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BACKGROUND: Persistent organic pollutants (POPs) are environmental chemicals characterized by long half-lives in nature and
human bodies, posing significant health risks. The concept of the exposome, encompassing all lifetime environmental exposures,
underscores the importance of studying POP as mixtures rather than in isolation. The increasing body of evidence on the health
impacts of POP mixtures necessitates the proper application of statistical methods.

OBJECTIVES: We aimed to summarize studies on the overall effects of POP mixtures, identify patterns in applications of mixture
methods—statistical methods for investigating the association of mixtures—and highlight current challenges in synthesizing
epidemiologic evidence of POP mixtures on health effects as illustrated through a case study.

METHODS: We conducted a systematic literature search on PubMed and Embase for epidemiological studies published between
January 2011 and April 2023.

RESULTS: We included 240 studies that met our eligibility criteria. 126 studies focused on per- and polyfluoroalkyl substances
(PFAS) mixtures only, while 40 analyzed three or more classes of POPs in mixture analyses. We identified 23 unique mixture
methods used to estimate the overall effects of POP mixtures, with Bayesian Kernel Machine Regression (BKMR), a type of response-
surface modeling, being the most common. Additionally, 22.9% of studies used a combination of methods, including response-
surface modeling, index modeling, dimension reduction, and latent variable models. The most extensively explored health outcome
category was body weight and birth sizes (n = 43), and neurological outcomes (n = 41). In the case study of PFAS mixtures and
birth weight, 12 studies showed negative associations, while 4 showed null results, and 2 showed positive associations.

IMPACT STATEMENT:

® This scoping review consolidates the existing literature on the overall effects of POP mixtures using statistical methods. By
providing a comprehensive overview, our study illuminates the present landscape of knowledge in this field and underscores the
methodological hurdles prevalent in epidemiological studies focused on POP mixtures. Through this analysis, we aim to steer
future research directions, fostering a more nuanced comprehension of the intricate dynamics involved in assessing the health
effects of POP mixtures. Our work stands as a significant contribution to the ongoing exploration of the chemical exposome.
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INTRODUCTION

Persistent organic pollutants (POPs) are environmentally and
biologically persistent synthetic chemicals widely used in manu-
facturing such as flame retardants and pesticides [1-3]. Previous
research on POPs spans various classes of chemicals, and the
following classes have been commonly investigated due to their
widespread presence and potential adverse effects on human

health and environment, including organochlorine pesticides,
polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers
(PBDEs), polychlorinated dioxins and furans (PCDD/Fs) and per-
and polyfluoroalkyl substances (PFASs) [4]. Most POPs were
prohibited from usage after the Stockholm Convention in 2001
[5]. However, traceable levels of POPs have still been observed
across the globe and even in regions where people have never
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used POPs [2]. The general population is exposed to POPs through
multiple routes, such as inhalation, contaminated drinking water
and diet [6-8]. Previous studies have found that POPs act as both
endocrine disruptors and oxidative stress inducer [9], associated
with various adverse health outcomes, such as cardiovascular dis-
eases, metabolic diseases [10, 11], liver injury [12], neurodevelop-
ment [13], reproductive outcomes [14, and cancer [15].

The existing evidence on the health risks of exposure to POPs
has been gradually moving away from single pollutant analysis to
a mixture-based approach. Mixture is defined as a combination of
at least three individual chemicals that are designated for a
specific purpose [16, 17]. This shift is in alignment with the
conceptual framework for exposome research. The exposome
framework aims to quantify “the totality of human environmental
exposures from conception onwards,” which underscores the
need to shift our perspective from traditional “one-exposure-one-
disease” to a focus on multiple environmental exposures and
their overall effects [18, 19]. In fact, humans are exposed to
multiple chemicals simultaneously at any given time point and
cumulatively across their lifetimes. Moreover, chemicals are
highly correlated and many come from the same source,
potentially having antagonistic or synergistic effects in mixtures
[20]. This is particularly critical for POPs. Unlike other environ-
mental pollutants, POPs are known for long half-lives in human
body, leading to potential interactions that can be antagonistic or
synergistic when mixed with each other or other chemicals.
Classic single-pollutant models fail to capture the complexity of
correlated exposures and cannot accurately delineate the
interaction and overall effects of POP exposures. Methods that
investigate the POPs mixture effects are imperative for a
comprehensive overview of the health effects of POPs.

In the past two decades, new statistical methods have been
developed to better understand the complex relationships
between environmental chemical mixtures and health outcomes
and to better address some of the statistical challenges, such as
multicollinearity [21]. Methods, which include Bayesian kernel
machine regression (BKMR) [22], weighted-based g-computation
[23], and weighted quantile sum regression (WQS) [24], were
developed to model chemical mixtures. These methods are able
to address these following research questions: 1) the overall
effect of chemical mixtures; 2) the effect of interactions among
mixture components; 3) the relative toxic effect of individual
agents in the mixtures; and 4) the specific patterns of exposures
in the population [25, 26]. However, few methods can answer
these research questions simultaneously, and many previous
studies on POP mixtures focus on the overall mixture effects as a
primary research question. Overall effects are defined as the
effects of chemicals mixtures combined to characterize the total
health burden of environmental mixtures. When individual
compounds are below regulatory concentrations, there may still
be significant combined overall effects on shared health end-
points [26]. Moreover, given that new chemicals are continuously
being created and many POPs exhibit similar health effects via a
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common mechanism [2], a better understanding of the overall
effects of POP mixtures is needed for risk stratification and future
intervention based on chemical mixtures.

