Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood pressure variability correlates with right ventricular strain in women with gestational hypertension and preeclampsia

Abstract

The aim of this study was to evaluate the short- and long-term blood pressure (BP) variability and right ventricular (RV) remodeling in women with gestational hypertension and preeclampsia, as well as their association. This cross-sectional study included 161 pregnant women (56 normotensive controls, 55 patients with gestational hypertension, and 50 patients with preeclampsia) after 20 weeks of gestation. All women underwent 24-h ambulatory BP monitoring and echocardiographic examination. Our findings showed that 24-h, daytime and nighttime systolic and diastolic BPs, as well as visit-to-visit systolic and diastolic BPs, were significantly higher in women with gestational hypertension and preeclampsia than in control group. Parameters of short- and long-term BP variability gradually increased from controls, throughout women with preeclampsia, to those with gestational hypertension. RV diameter, E/e′ and PAP were significantly higher in women with gestational hypertension and preeclampsia than in controls. Global and free wall RV longitudinal strains, as well as corresponding endo- and epicardial strains, gradually reduced from controls to women with preeclampsia. Parameters of short- and long-term BP variability were independently associated with global and free wall RV longitudinal strain. In conclusion, short- and long-term BP variability was higher in women with pregnancy-induced hypertensive disorders. RV diastolic function and mechanics were deteriorated in these women comparing with controls. A significant association between BP variability and RV longitudinal strain underlines the importance of determination of short- and long-term BP variability during pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lo JO, Mission JF, Caughey AB. Hypertensive disease of pregnancy and maternal mortality. Curr Opin Obstet Gynecol. 2013;25:124–32.

    Article  Google Scholar 

  2. Theilen LH, Fraser A, Hollingshaus MS, Schliep KC, Varner MW, Smith KR, et al. All-cause and cause-specific mortality after hypertensive disease of pregnancy. Obstet Gynecol. 2016;128:238–44.

    Article  Google Scholar 

  3. Yu L, Zhou Q, Peng Q, Zeng S, Yang Z. Velocity vector imaging echocardiography and NT-proBNP study of fetal cardiac function in pregnancy-induced maternal hypertension. J Clin Ultrasound. 2019;47:285–91.

    Article  Google Scholar 

  4. Orabona R, Vizzardi E, Sciatti E, Bonadei I, Valcamonico A, Metra M, et al. Insights into cardiac alterations after pre-eclampsia: an echocardiographic study. Ultrasound Obstet Gynecol. 2017;49:124–33.

    Article  CAS  Google Scholar 

  5. Liu W, Li Y, Wang W, Li J, Cong J. Layer-specific longitudinal strain analysis by speckle tracking echocardiography in women with early and late onset preeclampsia. Pregnancy Hypertens. 2019;17:172–177.

    Article  Google Scholar 

  6. Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, et al. Acute cardiac effects of severe pre-eclampsia. J Am Coll Cardiol. 2018;72:1–11.

    Article  Google Scholar 

  7. Mostafavi A, Tase Zar Y, Nikdoust F, Tabatabaei SA. Comparison of left ventricular systolic function by 2D speckle-tracking echocardiography between normal pregnant women and pregnant women with preeclampsia. J Cardiovasc Thorac Res. 2019;11:309–13.

    Article  Google Scholar 

  8. Orabona R, Mohseni Z, Sciatti E, Mulder EG, Prefumo F, Lorusso R, et al. Maternal myocardial dysfunction after normotensive fetal growth restriction compared with hypertensive pregnancies: a speckle-tracking study. J Hypertens. 2020;38:1955–63.

    Article  CAS  Google Scholar 

  9. Paudel A, Tigen K, Yoldemir T, Guclu M, Yildiz I, Cincin A, et al. The evaluation of ventricular functions by speckle tracking echocardiography in preeclamptic patients. Int J Cardiovasc Imaging. 2020;36:1689–94.

