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BACKGROUND: Shorter telomere length is a biomarker of cellular aging influenced in early life. Exposure to environmental hazards
and psychosocial stressors disproportionately impact socially marginalized populations and have been linked with shorter
telomeres.
OBJECTIVE: To estimate joint associations between residential neighborhood greenness, traffic, noise, and perceived
neighborhood quality, psychosocial stress and depression on telomere length of birth parents and their newborns.
METHODS: Telomere length (T/S ratio) was measured in leukocytes from 354 2nd trimester parental and 488 umbilical cord blood
samples collected at delivery from the Chemicals in Our Bodies cohort in San Francisco, California. Normalized difference vegetation
index (NDVI), traffic volume, and noise were estimated based on residential address. Perceptions of neighborhood quality,
psychosocial stress, and depression were collected via questionnaire. We used quantile g-computation to assess joint associations
between all exposures and newborn and parental T/S in separate models controlling for parental age, race and ethnicity, education,
pre-pregnancy body mass index, and gestational age (cord T/S only). We used interaction terms to assess effect measure
modification by nativity, race and ethnicity, and educational attainment.
RESULTS: Parental and newborn T/S were not correlated with individual measures of built environment or psychosocial stressors
(rho from −0.08 to 0.08). A simultaneous one quartile increase in all adverse exposures was associated with a decrease in newborn
T/S (mean difference [95% CI]=−0.03 [−0.08, 0.01]) that was stronger when restricting to paired parental-newborn samples and
controlling for parental T/S (−0.08 [−0.15, −0.01]). Interaction analysis revealed stronger associations among immigrant (−0.08
[−0.16, 0.00]) vs. US-born (−0.02 [−0.07, 0.04]) and college-educated (−0.07 [−0.12, −0.02]) vs. non-college educated (0.03 [−0.07,
0.12]) participants. We saw no association with parental telomere length.
SIGNIFICANCE: Results suggest exposure to adverse neighborhood built environments and individual-level psychosocial stressors
during pregnancy is associated with reductions in telomere length among newborns.
IMPACT: Telomere length at birth predicts relative telomere length in adulthood, suggesting much of the link between telomere
length and longevity is established early in life. While neighborhood environments have been linked with shorter telomeres in
adulthood, few prior studies have assessed newborn telomere length or joint associations with psychosocial stressors. In a diverse
birth cohort, we show that the mixture of neighborhood lack of greenness, traffic, and noise, coupled with individual-level poor
perceptions of neighborhood quality, stress, and depression is associated with decreased telomere length among newborns, with
slightly stronger effects among immigrants and college-educated birth parents.
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INTRODUCTION
Shorter telomeres are a biomarker of cellular aging associated
with increased risk of multiple aging-related diseases and death
[1, 2]. Telomeres are non-coding DNA regions that protect the
ends of chromosomes and naturally shorten over time with cell
replication. However, telomeres can also shorten due to factors
like inflammation and oxidative stress [3, 4]. Chronic stress, early
life adversity, and environmental factors such as air pollution have
all been associated with shorter telomeres and/or telomere
attrition in adulthood [5, 6].
Telomere length at birth is highly variable and predictive of

relative telomere length as an adult [7]. When comparing
leukocyte telomere length across individuals in adulthood, relative
rankings change very little over time [8]. This suggests that much
of the link between telomere length and longevity is established
early in life. Lower rates of telomere attrition have also been
observed among the children of parents with longer telomeres [7].
These factors underscore the importance of identifying modifiable
determinants of telomere length for pregnant people and their
infants at birth [9].
The neighborhood environment strongly influences a person’s

exposure to environmental hazards and social stressors that have
been linked to telomere length. The environmental justice literature
documents the confluence of and interaction between environ-
mental and social stressors to health in ethno-racially and socio-
economically marginalized populations, contributing to health
disparities that could be reflected in differences in telomere length
[10]. Prior studies have associated residential particulate air pollution
and proximity to major roads with shorter telomere length in
newborns [11, 12], potentially through mechanisms involving chronic
inflammation, which promotes cell turnover and oxidative stress [3].
Traffic-related air pollution is known to impact both inflammation
and cellular stress [13]. Residential noise exposure has been
associated with maternal anxiety and depression [14, 15], and
psychosocial stressors have been shown to influence telomere
length [5, 16, 17]. Meanwhile neighborhood greenspace has been
associated with slower telomere attrition in children [18]. Longer
telomeres in adults [19–24] and slower telomere attrition in children
[25] have also been linked with neighborhood satisfaction and
favorable perceptions of neighborhood safety, order, and/or social
cohesion, although findings are not consistent across all studies or
populations, and we are aware of only one prior study from our
group that has assessed perceptions of neighborhood quality in
relation to telomere length in newborns [26].
We used data from a San Francisco, California birth cohort to

