Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of different exercise modes on the risk factors of arteriosclerosis in postmenopausal women: A systematic review and network meta-analysis

Abstract

Arteriosclerosis is one of the most common diseases that progresses to cardiovascular disease in ageing postmenopausal women. Early changes away from the poor lifestyle choices and the active management of risk factors can improve the survival of postmenopausal women. A network meta-analysis was performed to compare the effects of different exercise modes on the risk factors for arteriosclerosis in postmenopausal women. The primary outcomes were systolic and diastolic blood pressure, whereas the secondary outcomes included flow-mediated dilation (FMD), brachial-ankle pulse wave velocity (baPWV), and total cholesterol/high-density lipoprotein. Randomised controlled trials on the effects of exercise on arteriosclerosis in postmenopausal women were identified in 10 databases (PubMed, Cochrane Library, Embase, Web of Science, EBSCO, CNKI, SinoMed, VIP, Wanfang Data, and Wanfang Med Online). Sixty-four studies (2460 particpants) were eventually included. Among postmenopausal women with hypertension, continuous aerobic exercise (CAE) was most effective in reducing systolic and diastolic blood pressure. Among those without hypertension, high-intensity interval training was the most effective in lowering blood pressure and increasing FMD, whereas CAE combined with resistance training was most beneficial in reducing baPWV. Exercise prescriptions for postmenopausal women should be tailored according to their blood pressure status to ensure the selection of the most suitable exercise modality and to maximize the effectiveness of the intervention. Trial registration: PROSPERO, registration number: CRD42022337536.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: The results of blood pressure in postmenopausal women.
Fig. 3: The results of blood pressure in postmenopausal women with hypertension.
Fig. 4: The results of blood pressure in postmenopausal women without hypertension.
Fig. 5: The results of vascular function in postmenopausal women without hypertension.
Fig. 6: Funnel plots for the primary outcome indicators.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Crandall CJ, Barrett-Connor E. Endogenous sex steroid levels and cardiovascular disease in relation to the menopause: a systematic review. Endocrinol Metab Clin North Am. 2013;42:227–53.

    Article  PubMed  CAS  Google Scholar 

  2. Matsubara T, Miyaki A, Akazawa N, Choi Y, Ra SG, Tanahashi K, et al. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. Am J Physiol Heart Circ Physiol. 2014;306:H348–55.

    Article  PubMed  CAS  Google Scholar 

  3. Boutouyrie P, Chowienczyk P, Humphrey JD, Mitchell GF. Arterial Stiffness and Cardiovascular Risk in Hypertension. Circ Res. 2021;128:864–86.

    Article  PubMed  CAS  Google Scholar 

  4. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  5. Samargandy S, Matthews KA, Brooks MM, Barinas-Mitchell E, Magnani JW, Janssen I, et al. Arterial stiffness accelerates within 1 year of the final menstrual period: the SWAN heart study. Arterioscler Thromb Vasc Biol. 2020;40:1001–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zaydun G, Tomiyama H, Hashimoto H, Arai T, Koji Y, Yambe M, et al. Menopause is an independent factor augmenting the age-related increase in arterial stiffness in the early postmenopausal phase. Atherosclerosis. 2006;184:137–42.

    Article  PubMed  CAS  Google Scholar 

  7. Waddell TK, Dart AM, Gatzka CD, Cameron JD, Kingwell BA. Women exhibit a greater age-related increase in proximal aortic stiffness than men. J Hypertens. 2001;19:2205–12.

    Article  PubMed  CAS  Google Scholar 

  8. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  PubMed  CAS  Google Scholar 

  9. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.

    Article  PubMed  Google Scholar 

  10. Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet. 2016;388:2665–712.

    Article  PubMed  Google Scholar 

  11. Kallinen M, Sipilä S, Alen M, Suominen H. Improving cardiovascular fitness by strength or endurance training in women aged 76-78 years. A population-based, randomized controlled trial. 1Department of Physical Medicine and Rehabilitation, Jyvskyl Central Hospital, Keskussairaalantie 19, FIN-40620, Jyvskyl, Finland. 2002;31:247.

    Google Scholar 

  12. Kalenga CZ, Hay JL, Boreskie KF, Duhamel TA, MacRae JM, Metcalfe A, et al. The association between route of post-menopausal estrogen administration and blood pressure and arterial stiffness in community-dwelling women. Front Cardiovasc Med. 2022;9:913609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gliemann L, Hellsten Y. The exercise timing hypothesis: can exercise training compensate for the reduction in blood vessel function after menopause if timed right? J Physiol. 2019;597:4915–25.