    Article  Google Scholar 

  10. Chen SSM, Leeton L, Castro JM, Dennis AT. Myocardial tissue characterisation and detection of myocardial oedema by cardiovascular magnetic resonance in women with pre-eclampsia: a pilot study. Int J Obstet Anesth. 2018;36:56–65.

    Article  CAS  Google Scholar 

  11. Breatnach CR, Monteith C, McSweeney L, Tully EC, Malone FD, Kent E, et al. The impact of maternal gestational hypertension and the use of anti-hypertensives on neonatal myocardial performance. Neonatology. 2018;113:21–26.

    Article  Google Scholar 

  12. Jieyu L, Yingying C, Tian G, Jiaxiang W, Jiawen L, Yingjie G, et al. Visit-to-visit blood pressure variability is associated with gestational hypertension and pre-eclampsia. Pregnancy Hypertens. 2019;18:126–31.

    Article  Google Scholar 

  13. Liu J, Yang L, Teng H, Cao Y, Wang J, Han B, et al. Visit-to-visit blood pressure variability and risk of adverse birth outcomes in pregnancies in East China. Hypertens Res. 2021;44:239–49.

    Article  Google Scholar 

  14. Abdel Wahab MA, Farrag HM, Saied CE. 24-Hour blood pressure variability as a predictor of short-term echocardiographic changes in normotensive women with past history of preeclampsia/eclampsia. Pregnancy Hypertens. 2018;13:72–78.

    Article  Google Scholar 

  15. National Institute for Health and Care Excellence. Hypertension in pregnancy: diagnosis and management (NICE guideline NG133). 2019. https://www.nice.org.uk/guidance/ng133.

  16. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;2018:1953–2041.

    Article  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    Article  Google Scholar 

  18. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    Article  Google Scholar 

  19. Çağlar FN, Ozde C, Bostancı E, Çağlar İM, Çiftçi S, Unğan İ, et al. Assessment of right heart function in preeclampsia by echocardiography. Pregnancy Hypertens. 2016;6:89–94.

    Article  Google Scholar 

  20. Tadic M, Cuspidi C, Pencic B, Jozika L, Celic V. Relationship between right ventricular remodeling and heart rate variability in arterial hypertension. J Hypertens. 2015;33:1090–7.

    Article  CAS  Google Scholar 

  21. Tadic M, Cuspidi C, Pencic B, Sljivic A, Ivanovic B, Neskovic A, et al. High-normal blood pressure impacts the right heart mechanics: a three-dimensional echocardiography and two-dimensional speckle tracking imaging study. Blood Press Monit. 2014;19:145–52.

    Article  Google Scholar 

  22. Wibowo A, Pranata R, Astuti A, Tiksnadi BB, Martanto E, Martha JW, et al. Left and right ventricular longitudinal strains are associated with poor outcome in COVID-19: a systematic review and meta-analysis. J Intensive Care. 2021;9:9.

    Article  Google Scholar 

  23. Cotton DB, Lee W, Huhta JC, Dorman KF. Hemodynamic profile of severe pregnancy-induced hypertension. Am J Obstet Gynecol. 1988;158:523–9.

    Article  CAS  Google Scholar 

  24. Melchiorre K, Sutherland GR, Watt-Coote I, Liberati M, Thilaganathan B. Severe myocardial impairment and chamber dysfunction in preterm preeclampsia. Hypertens Pregnancy. 2012;31:454–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Tadic.

Ethics declarations

Competing interests

MT is supported by the unrestricted Servier Research Grant. Other authors have not declared any conflicts of interest related to this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadic, M., Cuspidi, C., Suzic Lazic, J. et al. Blood pressure variability correlates with right ventricular strain in women with gestational hypertension and preeclampsia. J Hum Hypertens 36, 826–832 (2022). https://doi.org/10.1038/s41371-021-00580-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41371-021-00580-x

This article is cited by

Search

Quick links