better understand the influence of the built environment and
psychosocial stressors on telomere length during pregnancy and in
newborns at delivery. We employed mixture methods to examine
the joint association between residential greenspace, traffic, noise,
and individual-level measures of psychosocial stressors including
perceived neighborhood quality on telomere length in birth parents
and their newborns. We hypothesized that residence in neighbor-
hoods with less vegetation, more traffic or more noise, as well as
poorer perceived neighborhood quality, perceived stress, and
depression would all be associated with shorter telomere length
among birth parents and newborns. Since race, ethnicity, and
socioeconomic status are often correlated with residential proximity
to environmental hazards and a paucity of urban access to
greenspace [27, 28], we hypothesized that associations in our study
would be stronger among immigrants, ethno-racially minoritized
parents, and parents with lower levels of educational attainment.

SUBJECTS AND METHODS
Study population
The Chemicals in Our Bodies (CIOB) cohort is an ongoing prospective birth
cohort study of the cumulative effects of environmental chemicals and
psychosocial stressors on fetal growth and child development. Participants

have been recruited since 2014 from three hospitals in San Francisco, CA
during their 2nd trimester of pregnancy [29]. Pregnant individuals were eligible
if they were 18 years of age or older, spoke English or Spanish, were expecting
a singleton birth, and did not have a diagnosed pregnancy complication. The
present analysis includes the subset of CIOB participants with a residential
address that could be geo-coded and who had umbilical whole blood
samples and/or venous whole blood samples collected and analyzed for
newborn (n= 488) and/or parental (n= 354) telomere length, respectively
(Supplementary Fig. S1). Parental leukocytes were obtained from 2nd trimester
blood samples while newborn samples were collected at delivery.

Built environment measures
We estimated characteristics of the neighborhood built environment
based on the parent’s geocoded residential address reported at birth. We
utilized the Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVI) product to derive
as an estimate of neighborhood greenness. NDVI is a remotely sensed
measure of primary plant productivity equal to the ratio of the difference
between near-infrared and visible light to the sum of these two measures.
It ranges from −1.0 to 1.0 with larger values indicating higher levels of
vegetation and photosynthetic activity. The MODIS product provides 16-
day composite NDVI images at 250m × 250m resolution using high-
quality pixels from daily, atmosphere-corrected observations [30]. We
chose an image from March 5–20, 2016 to characterize residential
greenness for CIOB participants because it corresponds roughly with the
midpoint of pregnancies included in this study, corresponds to the end of
the wet season when vegetation is at its peak and thus easiest to measure,
and is not overly affected by building shadows due to sun inclination
which are highest in winter. The mean NDVI within a 300m circular buffer
distance of the study participant’s home was calculated using Zonal
Statistics in ArcGIS (ESRI, Redlands, CA). The 300m distance was selected
based on two recent meta-analyses suggesting the associations between
birthweight and NDVI at that distance [31, 32] Negative NDVI values
generally indicate water and were suppressed prior to averaging so as not
to downwardly bias estimates for participants residing near the coast.
We estimated neighborhood traffic volume (average number of trips per