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020;75:285–92.

    Article  PubMed  CAS  Google Scholar 

  15. Smith SC Jr., Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update endorsed by the National Heart, Lung, and Blood Institute. J Am Coll Cardiol. 2006;47:2130–9.

    Article  PubMed  Google Scholar 

  16. Bruckert E, Turpin G. Estrogens and progestins in postmenopausal women: influence on lipid parameters and cardiovascular risk. Horm Res. 1995;43:100–3.

    Article  PubMed  CAS  Google Scholar 

  17. Kannel WB, Hjortland MC, McNamara PM, Gordon T. Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med. 1976;85:447–52.

    Article  PubMed  CAS  Google Scholar 

  18. Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31:75–90.

    Article  PubMed  CAS  Google Scholar 

  19. Stricker PR, Faigenbaum AD, McCambridge TM. Resistance training for children and adolescents. Pediatrics. 2020;145:e20201011.

    Article  PubMed  Google Scholar 

  20. Li Y, Hanssen H, Cordes M, Rossmeissl A, Endes S, Schmidt-Trucksäss A. Aerobic, resistance and combined exercise training on arterial stiffness in normotensive and hypertensive adults: a review. Eur J Sport Sci. 2015;15:443–57.

    Article  PubMed  Google Scholar 

  21. Cho L, Davis M, Elgendy I, Epps K, Lindley KJ, Mehta PK, et al. Summary of updated recommendations for primary prevention of cardiovascular disease in women: JACC State-of-the-Art review. J Am Coll Cardiol. 2020;75:2602–18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bennett DA, Du H, Clarke R, Guo Y, Yang L, Bian Z, et al. Association of physical activity with risk of major cardiovascular diseases in Chinese men and women. JAMA Cardiol. 2017;2:1349–58.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.

    Article  PubMed  Google Scholar 

  24. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions. Chapter 2334 – Multi-arm studies. Version 6.4 ed. London: John Wiley & Sons; 2022.

    Google Scholar 

  25. Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13:9–18.

    Article  PubMed  Google Scholar 

  26. Egger M, Smith Davey, Schneider G, Minder M. C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions. Chapter 1335 – Identifying and measuring publication bias. Version 6.4 ed. London: John Wiley & Sons; 2022.

    Google Scholar 

  28. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist, explanation, and elaboration. Ann Intern Med. 2015;162:777–84.

    Article  PubMed  Google Scholar 

  30. StataCorp. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC; 2019.

    Google Scholar 

  31. Chaimani A, Salanti G. Visualizing assumptions and results in network meta-analysis: the network graphs package. The Stata Journal. 2015;15:905–50.

    Article  Google Scholar 

  32. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71.

    Article  PubMed  Google Scholar 

  33. Korsager Larsen M, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Medicina (Kaunas). 2016;52:19–27.

    Article  PubMed  Google Scholar 

  34. Lin YY, Lee SD. Cardiovascular benefits of exercise training in postmenopausal hypertension. Int J Mol Sci. 2018;19:2523.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med. 2014;24:165–9.

    Article  PubMed  CAS  Google Scholar 

  36. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31:631–41.

    PubMed  Google Scholar 

  37. Feairheller DL, Brown MD, Park JY, Brinkley TE, Basu S, Hagberg JM, et al. Exercise training, NADPH oxidase p22phox gene polymorphisms, and hypertension. Med Sci Sports Exerc. 2009;41:1421–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Khalid T, Nesreen E, Ramadhan O. Effects of exercise training on postmenopausal hypertension: implications on nitric oxide levels. Med J Malaysia. 2013;68:459–64.

    PubMed  CAS  Google Scholar 

  39. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17:87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nyberg M, Egelund J, Mandrup CM, Nielsen MB, Mogensen AS, Stallknecht B, et al. Early postmenopausal phase is associated with reduced prostacyclin-induced vasodilation that is reversed by exercise training: the copenhagen women study. Hypertension. 2016;68:1011–20.

    Article  PubMed  CAS  Google Scholar 

  41. Mandrup CM, Egelund J, Nyberg M, Lundberg Slingsby MH, Andersen CB, Løgstrup S, et al. Effects of high-intensity training on cardiovascular risk factors in premenopausal and postmenopausal women. Am J Obstet Gynecol. 2017;216:384.e1–384.e11.

