption of the PD-L1 gene, a guide RNA specific to
human PD-L1 (target sequence: TACCGCTGCATGATCAGCTA) was
cloned and inserted into the lentiviral vector pLentiCRISPRv2. This
construct was obtained from GenScript. The hTERT+-AM cells were
transduced with the recombinant lentivirus carrying the PD-L1
guide RNA. After transduction, PD-L1 knockout cells were selected
using puromycin to ensure the establishment of a cell line with
stable gene knockout.

PD-L1 overexpression in hTERT+-AM cells. To generate hTERT+

-AM cells stably overexpressing PD-L1, they were infected with
lentiviruses engineered to overexpress PD-L1. The recombinant
lentivirus was procured from GeneChem (Shanghai, China).
Following the manufacturer’s protocol, the cells were incubated
with the lentivirus for 8 h. After this incubation period, the
medium was replaced with DMEM supplemented with 10% fetal
bovine serum (FBS; Thermo Fisher Scientific, #A3160801) and 1%
penicillin/streptomycin.
Fluorescence was observed 48 h post infection, indicating

successful transduction. To establish stable overexpression, the
cells were then cultured in the presence of 4 µg/mL puromycin for
7 days.

Validation of PD-L1 expression
The efficacy of PD-L1 knockout and overexpression in transfected
hTERT+-AM cells was confirmed via Western blot analysis.
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Wound-healing assay
To assess the migratory ability of hTERT+-AM cells, a wound-
healing assay was performed. hTERT+-AM cells were seeded in
6-well plates and cultured until they reached approximately
70%–80% confluence. A straight scratch, or “wound,” was created
in the cell monolayer using a sterile pipette tip. Next, the cells
were rinsed to remove debris and then cultured in serum-free
DMEM. Images of the wound area were captured at designated
time points to monitor and quantify the rate of cell migration into
the wound space. The images were analyzed to determine the
extent of wound closure over time, providing insights into the
migratory behavior of the cells.

Spheroid formation assay
To evaluate the sphere formation capacity of hTERT+-AM cells, a
spheroid formation assay was conducted. Briefly, hTERT+-AM cells
were seeded into ultralow attachment 6-well plates (Corning) at a
density of 5 × 104 cells per well. These specialized plates prevent
cell adhesion to the surface, facilitating spheroid formation. The
cells were cultured in serum-free medium specifically formulated
to support spheroid growth. This medium was supplemented
with 2% B27 supplement (Life Technologies), 100 U/mL penicillin,
100 U/mL streptomycin, 20 ng/mL human epidermal growth factor
(EGF; PeproTech), and 10 ng/mL human basic fibroblast growth
factor (bFGF; PeproTech). After two weeks of culture, the spheroids
were observed and counted using an inverted microscope. This
allowed for the assessment of spheroid formation efficiency and
morphology.

Invasion assay
To assess the invasive potential of hTERT+-AM cells, an invasion
assay was performed using 24-well plates with 8 µm pore inserts.
The hTERT+-AM cells were starved in serum-free DMEM for one
day. The cells were resuspended in serum-free DMEM at a
concentration of 5 × 105 cells per mL. Each well was coated with
100 µL of 1.6 mg/mL Matrigel. A 100 µL cell suspension was added
to the upper chamber, and 500 µL DMEM with 10% FBS was
added to the lower chamber. After 16 h, the cells were fixed with
paraformaldehyde for 15min and stained with 0.4% crystal violet
for 20min at room temperature. After washing with PBS, the cells
on the upper surface of the insert were removed with a cotton
swab, and the remaining cells were air-dried, photographed, and
counted under a microscope.

EdU assay
An EdU (5-ethynyl-2’-deoxyuridine) assay was performed to assess
the proliferation of hTERT+-AM cells. hTERT+-AM cells were
seeded in 96-well plates at a density of 5 000 cells per well in
100 µL of medium. Following overnight culture to allow cell
attachment, the cells were treated with 2× EdU working solution
(20 µmol/L), which was prewarmed to 37 °C. The cells were
incubated for 2 h, fixed with 4% paraformaldehyde for 15 min,
washed, and permeabilized with 0.3% Triton X-100 for 15 min.
After washing, the cells were incubated with Click reaction
solution and then stained with Hoechst 33342 for 10min at room
temperature in the dark. Fluorescence images of the stained cells
were captured via a fluorescence microscope.

Organoid culture
To establish and maintain organoids from ameloblastoma (AM)
tissues, the following protocol was followed.40,57 The AM tissues
were minced and incubated at 37 °C with collagenase type IV
(Stemcell, #07909) for 50 min. After digestion, 10 mL of DMEM/F12
(Thermo Fisher Scientific, #C11330500BT) was added to dilute the
collagenase. The resulting suspension was filtered through a
100 µm sieve (Falcon, #352360) and centrifuged at 1 000 r/min for
5 min. The cell pellet was then resuspended in BioCoat MATRIGEL
MATRIX (Corning, #354234) mixed with organoid medium at a 1:1

ratio. This mixture was plated onto 24-well culture plates and
incubated at 37 °C for 30 min. Organoids were maintained in
custom-formulated media composed of DMEM/F12 (Thermo
Fisher Scientific, #C11330500BT), 1× B27 supplement (Thermo
Fisher Scientific, #12587010), 1.25 mmol/L N-acetyl-L-cysteine
(Sigma, #A7250), 10 mmol/L nicotinamide (Sigma, #N0636),
50 ng/mL human EGF (PeproTech, #AF-100-15), 500 nmol/L A83-
01 (PeproTech, #9094360), 10 ng/mL human FGF10 (PeproTech,
#100-26-5), 5 ng/mL human FGF2 (Sino Biological Inc., #10014-
HNAE), 1 μmol/L prostaglandin E2 (MCE, #HY-101952), 0.3 μmol/L
CHIR 99021 (Sigma, #SML1046), 1 μmol/L forskolin (Abcam,
#ab120058), 50 ng/mL R-spondin (R&D Systems, #3266-RS), and
25 ng/mL Noggin (PeproTech). To facilitate organoid outgrowth,
10 μmol/L of the ROCK inhibitor Y-27632 (TargetMol, #T1725) was
added to the medium after the first week. The medium was
changed every 48–72 h, and the organoids were passaged every
1–2 weeks.

Statistical analysis
Statistical analyses were performed via GraphPad Prism, version
9.3.1 (GraphPad Software). Differences between two groups were
analyzed via Student’s t test. Survival curves were analyzed via the
log-rank test. Pearson’s correlation coefficient was used for
correlation analysis. A P value of less than 0.05 was considered
to indicate statistical significance.
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