To our knowledge, no previous research has comprehensively
reviewed the overall effects of exposures to POPs on health
outcomes. The objective of this review is to identify current
methodological approaches used to evaluate the overall effects of
POP mixtures and to highlight the current challenges and
obstacles encountered in synthesizing the overall effects of POP
mixtures, A case study focusing on the most extensively studied
POP mixtures and their health outcome was also included to detail
the challenges.

METHODS

This scoping review was written following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews (PRISMA-ScR) [27]. We registered
our protocol at Open Science Framework (OSF) with registration
number k8xe6 [28].

Search strategy

The search strategy was developed based on the Population
Exposure Outcomes and Results (PEOR) framework (Table 1). We
conducted systematic literature searches in electronic databases
Embase and MEDLINE of PubMed in early August 2022 and
repeated in April 2023. The search strategies were reviewed by
an experienced librarian and the entire research team. Specifi-
cally, we focused on five classes of POPs, which were 1)
organochlorine pesticides (OCPs) such as Dichlorodiphenyltri-
chloroethane (DDT) and its metabolites, 2) polybrominated
diphenyl ethers (PBDEs), 3) polychlorinated biphenyls (PCBs), 4)
per- and polyfluoroalkyl substances (PFASs), and 5) polychlori-
nated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-
furans (PCDFs), abbreviated as PCDD/Fs. We chose to focus on
these five chemical classes of POPs due to their widespread
exposures worldwide and persistence in nature and biological
systems. They were also listed as targeted chemicals in the
Stockholm convention [29]. Detailed search terms were included
in Supplementary Table S1. We searched journal studies
published between January 15t 2011 and April 26", 2023, and
no language restriction was imposed. The publication year was
restricted to 2011-2023 because the majority of mixture
methods were developed in recent years.

We built a search strategy with two main facets: “POP mixture
exposures” and “mixture methods”. For the exposures to POP
mixtures, we included both Medical Subject Headings (MeSH) in
PubMed or exploded terms in Embase, and individual common
chemicals names as keywords in the search strategy. Individual
chemicals were searched both as MeSH terms and keywords to
capture as many journal studies related to exposures to POPs as
possible. Chemical names were searched in both full names and
acronyms if applicable (i.e. hexachlorobenzene and HCB).

Table 1. Population, exposure, outcome, results (PEOR) framework.

PEOR elements
Population (P)

Type of evidence
Human; any population
Exposure (E)

Measured occurrence of the environmental exposure to a mixture of at least three individual POPs with or without other

chemical or non-chemical stressors via biomonitoring; Five classes of POPs were focused and those were: Organochlorine
pesticides, polybrominated diphenyl ethers, polychlorinated biphenyls, per- and polyfluoroalkyl substances and

polychlorinated dibenzo-p-dioxins/dibenzofurans
Outcome (O)
Results (R)
POPs persistent organic pollutants.

Any type of effects on human health
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SPRINGER NATURE

523



S. Pan et al.

524

Chemicals such as Dichlorodiphenyl Dichloroethylene (DDE) have
multiple synonyms as full names. In such case, we decided to keep
full names used in ATSDR toxicological profiles instead of
including all synonyms for simplicity [30]. We did not include
any full names of individual PCBs and PBDEs because PCBs and
PBDEs are conventionally used as acronyms in literature. All
chemical names were cross-referenced with PubChem to ensure
accuracy [31]. The second part of the search strategy is overall
effects of POP mixtures using mixture methods. To develop a
search strategy that would capture all related mixture analysis
studies with high sensitivity, we first conducted a pilot search to
identify statistical methods commonly employed for estimating
the overall effects of persistent organic pollutants (POPs). The
search terms used were "mixture*" OR "chemical mixture*" OR
"overall effect*" OR “overall association*" OR “overall exposure*"
OR “cumulative effect*" OR “combined effect*" OR “joint impact*"
OR “joint exposure*” OR “joint effect*” OR “multi-pollutant” OR
multipollutant. We compiled the mixture methods identified
through the pilot search along with mixture methods identified
through previous reviews as keywords used in search terms [21,
26, 32]. With this multifaceted search strategy, the majority of the
studies suitable for this review were identified to the best of our
knowledge.

We complemented the search by conducting a hand search in
relevant journals and scanned the reference lists of related
reviews.