    Article  PubMed  Google Scholar 

  42. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26:631–40.

    Article  PubMed  Google Scholar 

  43. Taylor JL, Keating SE, Holland DJ, Green DJ, Coombes JS, Bailey TG. Comparison of high intensity interval training with standard cardiac rehabilitation on vascular function. Scand J Med Sci Sports. 2022;32:512–20.

    Article  PubMed  Google Scholar 

  44. Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol (1985). 2008;104:588–600.

    Article  PubMed  Google Scholar 

  45. Gunnarsson TP, Ehlers TS, Baasch-Skytte T, Lund AP, Tamariz-Ellemann A, Gliemann L, et al. Hypertension is associated with blunted NO-mediated leg vasodilator responsiveness that is reversed by high-intensity training in postmenopausal women. Am J Physiol Regul Integr Comp Physiol. 2020;319:R712–r23.

    Article  PubMed  CAS  Google Scholar 

  46. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45:679–92.

    Article  PubMed  Google Scholar 

  47. Hu J, Liu M, Yang R, Wang L, Liang L, Yang Y, et al. Effects of high-intensity interval training on improving arterial stiffness in Chinese female university students with normal weight obese: a pilot randomized controlled trial. J Transl Med. 2022;20:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Way KL, Vidal-Almela S, Moholdt T, Currie KD, Aksetøy IA, Boidin M, et al. Sex differences in cardiometabolic health indicators after HIIT in patients with coronary artery disease. Med Sci Sports Exerc. 2021;53:1345–55.

    Article  PubMed  CAS  Google Scholar 

  49. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf). 2014;210:768–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chung TH, Shim JY, Kwon YJ, Lee YJ. High triglyceride to high-density lipoprotein cholesterol ratio and arterial stiffness in postmenopausal Korean women. J Clin Hypertens (Greenwich). 2019;21:399–404.

    Article  PubMed  CAS  Google Scholar 

  51. Manojlović M, Protić-Gava B, Maksimović N, Šćepanović T, Poček S, Roklicer R, et al. Effects of combined resistance and aerobic training on arterial stiffness in postmenopausal women: a systematic review. Int J Environ Res Public Health. 2021;18:9450.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  53. Munakata M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr Hypertens Rev. 2014;10:49–57.

    Article  PubMed  Google Scholar 

  54. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25:359–64.

    Article  PubMed  Google Scholar 

  55. Jeon K, Lee S, Hwang MH. Effect of combined circuit exercise on arterial stiffness in hypertensive postmenopausal women: a local public health center-based pilot study. Menopause. 2018;25:1442–7.

    Article  PubMed  Google Scholar 

  56. Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension. 2012;60:556–62.

    Article  PubMed  CAS  Google Scholar 

  57. Pekas EJ, Shin J, Son WM, Headid RJ 3rd, Park SY. Habitual combined exercise protects against age-associated decline in vascular function and lipid profiles in elderly postmenopausal women. Int J Environ Res Public Health. 2020;17:3893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Figueroa A, Park SY, Seo DY, Sanchez-Gonzalez MA, Baek YH. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause. 2011;18:980–4.

    Article  PubMed  Google Scholar 

  59. Son WM, Sung KD, Cho JM, Park SY. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause. 2017;24:262–8.

    Article  PubMed  Google Scholar 

  60. Miura H, Takahashi Y, Maki Y, Sugino M. Effects of exercise training on arterial stiffness in older hypertensive females. Eur J Appl Physiol. 2015;115:1847–54.

    Article  PubMed  Google Scholar 

  61. Yang D, Tao S, Shao M, Huang L, Xiao X, Zhang J, et al. Effectiveness of exercise training on arterial stiffness and blood pressure among postmenopausal women: a systematic review and meta-analysis. Syst Rev. 2024;13:169.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zaman S, Raj IS, Yang AWH, Lindner R, Denham J. Exercise training reduces arterial stiffness in women with high blood pressure: a systematic review and meta-analysis. J Hypertens. 2024;42:197–204.

    Article  PubMed  CAS  Google Scholar 

  63. Yang XR, Yang YP, Zhang J, Qin Q, Song RH, Mu KD, et al. Effect of resistance training on bone mineral density in postmenopausal with type 2 diabetes mellitus combined with bone loss. Shanxi Med J. 2023;52:728–31, 736.