month within 200m of the home) using data on passenger vehicle and
commercial truck trips from StreetLight Data. StreetLight Data metrics are
derived from empirical-statistical modeling of space-time data frommillions of
GPS-enabled mobile devices and have been validated against other more
costly and infrequent conventional methods of estimating traffic density
including license plate surveys and roadway vehicle counts [33, 34]. We
considered trips within a 200m circular buffer distance from the participant’s
residential address in light of prior studies finding most traffic-related
pollutant concentrations decay to background levels within a few hundred
meters of roadways [35–37]. The traffic metric corresponds to the estimated
number of motorized vehicles that passed through, started, or stopped within
each buffered zone per month and was generated using a “Zone Activity
Analysis” on the StreetLight Data analysis platform. We derived a weighted
average across the duration of pregnancy for each participant from these
monthly counts. Based on consultation with StreetLight staff, we performed
additional calibration of truck trip volumes to improve accuracy using loop
counters at two San Francisco locations from the California Department of
Transportation public data portal [38]. A calibration factor was derived by
comparing data from these two loop counters to StreetLight traffic volume
estimates at the same location and then applied to all locations in our analysis.
Cohort pregnancies spanned from 2013 to 2019, but we used 2019 monthly
traffic data to estimate traffic exposure for all participant because our interest
was primarily in spatial (neighborhood) differences in traffic volume which are
primarily influenced by the location of major roadways and do not vary
significantly year-to-year, and because StreetLight metric accuracy improved
over time due to the incorporation of location-based services that became
available in 2016, increased sample size, and improved algorithms.
Exposure to noise from transportation was assessed using 24-hour

equivalent sound level noise exposure estimates from the National
Transportation Noise Map from the Bureau of Transportation Statistics. The
map provides A-weighted decibel levels, starting at 45db(A), at 30 × 30m
resolution to better represent human auditory perception, approximating
average noise energy due to transportation sources (road and aviation) [39].
Parents were assigned the value of the pixel within which they resided.

Psychosocial stress and stressors
Information on perceptions of neighborhood quality, perceived stress and
depression were obtained via a standardized questionnaire administered
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by study personnel during a 2nd-trimester prenatal care visit. Neighbor-
hood quality was measured using a previously validated instrument
including fifteen questions related to perceptions of collective efficacy,
neighborhood safety, neighborhood satisfaction, and physical order [26].
Each question included Likert scale response scored 1 (strongly disagree)
to 5 (strongly agree), with positively worded statements reverse coded so
that higher scores always corresponded with poorer perceived neighbor-
hood quality. Scores were summed across questions and ranged between
15 and 69. Perceived stress was measured using the 4-item Perceived Stress
Scale, with values ranging from 0 to 16 [40], where a higher score corresponds
to perceptions of life as more uncontrollable, unpredictable, and overloading.
Depression was measured using the 10-item Center for Epidemiologic
Studies-Depression [41], a clinical screening tool that measures how often
participants experience depression symptoms, with scores ranging from 0 to
30, according to the Diagnostic Statistical Manual-IV.

Telomere length
Parental venous whole blood samples were collected during a 2nd-
trimester prenatal visit. Umbilical cord blood was collected at delivery.
Average telomere length was measured in genomic DNA extracted from
frozen samples at the University of California, San Francisco Blackburn Lab
using a quantitate polymerase chain reaction (PCR) assay methods
described previously [42]. Average telomere length is defined as the
relative ratio of telomere repeat abundance to single-copy gene
abundance (T/S ratio). All samples were measured twice with triplicate
wells. Lab personnel were blinded to all demographic and clinical data.

Covariates
Self-reported country of birth, racial and ethnic identity, and educational
attainment were collected via the second-trimester questionnaire. Birth
parent’s age, gestational age in weeks, infant sex, and pre-pregnancy body
mass index were abstracted from participants’ medical records.

Statistical analysis
We reviewed descriptive statistics for all variables of interest across
newborn, parental, and paired parent-newborn observations. We com-
pared values of our exposure and outcome variables between immigrants
and US-born participants and across categories of educational attainment
and race and ethnicity using the Kruskal–Wallis Rank Sum and
Wilcoxon–Mann–Whitney tests because most variables were not normally
distributed. We used Spearman’s correlation coefficients to assess the
degree of correlation between all variables.
We used quantile g-computation to examine the joint association