Eligibility criteria

The inclusion and exclusion criteria were formulated based on
the PEOR framework (Table 1). We included peer-reviewed
studies which were: 1) conducted in human subjects; 2) used any
type of observational study design such as cohort, case-control
and cross-sectional studies; 3) evaluated at least three POPs
based on the National Institute of Environmental Health Science
(NIEHS) definition of mixture in biomonitoring [33]; 4) estimated
overall effects of POP mixtures using statistical methods.
Statistical methods included were mixture methods identified
in the previous literature [20, 21] or methods we identified
through the two-stage literature screening approach. The final
list of methods used for literature search were: WQS, BKMR,
quantile g-computation, PCA, factor analysis, clustering methods
such as k-means and hierarchical clustering, exposure con-
tinuum mapping, latent class/profile analysis, and other Bayesian
approaches related to environmental mixture overall effects. We
also included novel mixture methods developed through the
Powering Research Through Innovative Methods for Mixtures in
Epidemiology(PRIME) workshop [21] (Methods were listed in
Supplementary Table S1). We excluded journal studies based on
the following criteria: 1) studies conducted in animals or in silico,
in vitro studies; 2) POP mixtures in studies were measured in air,
food, drinking water, occupational settings or direct administra-
tion; 3) studies only used summation measures of POPs; 4)
studies only used non-statistical toxicology-based studies such
as toxic equivalency factors for PCDD/Fs [34]; 5) sources
considered as gray literature, reviews, pre-prints, conference
proceedings manuscripts, editorials, websites, or textbook
chapters.

Study selection

We conducted our literature screening in Covidence (Covidence
systematic review software, Veritas Health Innovation, Melbourne,
Australia). Two reviewers (SP and VQ) independently screened
titles and abstracts, and any discrepancies were discussed with a
third reviewer (BR). For all journal studies that met the eligibility
criteria from the title and abstract screening, two reviewers (SP
and BR) independently screened the full texts to determine the
eligibility based on the pre-specified criteria (Supplementary
Table S2).
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Data extraction

Three independent reviewers (CC, SP and VQ) extracted informa-
tion using a standardized data extraction form. Two reviewers
were randomly assigned to each paper, and discrepancies were
resolved in discussions among all three reviewers. We extracted
and recorded information from each study using a pre-specified
data extraction form, including titles, authors, publication year,
study country, study site, health outcome categories, study design,
study population, sample size, age, exposure matrix, POP
exposures included in each mixture methods, mixture methods,
outcomes, and covariates (Supplementary Table S3). Health
outcome categories were developed based on PFAS systematic
evidence map studies, and individual health outcomes under each
categories were provided in Supplementary Table S4 [35, 36]. The
categories were: Body weight, size & growth, cancer, cardiometa-
bolic, cardiovascular, dermal, endocrine, hepatic, immune, meta-
bolic, mortality, musculoskeletal, nervous, reproductive,
respiratory, urinary and systemic biomarkers. Biomarkers were
categorized based on their association with specific health
outcomes; for example, liver biomarkers were classified under
“Hepatic.” Conversely, biomarkers indicative of nonspecific pro-
cesses, which are linked to multiple health outcomes, were
designated as “systemic biomarkers.” We did not provide a
summary of main findings for each study due to the heterogeneity
of the health outcomes. As a proof-of-concept for the interpreta-
tions of mixture methods results, we extracted the information of
results in studies estimating the overall effects of the most widely
investigated exposure and the most widely investigated health
outcome.

Data synthesis

We first harmonized chemical names to keep chemical names
consistent across studies (Supplementary Table S5). We grouped
the class of POPs for all included studies and summarized the
frequency of each statistical method used. Methods that appeared
twice or more were also grouped based on their modeling
strategy We provided a narrative synthesis for the overall impact
of the associations of the most widely investigated exposure and
the most widely investigated health outcome to identify knowl-
edge gaps in the interpretations of epidemiologic findings of POP
mixtures.

RESULTS

Selected sources of evidence

A total of 3907 records were identified from PubMed and 611
records were identified from Embase from searches published
between January 2011 to April 2023 (Fig. 1). After removing 144
duplicate records, we reviewed title and abstracts of 4374 total
records for relevance. We reviewed the full-text of 364 studies
using pre-set inclusion and exclusion criteria (i.e. excluding animal
studies, see Table 2). A further 124 studies were removed during
the full-text screening due to various reasons (e.g. no overall
effects or statistical methods of interest). We included 240 unique
studies in this review.

Characteristics of included studies

Detailed information regarding study characteristics of included
studies is in Supplementary Table S6. We grouped the 240 studies
based on their POP chemical classes and summarized their study
characteristics in Table 2. The majority of the studies examined
PFAS as the only POP mixtures of interest (n = 126), while fourteen
studies focused on PBDEs only, 12 studies on organochlorine
pesticides, and nine studies on PCB mixtures. For the POP class
combinations, seven studies focused on the PCBs with PCDD/Fs, of
which all included both dioxin-like and non-dioxin like PCBs
(Supplementary Table S6). There were twenty-two studies that
examined a mixture of organochlorine pesticides with PCBs and
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Fig. 1

PRISMA diagram of literature screening. The workflow of literature screening in the current study. We adopted the PRISMA diagram

for the systematic search in PubMed and Embase, detailing the number of abstracts screened and the full texts retrieved.

one study of organochlorine pesticides with PBDEs. In addition,
9 studies evaluated PFAS mixtures along with another POP class
(PCBs, PBDEs, OCPs or PCDD/Fs). 40 studies looked at three or
more POP classes, and some studies also included heavy metals or
other non-persistent chemicals as components in mixture analysis
(n = 40).