    Google Scholar 

  64. Araujo RC, Rodrigues GD, Ferreira LF, Soares P. The time course of cardiorespiratory adaptations to rowing indoor training in post-menopausal women. Int J Environ Res Public Health. 2023;20:3238.

  65. Sardeli AV, Castro A, Gadelha VB, Santos WMD, Lord JM, Cavaglieri CR, et al. Metabolomic response throughout 16 weeks of combined aerobic and resistance exercise training in older women with metabolic syndrome. Metabolites. 2022;12:1041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chen XK, He H, Wang WR. Effects of 12 weeks of aerobic exercise on vascular endothelial function and endothelial progenitor cells in postmenopausal women. Chi Sport Sci Tech. 2022;58:67–73.

    Google Scholar 

  67. Nunes PRP, Silva TRGB, Carneiro MAS, Martins FM, Souza AP, Orsatti FL. Functional high-intensity interval training is not equivalent when compared to combined training for blood pressure improvements in postmenopausal women: a randomized controlled trial. Clin Exp Hypertens. 2022;44:127–33.

    Article  PubMed  CAS  Google Scholar 

  68. He H, Wang C, Chen X, Sun X, Wang Y, Yang J, et al. The effects of HIIT compared to MICT on endothelial function and hemodynamics in postmenopausal females. J Sci Med Sport. 2022;25:364–71.

    Article  PubMed  Google Scholar 

  69. Won-Mok S, Jung-Jun P. Resistance band exercise training prevents the progression of metabolic syndrome in obese postmenopausal women. J Sports Sci Med. 2021;20:291–9.

    Google Scholar 

  70. Marcotte-Chénard A, Tremblay D, Mony MM, Brochu M, Dionne IJ, Langlois MF, et al. Low-volume walking HIIT: Efficient strategy to improve physical capacity and reduce the risk of cardiovascular disease in older women with type 2 diabetes. Diabetes Metab Syndr. 2021;15:102233.

    Article  PubMed  Google Scholar 

  71. Yang JN. Effect of high intensity interval training on vascular endothelialfunction in Postmenopausal women. Beijing Sport University, 2020.

  72. Son W-M, Pekas EJ, Park S-Y. Twelve weeks of resistance band exercise training improves age-associated hormonal decline, blood pressure, and body composition in postmenopausal women with stage 1 hypertension: a randomized clinical trial. Menopause. 2020;27:199–207.

    Article  PubMed  Google Scholar 

  73. Keyhani D, Tartibian B, Dabiri A, Teixeira AMB. Effect of high-intensity interval training versus moderate-intensity aerobic continuous training on Galectin-3 gene expression in postmenopausal women: a randomized controlled trial. J Aging Phys Act. 2020;28:987–95.

    Article  PubMed  Google Scholar 

  74. Jo EA, Wu SS, Han HR, Park JJ, Park S, Cho KI. Effects of exergaming in postmenopausal women with high cardiovascular risk: a randomized controlled trial. Clin Cardiol. 2020;43:363–70.

    Article  PubMed  Google Scholar 

  75. Jeon YK, Kim SS, Kim JH, Kim HJ, Kim HJ, Park JJ, et al. Combined aerobic and resistance exercise training reduces circulating apolipoprotein J levels and improves insulin resistance in postmenopausal diabetic women. Diabetes Metab J. 2020;44:103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ho TY, Redmayne GP, Tran A, Liu D, Butlin M, Avolio A, et al. The effect of interval sprinting exercise on vascular function and aerobic fitness of post-menopausal women. Scand J Med Sci Sports. 2020;30:312–21.

    Article  PubMed  Google Scholar 

  77. Ballesta-Garcia I, Martinez-Gonzalez-Moro I, Ramos-Campo DJ, Carrasco-Poyatos M. High-Intensity interval circuit training versus moderate-intensity continuous training on cardiorespiratory fitness in middle-aged and older women: a randomized controlled trial. Int J Environ Res Public Health. 2020;17:1805.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang D, Janjgava T, Boutcher SH, Boutcher YN. Cardiovascular response of postmenopausal women to 8 weeks of sprint interval training. Eur J Appl Physiol. 2019;119:981–9.

    Article  PubMed  Google Scholar 

  79. Wong A, Kwak Y-S, Scott SD, Pekas EJ, Son W-M, Kim J-S, et al. The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause. 2019;26:653–8.