between our measures of the built environment and psychosocial stressors
and the outcome of telomere length. Telomere length of birth parents and
their newborns were considered in separate models. We used the qgcomp
package in R to estimate the effect of simultaneously increasing all
exposures placed in a defined mixture by one quantile on the change in
telomere length using a parametric, generalized linear model based
implementation of g-computation [43]. Quantile g-computation is a
statistical technique used to assess the joint effects of exposure mixtures
on an outcome variable. One of its strengths, as compared to other
approaches to mixture analysis, is that it allows for exposure-outcome
relationships with opposite directions among variables in the mixture. In
order to do this, exposures are divided into quantiles based on their
distributions and fitted on a regression model where the outcome is
modeled as a function of the quantile transformed exposures, adjusting for
confounders. The joint effect of exposures is estimated as a weighted sum
of the individual exposure contributions, assigning each variable a positive
or negative weight equivalent to the proportion of the partial effect in the
positive or negative direction, with weights obtained from the regression
coefficients, representing each exposure’s relative contribution to the
outcome [43]. Weights in each direction (positive and negative) each sum
to one and the magnitude of positive weights cannot be compared to the
magnitude of negative weights. For ease of comparing relative variable
weights, we reverse coded NDVI in the mixture models by subtracting
values from the maximum observed value so that higher values of all
variables corresponded with conditions we hypothesized were detrimental
(less greenspace, more traffic and noise, poorer perceived neighborhood
quality, etc.). We controlled for the following covariates based on evidence
of associations with telomere length in prior studies: parental age, race and
ethnicity, education, pre-pregnancy BMI, and gestational age (for newborn
models only). In particular, prior studies show telomeres shorten with age

and have observed longer telomeres among individuals with higher BMI,
Black race and Latina ethnicity [44–47]. We restricted to participants with
complete exposure data for built environmental and psychosocial stressor
variables to ensure the quantiles for each exposure would be calculated on
the same sample of individuals [43].
We ran additional models with interaction terms for nativity, race and

ethnicity, and educational attainment using the qgcompint package to test
for effect measure modification and because we observed differences in
built environment and psychosocial stressor values in our study population
with respect to these factors. When examining effect measure modification
by race and ethnicity, parents who identified with an ethnically or racially
minoritized population in the U.S. (Asian, Black, Latina, Pacific Islander,
Native American, or multi-racial) were grouped and compared to parents
who identified as non-Hispanic White due to small sample sizes for some
specific racial and ethnic groups (see Table 1). Educational attainment
categories were collapsed into yes or no college degree to similarly
minimize issues with small cell counts (see Table 1). Given the diversity of
the immigrant population in our sample, we additionally examined effect
modification by nativity in models stratified by race or ethnicity and
educational attainment.
We conducted several sensitivity analyses. First, we added infant sex as a

covariate in models of newborn telomere length given a prior study finding
an association between sex and telomere length among Latina newborns
[48] and prior work in this cohort in which we found telomere length among
male infants was more strongly correlated with exposure to exogenous
chemicals in utero [42]. Second, we repeated the analysis of newborn
telomere length omitting one significant outlier with high T/S ratio to ensure
the outlier was not driving any observed associations. Third, we repeated the
analysis using only paired parental/newborn samples and controlling for
parental T/S in models of newborn telomere length. We set quantiles in this
model equal to those for the full sample to make the effect estimates
between the two models more comparable. Fourth, we examined potential
non-linearity of the exposure effects by altering the number of quantiles
from 4 to 5, 10, and 15, and entering exposure variables as quadratic terms
[42, 43]. Finally, to assess the sensitivity of our results to the use of NDVI as
our measure of neighborhood greenness, we re-ran our primary analysis
with two alternative measures: 1) the area of green space within 300m of
parental residential address (in square meters) based on the 2016 National
Land Cover Database; [49] and 2) the distance to the nearest open access
park (in meters) derived using a park shapefile from the Green Info Network
[50]. We classified green as NLCD developed open space that is 80%
vegetation, deciduous forest, evergreen forest, mixed forest, dwarf shrub,
shrub, grassland, sedge, lichens, moss, pasture/hay, cultivated crops, woody
wetlands, and emergent herbaceous wetlands. Confidence intervals have
not been corrected for multiple comparisons, which should be taken into
consideration when interpreting our findings given the number of tests
performed. All analyses were conducted in R Version 4.1.2