The majority of studies were cohort studies (n=130).
However, 83 relied on cross-sectional data, with fewer studies
using a case-control design (n=27). Most studies were
conducted in the United States (n=97) or in China (n=74).
Multiple studies were conducted in Europe (n=46), Canada
(n=9), South Korea (n = 4), Japan (n = 3), and Australia (n =2). A
single study was identified in each of the following countries:
Colombia, Mexico, Saudi Arabia, Singapore, South Africa. For
studies conducted in the US, about half of the studies (n = 48/97,
49%) focused on PFAS mixtures only. Seventeen studies
evaluated the other POP chemical classes only and 15 studies
evaluated multiple classes of POPs. The majority (n =59/74) of
studies in China evaluated PFAS mixtures only and one study
evaluated PFAS, PCB with PBDEs. 20 of European studies
evaluated three or more POP classes and 15 European studies
focused on PFAS mixtures alone.

Seventy-eight studies had a birth cohort design and 32 focused
on pregnancy women. There were also 18 studies focusing on
children and 9 studies focusing on adolescents. Seventy-four
studies examined POP exposures in general populations with a
wide age range from mid-aged to elderly populations (Supple-
mentary Table S6). In addition, some studies focus on patients
from hospital-based study designs (n = 20), residents living near
contaminated areas (n = 6), or occupational populations such as
military, employees from government organization and retired
workers (n = 3).

About half of the studies (n=105/240) included 100-500
people. There were 73 studies with more than 1000 people
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included in their analysis. There has been a notable noticeable rise
in the number of published studies in recent years (Table 2).

Overview of mixture methods applied in estimation of overall
effects of POP mixtures

We identified a total of 23 unique mixture methods used to
estimate the overall effects of POP mixtures in relation to health
outcomes. For better comparison. Bayesian weighted sum,
Bayesian WQS, Weighted quartile score methods were grouped
as WQS. Latent profile analysis and latent factor analysis were
grouped as latent analysis. 185 studies used a single mixture
method (Fig. 2A), whereas 55 studies (Fig. 2B) used at least 2
mixture methods. For the 185 studies that used single mixture
methods, the top 4 mixture methods used were BKMR, WQS,
quantile g-computation and PCA (n=74, 47, 27 and 22
respectively). K-means clustering was used in four studies.
Environmental risk score and latent analysis were also applied in
two studies. BKMR, WQS, quantile g-computation, environmental
risk scores are supervised, and the rest of the methods are
unsupervised. We also summarized methods that were only used
once in the included studies. These are Bayesian factor analysis,
Bayesian hierarchical modeling approach with g-computation
(BHRM-g) [37], Bayesian joint latent class [38], Bayesian structure
additive regression models with spike-slab priors [39], Exposure
continuum mapping (ECM) [40], factor analysis [41], first principal
direction of mediation (PDM) [42], latent class model [43], latent
profile model [44], Sparse PCA [45], super learner and g-
computation, and weighted kernel machine regression methods
[46]. For the 55 studies that applied two or more mixture methods,
researchers used different combinations of modeling strategies.
Most mixture methods can be classified as response-surface
modeling, index modeling, dimension reduction and latent
variable models. Index modeling produced a readily interpretable
index, which is a weighted average of exposure mixtures and used
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to regress against health outcomes of interest [21, 47]. Latent
variable models share similar characteristics but are more often

§,~g used for predefined exposure groups [21, 48]. Dimension
= ﬁ I o reduction methods were used when many exposures are present
=v=z - « in studies, to reduce multidimensional exposures to orthogonal
components or other summarized scores to represent the POP
mixtures that can be regressed against health outcomes of
< ‘\’I‘ interest. Response-surface modeling fit a multidimensional space
T5= of the exposure data to model non-linear effects of chemical
2 '§ a exposures [32]. The most popular pair is response-surface
LCREES| I modeling with index modeling, to combine the advantages of
both methods. BKMR was most frequently used with WQS
(n = 20), followed by BKMR with quantile g-computation (n = 12).
The mixture methods were also categorized based on study
'g design (Fig. 3), sample size and publication years (Supplementary
o Fig. S1) and we found that the choices of mixture methods were
+ = not influenced by the sample size, publication year, and study
S design of included studies.
o= o -

Researchers used different strategies to reduce the dimension-
ality of POP mixtures as a pre-modeling step before applying
mixture methods. For example, in addition to including com-
pounds individually in mixture modeling, researchers usually
combined PFOS, PFOA isomers as summation measures as
components in models [49], and some studies also included
summation of POP as constituents in mixture modeling [50, 51].
For PCBs, two studies also used the summation measure of 4 PCBs
(PCB118, PCB138/158, PCB153, PCB180) from the New Bedford
cohort and HOME cohort [52-57], while some studies used the
summation measure of 3 PCBs (PCB138, PCB153, PCB180) for the
same cohort in Faroe Islands [46, 58, 59], and some studies used
summation measures of ten PCBs [60, 61]. We also identified
studies utilizing hierarchical clustering methods to group chemi-
cals and used summed measures of chemical clusters in multiple
linear regression [62]. In addition, although we excluded studies
which only used Toxic Equivalency Factors (TEFs) or other
toxicology-based methods, some of the included studies applied
TEFs to summarize TCDD and then used as components in mixture
methods [63].