    Article  Google Scholar 

  80. Rezende Barbosa MP, Vanderlei LC, Neves LM, Takahashi C, Torquato PR, Silva AK, et al. Functional training in postmenopause: Cardiac autonomic modulation and cardiorespiratory parameters, a randomized trial. Geriatr Gerontol Int. 2019;19:823–8.

    Article  PubMed  Google Scholar 

  81. Jaime SJ, Maharaj A, Alvarez-Alvarado S, Figueroa A. Impact of low-intensity resistance and whole-body vibration training on aortic hemodynamics and vascular function in postmenopausal women. Hypertens Res. 2019;42:1979–88.

    Article  PubMed  Google Scholar 

  82. Boutcher YN, Boutcher SH, Yoo HY, Meerkin JD. The effect of sprint interval training on body composition of postmenopausal women. Med Sci Sports Exerc. 2019;51:1413–9.

    Article  PubMed  CAS  Google Scholar 

  83. Lee LS. The Investigation of Aerobic Interval Training in Women with Coronary Artery Disease in Cardiac Rehabilitation: University of Toronto (Canada); 2019.

  84. Wang WR. Effects of Aberobic Exercise on vascular endothelial function and endothelial progenitor cell transcription in postmenopausal women. Beijing Sport University, 2018.

  85. Li H, Wang RW, Hou XH, Liu X. Effects of 12 weeks brisk walking on serum et-1, no and enos in postmenopausal women with essential hypertension. J Beijing Sport University. 2018;41:64–70.

    Google Scholar 

  86. Leon K, Lee S, Hwang M-H. Effect of combined circuit exercise on arterial stiffness in hypertensive postmenopausal women: a local public health center-based pilot study. Menopause. 2018;25:1442–7.

    Article  Google Scholar 

  87. Pospieszna B, Karolkiewicz J, Tarnas J, Lewandowski J, Laurentowska M, Pilaczyńska-Szcześniak Ł. Influence of 12-week Nordic Walking training on biomarkers of endothelial function in healthy postmenopausal women. J Sports Med Phys Fitness. 2017;57:1178–85.

    Article  PubMed  CAS  Google Scholar 

  88. Lee J-A, Kim JH, Jong-Won K, Do-Yeon K. Effects of aerobic exercise on serum blood lipids, leptin, ghrelin, and HOMA-IR factors in postmenopausal obese women. J Korea Acad-Ind Cooper Soc. 2017;18:549–58.

    Google Scholar 

  89. Henríquez S, Monsalves-Alvarez M, Jimenez T, Barrera G, Hirsch S, de la Maza MP, et al. Effects of two training modalities on body fat and insulin resistance in postmenopausal women. J Strength Cond Res. 2017;31:2955–64.

    Article  PubMed  Google Scholar 

  90. Azadpour N, Tartibian B, Koşar ŞN. Effects of aerobic exercise training on ACE and ADRB2 gene expression, plasma angiotensin II level, and flow-mediated dilation: a study on obese postmenopausal women with prehypertension. Menopause. 2017;24:269–77.

    Article  PubMed  Google Scholar 

  91. Wang GR. Effect of combined exercise on metabolic syndrome parameters in postmenopausal breast cancer patients. Chinese J Gerontol 2016;36:2408–10.

  92. Yang YQ. Effects of exercise intervention on estrogen, lipid metabolism, and antioxidant capacity in postmenopausal women, Beijing Sport University 2016.

  93. Yoo JK, Hwang MH, Kim HK, Hwang EL, Handberg EM, Christou D. Effect of high-intensity interval training on endothelial function in older postmenopausal women: a randomized controlled trial. FASEB Journal. 2016;30:763.

  94. Shaw BS, Gouveia M, McIntyre S, Shaw I. Anthropometric and cardiovascular responses to hypertrophic resistance training in postmenopausal women. Menopause. 2016;23:1176–81.

    Article  PubMed  Google Scholar 

  95. Serrano-Guzmán M, Aguilar-Ferrándiz ME, Valenza CM, Ocaña-Peinado FM, Valenza-Demet G, Villaverde-Gutiérrez C. Effectiveness of a flamenco and sevillanas program to enhance mobility, balance, physical activity, blood pressure, body mass, and quality of life in postmenopausal women living in the community in Spain: a randomized clinical trial. Menopause. 2016;23:965–73.