RESULTS
Our sample consisted of 354 birth parents, 488 newborns, and 222
parental-infant pairs. Most birth parents had a college and/or
graduate degree and identified as White or Latina (Table 1).
Roughly 40% of parents were born outside of the U.S. As
expected, telomere length was longer among newborn (mean T/S
ratio= 1.5) than parental samples (mean T/S ratio= 1.0). Newborn
and parental telomere length were weakly correlated with each
other (ρ= 0.20) and inversely correlated with gestational age
(ρ=−0.11) and parental age (ρ=−0.16), respectively (Supple-
mentary Table S1). Built environment variables were moderately
correlated with each other in the expected direction (ρ between
−0.60 and 0.36, Supplementary Table S1). Poorer perceived
neighborhood quality was weakly correlated with traffic
(ρ= 0.14) and noise (ρ= 0.17), and NDVI (ρ=−0.16) in the
expected direction (Supplementary Table S1). Perceptions of
neighborhood quality, stress and depression were also weakly
correlated with each other in the expected direction (ρ between
0.10 and 0.28, Supplementary Table S1).
Birth parents without a high school degree and those with a

graduate degree lived in areas with less greenness and more
noise, and reported poorer neighborhood quality, more perceived
stress, and symptoms of depression, on average (Table 2). Asian
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and White participants lived in areas with the least noise and
reported the lowest perceived stress and depression, on average,
while Latina and Black participants lived in areas with the lowest
average greenness and most noise and reported the worst
neighborhood quality and highest amount of stress on average
(Table 2). In contrast, Black participants lived in neighborhoods
with markedly lower traffic on average than other racial and
ethnic groups. Compared to immigrants, U.S born parents lived in
neighborhoods with less greenness, traffic and noise, and
reported better perceived neighborhood quality and less depres-
sion on average (Table 2). Telomere length of birth parents and
newborns did not vary significantly with respect to nativity, race
and ethnicity, or education (Table 2).
Quantile g-computation suggested a one quartile increase in

the full mixture of adverse built environment variables and
psychosocial stressors was not strongly associated with parental or
newborn telomere length in the full study population (β= 0.01
[−0.03, 0.05] and β=−0.03 [95% CI−0.08, 0.01], respectively,
Table 3). Among parental samples, poor neighborhood quality,
noise and perceived stress contributed positively to the overall
mixture effect, with weights indicating an association with longer
telomere length, while depression, lower NDVI and traffic
contributed to the overall negative effect (Fig. 1A). In contrast,
among newborn samples, lower NDVI, depression and noise
contributed positively to the overall mixture effect, while poor
perceived neighborhood quality, perceived stress, and traffic
contributed negatively (Fig. 1B).

Restricting to parental-newborn paired samples and controlling
for parental telomere length strengthened the association
between the overall mixture and newborn telomere length. A
one-quartile increase in the full mixture of adverse built
environment and psychosocial stress measures was associated
with a reduction in T/S ratio (β=−0.08 [−0.15, −0.01], Table 3),
with traffic, noise and depression contributing negative weights
(Fig. 1C).
In the interaction analysis, we did not observe associations

between the overall mixture of environmental and social stressors
with parental telomere length (Table 4). A one quartile increase in
the adverse built environment and psychosocial stressor mixture
was more strongly associated with a decrease in newborn
telomere length among immigrant (β=−0.08 [−0.16, 0.00]) than
U.S. born participants (β=−0.02 [−0.07, 0.04]) (P-value for
interaction= 0.19) and among college educated participants
(β=−0.07 [−0.12, −0.02]) but not those without a college degree
(β= 0.03 [−0.07, 0.12]) (P-value for interaction= 0.08) (Table 4).
The mixture was also more strongly associated with a decrease in
newborn telomere length among White parents than parents from
minoritized racial or ethnic groups (P-value for interaction= 0.33)
(Table 4). Traffic contributed negatively to the overall association
with newborn telomere length among the immigrant and college
educated sample, consistent with our hypothesis, while lack of
greenness contributed positively to the association, inconsistent
with our hypothesis (Supplementary Figs. S2C, S3D). There was
little consistency in terms of weights for other variables in our

Table 1. Characteristics of the study population.