OCP + PCB,
=22

N
5
5

PCB + PCDD/Fs,
7

9 N=

PCB,
N
3
0

Overview of health outcomes of included studies

The individual health outcomes examined in each study were
grouped by health outcome categories and listed in Supplemen-
tary Table S4. The most extensively explored health outcome
category was body weight and birth size (n=43 Fig. 3) and
neurological outcomes (n=41). In relation to the POP class
(Fig. 3A), the health-related outcomes most extensively explored
in studies with PFAS as mixtures were metabolic (n=19),
reproductive (n=19), and nervous health outcome categories
(n=18). For studies analyzing multiple POP classes, growth
outcomes such as birth weight were most frequently used
(n=13), followed by reproductive outcomes (n =7).

Most of the studies on developmental outcomes consisted of
mother-child pairs or adolescent groups. Within birth cohort
studies, developmental outcomes of the child were measured
such as birth weight (n = 24), head circumference (n=6), birth
length (n=4), and gestational age (n=5). Among children and
adolescents, BMI was measured and used as an outcome in seven
studies (Fig. 3B).

For neurodevelopment outcomes, neurobehavior scores were
used 16 times in studies, following with autism spectrum disorder
(ASD) (n=5), depression (n=3), IQ (n=2), and ADHD (n=2)
(Fig. 3C).

12

OCP,
N=
2

1

PBDE,
N=14
4

3

PFAS,
N=126
49

41

Chemical class: individual chemicals in each POP class from the 240 included studies are listed in Supplementary Table S6.
PFAS Per- and polyfluoroalkyl substances, PBDE Polybrominated diphenyl ethers, OCP Organochlorine pesticides, PCB Polychlorinated biphenyls, PCDD/Fs polychlorinated dibenzo-p-dioxins (PCDDs) and

Overall,
N = 240?
77

56

continued

Case study: synthesis of the overall effects of PFAS mixtures
and birth weight

Due to the heterogeneity of the health outcomes, we provided
narrative synthesis of the overall effects of PFAS mixtures on
birth weight and investigated how different statistical methods

2022
2023

polychlorinated dibenzofurans (PCDFs).
®Mixture components other than POPs were not included in this review.

®Three or more than three POP class.

Characteristic

Table 2.
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A PCA1 B B
Dimension reduction K-means clustering{ 8
Environmental risk score{ #

BKMR+ WQS+ 28} 10 3
BKMR+ Quantile g-computation 8l 8 1

was{
Quantile g-computation

18

Index modeling 6 18 3

BKMR+ PCA- 22
WQS+ TEQ1 11

Latent variable models 1

Quantile g-computation+ WQS | 2t

Latent analystsJ‘
]
|

Response-surface modeling BKMR

BKMR+ Quantile g-computation+ TEQ

~

36 10

\
\
i
| 28
0 20

Number of studies

Study design Case control study

Cohort study

40 60 0 5 10 15 20
Number of studies

Cross sectional study

Fig.2 Summary of mixture methods used in overall effect estimation from included studies by study design. Panel A is the frequency of
mixture methods in studies that applied one mixture method grouped by modeling strategy and study design. Mixture methods appeared
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yield various results. For studies that evaluated POP classes in
addition to PFAS, we only synthesized the results regarding
PFAS mixtures.

Among the 18 studies on the association between PFAS
mixtures and birth weight, 12 used one mixture methods, while
6 studies applied two or more mixture methods (Table 3).
Various modeling strategies have been applied to examine the
overall effects of PFAS mixture and birth weight, with index
modeling as the most prevalent strategy, using methods such as
WQS and quantile g-computation. Studies with two or more
mixture methods generally used a combination of modeling
strategies, and the most applied combination was response-
surface modeling with index modeling. In addition, 8 studies
estimated PFAS mixtures only, while the rest of the studies
included either chemicals from other POP classes or other
chemical or non-chemical stressors as components in mixture
modeling (Table 3). Twelve studies found negative associations
while 4 studies found null associations between PFAS mixtures
and birth weight. For non-linearity of the overall effects of PFAS
mixtures, most studies reported monotonic relationships while
one study reported an U-shaped relationship between PFAS
mixtures and birth weight [39]. No specific chemical-chemical
interactions were reported for the effects of PFAS mixtures on
birth weight.