Newborn (N= 488) Parent (N= 354) Paired (N= 222)

Parental age, mean (range) years 34 (16–47) 33 (16–47) 34 (16–47)

Gestational age, mean (range) weeks 39.0 (31.0–42.0) 38.8 (28.0–41.0) 39.0 (31.0–41.0)

Education, N (%)

< High School (HS) 36 (7.4%) 43 (12.1%) 17 (7.7%)

HS Degree or Some College 88 (18.0%) 84 (23.7%) 37 (16.7%)

College Degree 140 (28.7%) 87 (24.6%) 64 (28.8%)

Graduate Degree 211 (43.2%) 120 (33.9%) 95 (42.8%)

Missing 13 (2.7%) 20 (5.6%) 9 (4.1%)

Race and ethnicity, N (%)

White 215 (44.1%) 132 (37.3%) 103 (46.4%)

Latina 130 (26.6%) 139 (39.3%) 61 (27.5%)

Asian 95 (19.5%) 53 (15.0%) 39 (17.6%)

Other/Multi-Raciala 21 (4.3%) 15 (4.2%) 9 (4.0%)

Black 20 (4.1%) 10 (2.8%) 6 (2.7%)

Missing 7 (1.4%) 5 (1.4%) 4 (1.8%)

Immigrant, N (%)

Yes 200 (41.0%) 149 (42.1%) 86 (38.7%)

No 277 (56.8%) 177 (50.0%) 127 (57.2%)

Missing 11 (2.3%) 28 (7.9%) 9 (4.1%)

Parental telomere length (T/S), mean (range) 1.0 (0.6–1.8) 1.0 (0.6–1.8) 1.0 (0.6–1.8)

Newborn telomere length (T/S), mean (range) 1.5 (0.8–3.3) 1.4 (0.9–2.1) 1.4 (0.9–2.1)

NDVI within 300m, mean (range) 0.30 (0.1–0.7) 0.39 (0.1–0.7) 0.31 (0.1–0.7)

Traffic within 200m, mean (range) 575,569 (15,182–2,615,762) 609,370 (15,182–2,620,886) 583,547 (15,182–2,615,762)

Noise, mean (range) dBA 47.2 (24.8–64.2) 47.4 (24.8–64.2) 47.1 (24.8–64.2)

Neighborhood quality, mean (range)b 38.8 (15.0–74.0) 38.7 (15.0–71.0) 38.0 (15.0–61.0)

Perceived stress, mean (range) 5.1 (0.0–13.0) 5.2 (0.0–15.0) 5.1 (0.0–12.0)

Depression, mean (range) 6.7 (0.0–28.0) 6.9 (0.0–26.0) 6.6 (0.0–26.0)
aIncludes Pacific Islanders, Native Americans, and other groups including multi-racial participants.
bHigher values indicate poorer perceived neighborhood quality.
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interaction analysis of newborn telomere length (Supplementary
Figs. S2, S3).
When we further stratified by race or ethnicity and educational

attainment, we found that being an immigrant was associated
with a decrease in parental telomere length per quartile increase
in our mixture among ethno-racially-minoritized groups (β= –0.04
[−0.11, 0.04]) vs. β= 0.06 [−0.01, 0.13] for U.S. born, P-value for
interaction= 0.06) and participants without a college degree

(β=−0.05 [−0.17, 0.08]) for immigrants vs. β= 0.12 [−0.03, 0.28]
for U.S. born, P-value for interaction= 0.10) (Supplementary
Table S2). We found our mixture to be more strongly associated
with a decrease in newborn telomere length among ethno-racially
minoritized immigrants (β=−0.06 [−0.15, 0.02]) then U.S. born
participants from ethno-racially minoritized groups (β= 0.02
[−0.06, 0.10]) (P-value for interaction= 0.14) and college-
educated immigrants (β=−0.11 [−0.20, −0.02]) compared to

Table 3. Quantile g-computation estimates and 95% confidence intervals for the mean difference in newborn and parental telomere length (T/S
ratio) for a one quartile increase in the overall mixture of adverse built environment and psychosocial stressors.

Parental T/S Newborn T/S

Na β (95% CI) Na β (95% CI)

All samples 256 0.01 (−0.03, 0.05) 385 −0.03 (−0.08, 0.01)

Paired samples 175 0.00 (−0.06, 0.05) 175 −0.08 (−0.15, −0.01)

Models control for parental age, race and ethnicity, education, pre-pregnancy BMI, and gestational age (newborn T/S only). When restricting to paired samples,
models of newborn T/S additionally control for parental T/S.
aSample sizes are lower than in Table 2 because the sample was restricted to participants with complete exposure data for built environmental and
psychosocial stressor variables.

Traffic
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Poorer
 Neighborhood Quality
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Depression

0.4 0.2 0 0.2
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bl

es

A
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C

Fig. 1 Weights representing the proportion of the positive and negative effects in the overall mixture in relation telomere length.
Panel A shows weights for parental (N= 256), B for newborn (all, N= 385) and C for paired newborn (N= 175) samples. Note that the
magnitude of positive weights can only be compared to other positive weights (not to negative weights) and vice versa. Black bars indicate
negative weights, while gray bars indicate positive weights.

Table 4. Quantile g-computation results of effect modification by nativity, race and ethnicity and education.

Parental T/S Newborn T/S

N β (95% CI) P-value N β (95% CI) P-value

Nativity

Immigrant 103 −0.02 (−0.09, 0.05) 0.37 152 –0.08 (−0.16, 0.00) 0.19

U.S. born 145 0.02 (−0.04, 0.07) 229 −0.02 (−0.07, 0.04)

Race and ethnicity

Minoritized 128 0.00 (−0.07, 0.07) 0.90 176 −0.02 (−0.09, 0.05) 0.33

White 106 0.01 (–0.05, 0.07) 173 −0.07 (−0.14, 0.00)

Educational attainment

No college degree 76 0.05 (–0.04, 0.14) 0.34 90 0.03 (−0.07, 0.12) 0.08

College degree 174 0.00 (−0.05, 0.05) 292 –0.07 (−0.12, −0.02)

Quantile g-computation estimates and 95% confidence intervals for the mean difference in parental and newborn telomere length (T/S ratio) for a one
quartile increase in the overall mixture of adverse built environment and psychosocial stressors. Models control for parental age, educational attainment
(nativity and race and ethnicity models only), race and ethnicity (nativity and education models only), pre-pregnancy BMI, and gestational age (newborn T/S
only). P-values are for interaction.
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college-educated U.S. born participants (β=−0.03 [−0.09, 0.03])
(P-value for interaction= 0.15) (Supplementary Table S2). Being an
immigrant was also associated with stronger reductions in
newborn-telomere length among White and non-college edu-
cated participants, but P-values for interaction were larger in these
comparisons (0.48, and 0.19, respectively).
In sensitivity analysis of the main model, effect estimates for

newborn telomere length changed minimally when controlling for
infant sex or removing one outlier (Supplementary Table S3).
Effect estimates for parental and newborn T/S became smaller
with each increase in quantiles from 4 to 5, 10 and 15 quartiles,
but the direction of effect estimate did not change (Supplemen-
tary Table S3). The sensitivity analysis including quadratic terms
for exposure variables similarly showed no evidence of non-linear
effects (Supplementary Table S3). In our evaluation of alternative
measures of greenness, we found that replacing NDVI with the
amount of greenspace or distance to the nearest park resulted in
very similar overall effect estimates, with the direction of weights
remaining consistent (negative weights for parental samples,
positive weights for newborns) (Supplementary Table S4; Supple-
mentary Figure S4).

DISCUSSION
Results from this study of a diverse pregnancy cohort from San
Francisco suggest the combination of adverse built environment
and psychosocial stressors was associated with a decrease in
newborn telomere length, especially among paired samples for
which we were able to control for parental telomere length (which
is important given the relatively high heritability of telomere length)
[51]. We also observed modestly stronger effects among immi-
grants and college-educated parents compared to parents born in
the U.S. and with lower levels of educational attainment, although
the evidence for interaction was only statistically significant at
alpha= 0.20 and 0.10, respectively. Among paired samples, we
observed a mean reduction in newborn T/S ratio among of −0.08
[−0.15, −0.01] per one quartile increase in the mixture of adverse
built environment conditions and psychosocial stressors. This
equates to roughly eight additional years of aging, based on an
estimated telomere shortening rate of 0.01 T/S per year from a
systematic review of studies in adults [52]. Our effect estimate is also
stronger than the pooled estimates from recent meta-analyses of
the relationship between newborn telomere length and parental
stress (per one unit increase in parental psychosocial stress score) or
air pollution (per 10 μg/m3 increase in in-utero exposure to fine
particulate matter or nitrogen dioxide air pollution) [6, 53].
When looking at variable weights, only traffic consistently