DISCUSSION

Main findings

To our knowledge, this is the first scoping review on the overall
effects of POP mixtures with an emphasis on the application of
mixture methods. We included a total of 240 studies, which applied
23 unique mixture methods to estimate the overall effects of POP
mixtures on health outcomes. With an increasing number of studies
that estimate overall effect of POP mixtures, substantial hetero-
geneity in the pre-selection of mixture components and the use of
mixture methods exists across the 240 reviewed studies. The
majority adopted a single chemical-class approach, while 40 studies
considered at least 3 classes of POPs simultaneously in their mixture
methods analysis. Response-surface modeling such as BKMR was
the most frequently used method to estimate the overall effects of
POP mixtures. However, we found that the choices of mixture
methods were not influenced by the sample size, publication year,
and study design of included studies.

In this review, overall effects were defined as cumulative
environmental burdens of POP mixtures. As discussed previously,
the selection of chemicals included as components was based on
various factors and thus estimated overall effects were highly
context-based and might not reflect the total burdens of POP
mixtures on health outcomes.

Currently, the most abundant studies were on the PFAS
mixtures in relation to reproductive, metabolic, nervous, and
developmental health outcome category with the most frequently
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analyzed outcome being birth weight. For the association
between PFAS mixture and birth weight, the associations were
mostly inverse. However, synthesis regarding overall effects of
POP mixtures risks on birth weight showed that it remains
challenging to quantitatively synthesize results of single chemical-
class POP mixtures across studies. The pre-selected PFASs in PFAS
mixtures and employed modeling strategies vary considerably
across the eighteen included studies, which underscores the need
for standardized meta-analysis protocols to estimate the overall
effects of single-class POP mixtures. Here, we developed a list of
challenges when synthesizing overall effects and applications of
mixture methods in POP mixture as well as provided recommen-
dation for future mixture studies in POPs.

Challenges in overall effects of POP mixtures

We identified several challenges in estimating the overall effects
of POP mixtures: 1) choice of mixture components included in
mixture analysis modeling; 2) choice of mixture methods used for
modeling; 3) reporting standards and interpretation of mixture
methods results pertaining to the epidemiologic research ques-
tion and risk assessment and 4) incorporation of chemical-
chemical interaction.

Choice of chemicals in mixture components of modeling. To
investigate the joint action of chemical mixtures, researchers have
adopted various strategies to select chemicals as components in
mixture methods for estimating overall impact of POP mixtures.
This selection is motivated by constraints in sample size,
availability of biological samples or the logistic aspects of
laboratory analyses, which hinders statistical power and model
complexity and makes it currently unrealistic to include all POPs as
components in mixture analyses.

The selection and incorporation of individual chemicals as
components in estimating overall effects from biomonitoring
studies are initially constrained by exposure assessment. Typi-
cally, chemical exposure assessment focuses on pollutants with
recognized concerns or those measurable via targeted methods
[25]. Furthermore, studies often apply specific thresholds of
detection rate to determine the inclusion of chemicals in mixture
modeling. Detection rate is defined as the percentage of samples
with a concentration higher than the limit of detection vs. the
total analytical samples. Different thresholds of detection rates
have been applied, with a broad range from 30% to 85% [64, 65].
These chemical choices stemming from the limit of detection in
exposure assessment based on biomonitoring data can result in
observational bias such as the streetlight effect [25, 32]. The
streetlight effect describes the observational bias toward focusing
on certain chemicals due to the availability of data and existing
measurement methods, overlooking less familiar but equally
hazardous chemicals. It also introduces complexities in compar-
ing overall effects of POP mixtures across studies due to the
inconsistency of chemicals included in POP mixtures. Another
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A Heatmap of health outcome categories of POP class
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Fig.3 Summary of health outcome categories of the included studies. A Heat map of health outcome categories by POP class in the included
studies. Numbers represent the number of publications where the associations between POP class (rows) and health outcome categories
(columns) were examined. Note: Two studies examined two outcome categories together (endocrine and metabolic, hepatic and metabolic). B The
five most frequently observed health outcomes of the “Body weight, size and growth” and “Nervous” outcome categories. Note: Each study
included multiple outcomes. Chemical class: individual chemicals in each POP class from the 240 included studies are in Supplementary Table S6.
POP persistent organic pollutants, PFAS per- and polyfluoroalkyl substances, PBDE polybrominated diphenyl ethers, OCP organochlorine
pesticides, PCB polychlorinated biphenyls, PCDD/Fs polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), BMI
body mass index, ADHD attention-deficit/hyperactivity disorder, ASD autism spectrum disorder, IQ intelligence quotient.

challenge in estimating overall effects of POP mixtures from
biomonitoring studies is the inconsistency of biological matrix
and timing of exposure assessment. Most studies on POP
mixtures used single serum or plasma samples as the preferred
biological matrix. Given POP have long half lives in the human
body, blood samples assessed at a single time point serve as a
valid proxy to long-term internal dose of POP mixture exposures.
However, some studies also included other chemical or non-
chemical stressors in overall effect estimation of POP mixtures.
These stressors have shorter half-lives and higher intraindividual
variability, which often require repeated measurement to capture
the long-term exposure windows like the exposure windows of
POP mixtures [32]. Previous reviews have suggested the various
degrees of exposure misclassification from different classes of
chemicals might lead to differential bias in multi-pollutants
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models [32]. Therefore, caution should be exercised when
selecting various stressors from biospecimens as components in
the overall effects estimation of environmental pollutant mix-
tures. A potential solution for addressing measurement error
arising from inconsistency of biological matrix is latent variable
models [48]. Latent variable models create latent variables
between biological matrix to adjust for measurement errors.
Previous studies on mercury exposures used structural equation
modeling by allowing correlations between maternal hair and
cord measured exposures [66].