contributed to the negative association with newborn telomere
length across paired samples (Fig. 1C) and the two subsets of the
study population we considered (immigrants and college-edu-
cated, Supplementary Figs. S2C, S3D). Noise and depression
additionally contributed negatively to the association among
paired samples, noise and poor perceived neighborhood quality
among immigrants, and perceived stress and depression among
college educated parents, suggesting the factors driving the
association with shorter telomeres may vary across populations.
Exposure to greenspace has been associated with longer telomere
length and lower telomere attrition in young children [18, 54];
however we found no evidence that greenness was associated
with longer telomere length at birth.
The exposures we considered did not appear to influence

telomere length among pregnant adults in our study. Our analysis
was limited by the fact that we had only one measure of parental
telomere length and were unable to look at attrition over time. It is
possible that the exposures we considered influence the rate of
telomere shortening, which we were unable to assess due to a
lack of historical measures of telomere length. We also lacked
residential histories to construct cumulative measures of exposure

to neighborhood characteristics across the life course for
participants that moved during their lifetimes.
We observed differences in neighborhood built environment

characteristics for US born versus immigrant participants and
across race and ethnicity and educational attainment. Most, but
not all patterns we observed were consistent with the environ-
mental justice literature documenting ethno-racially minoritized
populations and lower socioeconomic status have less access to
environmental amenities and higher exposure to environmental
hazards [55–57]. Interestingly, participants with a graduate degree
resided in areas with the least desirable built environment
characteristics (less greenness, more traffic, and more noise, on
average), while Black participants lived in areas with less traffic on
average. This likely reflects recent gentrification and displacement
of ethno-racially minoritized populations and populations with
lower socioeconomic status from San Francisco’s urban core,
which has been especially pronounced within the city’s Black
population, and the suburbanization of poverty regionally [58, 59].
The level of greenness, traffic, and noise were correlated with

individual participants’ perceptions of their neighborhood quality,
and poorer neighborhood quality was in turn correlated with
higher perceived stress and symptoms of depression during
pregnancy. This is consistent with prior work suggesting that the
neighborhood built environment can ‘get under the skin’ to
influence mental health [60, 61]. For example, residential tree
canopy has been associated with lower perceived stress among
pregnant people with a history of anxiety or depression [62], while
noise has been associated with depression during and after
pregnancy in prior studies [14, 15].
Strengths of our study include its relatively large sample and

racial/ethnic and socioeconomic diversity compared to prior
studies of telomere length among pregnancy cohorts. Unlike
other mixture approaches such as weighted quantile sum (WQS),
our use of quantile g-computation allowed us to consider the joint
effect of multiple exposures without assuming homogeneity in
the direction of the relationships between individual exposures
and our outcomes. Indeed, assessing single measures of environ-
mental and social stressors, or summing across them, may not
accurately capture how these kinds of exposures are likely to co-
occur in complex ways that may have a joint or cumulative effects
on health outcomes. Study limitations include that parental
exposures and telomere length were measured at the same time,
and the lack of time-varying measures of our outcomes or
exposures of interest. Additional potential limitations include the
use of cord blood to assess newborn telomere length, which can
be susceptible to contamination from parental blood [63]. The
remotely sensed NDVI measure we utilized also cannot distinguish
between types of vegetation (i.e. tree canopy, grass, etc.), or public
accessibility to green spaces that may have varying capacity to
benefit health [64, 65]. We also lacked measures of psychological
resilience, measured as an individual’s capacity to maintain
positivity and satisfying social relationships amid stress or stressful
experiences, which has been shown in one prior study to
ameliorate the effects of parental stress on newborn telomere
length [66]. Finally, while we did adjust for known covariates, as
with all observational studies, we cannot rule out the possibility of
individual or area-level residual confounding. While the diversity
of our sample increases generalizability, further research is needed
to confirm our findings in other populations.
To our knowledge, our study is the first to examine how

mixtures of neighborhood built environmental factors and
individual-level perceptions of psychosocial stressor exposures
affect telomere length. We found that the mixture of neighbor-
hood lack of greenness, traffic, and noise, coupled with individual-
level poor perceptions of neighborhood quality, perceived stress,
and depression is associated with decreased telomere length
among newborns, with slightly stronger effects among immi-
grants and college-educated birth parents. Future studies should
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extend the geographic scope of study populations to assess the
extent to which effects might vary regionally and across
demographic groups.
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