More than half of the studies selected chemicals in mixture
methods modeling based on chemical classes. This is in
alignment with the current risk assessment suggestions to
regulate chemicals based as chemical classes [67]. The emphasis
on chemical class-based categorization in studies is rooted in the
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pursuit of understanding common biological mechanisms of
action. Chemicals within the same class typically share analogous
structural features and functional properties, resulting in similar
interactions within biological systems [67]. As a complement to
mixture methods modeling, strategies have been used for
combining chemicals from the same class in overall effect
estimations of POP mixtures. For example, aggregated variables
of chemicals such as raw or weighted sums based on
toxicological properties of chemicals (i.e. Toxicity equivalent
quantity (TEQ)) were used to generate mixture components for
POPs from the same class in mixture methods. Studies that
assessed multiple classes of POPs share similar reasoning as
studies based on single chemical class, aiming to elucidate
common biological mechanisms of action of POP mixtures. For
example, POPs which were endocrine disrupting chemicals (EDCs)
are usually grouped together in mixture analysis to provide a
comprehensive understanding of health impacts since these
POPs share common biological mechanisms. POPs, that were
EDCs, were often grouped with other EDCs such as phthalates,
phenols, parabens as indicated in our case study on the overall
effects on birth weight.

The exposome approach, advocating a shift from singular
chemical or chemical class-focused investigations, urges research-
ers to assess the effects of jointly acting mixtures that encompass
both chemical and non-chemical stressors. We found several
studies incorporated the exposome perspective to include non-
chemical components such as stress and anxiety in the
association between POP mixtures and adverse pregnancy
outcomes [68, 69].

Application of mixture methods on overall effects of POP mixtures.
The most common modeling strategies of estimating overall
effects of POP mixtures were dimension reduction, index
modeling, response-surface modeling and latent variable models.
Among these common strategies, response-surface modeling is
the most used strategy to estimate the overall effects of POP
mixtures. Response-surface methods allow flexible modeling
between complex high-dimensional mixture components and
health outcomes and can capture non-linear and non-addictive
overall effects of POP mixtures [70]. BKMR, as the most used
methods under the response-surface modeling group, is a semi-
parametric and supervised method, which provides estimates of
overall effects in risks at a particular quantile vs. the median [22].
BKMR offers several additional features in estimating overall
impact of environmental pollutants mixtures. BKMR includes both
the component-wise and hierarchical variable selection functions,
allowing incorporation of prior knowledge of grouping in
chemicals to assess single or multiple POP class chemical
relationships with health outcomes [71]. BKMR also provides
qualitative assessment of chemical-chemical interactions. How-
ever, response-surface modeling such as BKMR is usually
computationally expensive and needs large sample sizes to
ensure statistical power. It is also relatively difficult to interpret
the overall effects estimates and compare these across studies.
Previous review studies on mixture methods encouraged the
complementary use of multiple mixture methods [20, 21, 72]. We
reported 55 studies utilizing two or more mixture methods in
their analysis. The most frequently applied combination of
modeling strategy is response-surface modeling with index
modeling, using BKMR and WQS or quantile g-computation.
Index modeling is easy to implement and interpretable. Overall
effects are interpreted as effect estimates of weighted index, but
they make strong assumptions in which the mixture effects are
additive and exposure-response relationships are linear [32]. The
main difference between WQS and quantile g-computation is
WQS estimates overall effects based on prior-hypothesized
directions (all positive or all negative). More recent expansions
on WQS such as grouped WQS and Bayesian grouped WQS
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relaxed on this assumption and quantile g-computation did not
have a pre-specified hypothesis on components effect directions
[73, 74]. The overall effects of POP mixtures were widely
hypothesized to be detrimental. Consequently, researchers need
to exercise discretion in determining whether to enforce
directional consistency in the modeling of the overall effects of
POP mixtures.

Based on the complexity and computational demands asso-
ciated with BKMR, it is recommended to prioritize index modeling
for initial analyses [75]. Although BKMR offers flexible assess-
ments of environmental pollutant mixtures and allows for
component-wise and hierarchical variable selection, its imple-
mentation requires large sample sizes and significant computa-
tional resources. Additionally, interpreting the overall effects and
comparing them across studies can be challenging. Conversely,
index modeling is more straightforward to implement and
interpret, making it a practical first step. Given these considera-
tions, starting with index modeling before employing BKMR can
streamline the analysis process while maintaining robustness in
assessing environmental health impacts.

In addition, apart from the dimension reduction methods,
methods as index modeling, response-surface modeling and
latent variable models require prior knowledge or researcher’s
threshold choice of mixture components included in modeling.
The choice of chemicals in supervised methods is usually
informed by the exposure assessments or findings from
toxicological studies. Unsupervised methods such as shrinkage
approaches like LASSO, WQS or traditional dimension reduction
methods can help with the decision of choosing chemical
components [21, 32]. Researchers need to make decisions on
whether to use unsupervised methods or supervised methods
with prior knowledge for chemical combinations they would like
to estimate the overall effects of POP mixtures in the outcome of
interest.

Reporting standard. The reporting standards for estimating the
overall impact of mixtures of POPs in epidemiological studies
exhibit notable heterogeneity. In our case study on PFAS mixtures
and birth weight, eight studies focus on individual PFAS within the
mixture. In contrast, eleven studies adopted a more comprehen-
sive exposome-based strategy, considering multiple classes of
POPs simultaneously or other chemical stressors in addition to
PFAS. Moreover, nine different mixture methods were used across
the studies we included in the case study, which hinders direct
comparisons across studies and poses challenges for synthesizing
evidence across the literature.

Studies with index models offer relatively interpretable effect
estimates of weighted index of combined POP mixtures.
However, the issue arises as percentiles in each study population
differ, requiring conversion to absolute numbers for improved
comparability. Similarly, in response-surface modeling methods
like BKMR, estimates are usually presented in percentages of
exposures, posing a similar challenge for cross-study compar-
isons. Additionally, in dimension reduction models like PCA,
although estimates are easier to compare across studies, the
difficulty lies in inferring realistic chemical mixtures in human
bodies due to the ambiguous nature of cluster compositions. To
enhance reporting practices in overall effects of POP mixtures,
some practices can be implemented across studies. For example,
while BKMR allows exploration of chemical-chemical interaction
and non-linear overall effects, it is often observed that the dose-
response relationship is described qualitatively rather quantita-
tively. To address this, it is recommended to report the group
Posterior inclusion probabilities (PIPs) of each pre-defined
groups as the overall impacts of sub-groups of POP mixtures.
Additionally, reporting POP mixtures concentrations at each
percentile of the analytical samples for both surface modeling
and index modeling will greatly enhance the interpretability of
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effect size on health outcomes and will ensure that future meta-
analyses can more effectively compare and synthesize findings
of the overall effects POP mixtures on health outcomes.

Incorporation of chemical-chemical interactions. The current
modeling strategies of estimating overall effects of POP mixtures
emphasized on the cumulative burdens of mixtures of interest. It
is also important to focus on whether the overall effects of POP
mixtures have any departure from the additive effect of individual
POP components as well as identification of specific interactions
among POP components across the entire dose range [76-78]. In
the case study of PFAS mixtures on birth weight, we observed that
very few studies have identified interactions between chemical
stressors. In fact, the statistical power to detect interactions is
usually low, particularly with multiple chemical stressors, making
the discovery of chemical-chemical interactions challenging using
common modeling strategies [32, 79, 80]. BKMR can provide
qualitative measures of chemical interaction effects on health
outcomes. Boosted regression trees (BRT) can estimate H-statistics
—unique measures of interaction relevance—and rank the
importance of pairs of chemicals [81, 82]. These methods can be
coupled with regression models or mixture methods with index
modeling strategies to formally evaluate the interaction effects of
selected interactions. Additionally, machine learning methods
such as signed iterative random forest (SiRF) coupled with WQS
can provide an alternative solution to quantitatively searching for
synergistic effects of chemical stressors on health outcomes [76].

Strengths and limitations

This study is the first scoping review on the overall effects of POP
mixtures using mixture methods. The review offers a compre-
hensive perspective on the existing literature concerning the
overall effects of POP mixtures and identifies challenges
associated with the application of statistical methods in
epidemiological studies related to POP mixtures. We included
all studies with biomonitoring measurement of POP mixtures
and all health outcomes to showcase the differences in
applications of mixture methods. This review has certain
limitations. The literature uses mixed terminology to refer to
“overall effects of POP mixtures”, having different nomenclatures
such as mixture effects, collective effects or cocktail effects as the
overall impact of chemical mixtures. The choice of terminology
might have inadvertently excluded relevant studies estimating
overall effects of POP mixtures. However, our rigorous two-stage
search approach was designed to comprehensively capture
studies utilizing both traditional and novel mixture methods,
which attenuated the risk of overlooking relevant studies. Our
study also did not focus on synergistic or antagonistic effects of
POP mixtures from the toxicology perspective. Future research
should investigate potential interaction effects among individual
POP components in relation to the overall effects of POP
mixtures. In addition, while estimates of the overall effects of
POP mixtures focus on population-level impacts, future mixture
methods analysis should also consider individual-level repeated
measured POP mixtures under the exposome framework to help
developing precision environmental health interventions.

CONCLUSION

This scoping review synthesized the existing body of literature on
the application of statistical methodologies for estimating the
overall effects of POP mixtures. Our comprehensive analysis sheds
light on the current state of knowledge in this domain and
highlights the methodological challenges that persist in epide-
miological studies dealing with POP mixtures. By offering a holistic
view, we hope to guide future research endeavors, encouraging a
more nuanced understanding of the complexities involved in
assessing the overall effects of POP mixtures.
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