    Article  PubMed  Google Scholar 

  96. Klonizakis M, Moss J, Gilbert S, Broom D, Foster J, Tew GA. Low-volume high-intensity interval training rapidly improves cardiopulmonary function in postmenopausal women. Menopause. 2014;21:1099–105.

    Article  PubMed  Google Scholar 

  97. Goncalves CGS, Nakamura FY, Gerage AM, Januario RSB, Nascimento MA, Farinatti PTV, et al. Functional and physiological effects of a 12-week programme of resistance training in elderly hypertensive women. Int SportMed J. 2014;15:50–61.

    Google Scholar 

  98. Paolillo F, Corazza A, Borghi-Silva A, Parizotto N, Kurachi C, Bagnato V. Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers Med Sci. 2013;28:415–22.

    Article  PubMed  Google Scholar 

  99. Gerage AM, Forjaz CL, Nascimento MA, Januário RS, Polito MD, Cyrino ES. Cardiovascular adaptations to resistance training in elderly postmenopausal women. Int J Sports Med. 2013;34:806–13.

    Article  PubMed  CAS  Google Scholar 

  100. Figueroa A, Vicil F, Sanchez-Gonzalez MA, Wong A, Ormsbee MJ, Hooshmand S, et al. Effects of diet and/or low-intensity resistance exercise training on arterial stiffness, adiposity, and lean mass in obese postmenopausal women. Am J Hypertens. 2013;26:416–23.

    Article  PubMed  CAS  Google Scholar 

  101. Figueroa A, Arjmandi BH, Wong A, Sanchez-Gonzalez MA, Simonavice E, Daggy B. Effects of hypocaloric diet, low-intensity resistance exercise with slow movement, or both on aortic hemodynamics and muscle mass in obese postmenopausal women. Menopause. 2013;20:967–72.

    Article  PubMed  Google Scholar 

  102. Conceicao MS, Bonganha V, Vechin FC, de Barros Berton RP, Lixandrao ME, Damas Nogueira FR, et al. Sixteen weeks of resistance training can decrease the risk of metabolic syndrome in healthy postmenopausal women. Clin Interv Aging. 2013;8:1221–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sénéchal M, Bouchard DR, Dionne IJ, Brochu M. The effects of lifestyle interventions in dynapenic-obese postmenopausal women. Menopause. 2012;19:1015–21.

    Article  PubMed  Google Scholar 

  104. Reis JG, Costa GC, Schmidt A, Ferreira CH, Abreu DC. Do muscle strengthening exercises improve performance in the 6-minute walk test in postmenopausal women? Rev Brasileira de Fisioterapia (Sao Carlos (Sao Paulo, Brazil)). 2012;16:236–40.

    Article  Google Scholar 

  105. Ohta M, Hirao N, Mori Y, Takigami C, Eguchi M, Tanaka H, et al. Effects of bench step exercise on arterial stiffness in post-menopausal women: Contribution of IGF-1 bioactivity and nitric oxide production. Growth Horm IGF Res. 2012;22:36–41.

    Article  PubMed  CAS  Google Scholar 

  106. Kim JW, Kim DY. Effects of aerobic exercise training on serum sex hormone binding globulin, body fat index, and metabolic syndrome factors in obese postmenopausal women. Metab Syndr Relat Disord. 2012;10:452–7.

    Article  PubMed  CAS  Google Scholar 

  107. Gelecek N, Ilçin N, Subaşi SS, Acar S, Demir N, Örmen M. The effects of resistance training on cardiovascular disease risk factors in postmenopausal women: a randomized-controlled trial. Health Care Women Int. 2012;33:1072–85.

    Article  PubMed  Google Scholar 

  108. Akazawa N, Choi Y, Miyaki A, Tanabe Y, Sugawara J, Ajisaka R, et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr Res. 2012;32:795–9.

    Article  PubMed  CAS  Google Scholar 

  109. Rahnama N, Nouri R, Rahmaninia F, Damirchi A, Emami H. The effects of exercise training on maximum aerobic capacity, resting heart rate, blood pressure and anthropometric variables of postmenopausal women with breast cancer. J Res Med Sci. 2010;15:78–83.

    PubMed  PubMed Central  Google Scholar 

  110. Yoshizawa M, Maeda S, Miyaki A, Misono M, Choi Y, Shimojo N, et al. Additive beneficial effects of lactotripeptides and aerobic exercise on arterial compliance in postmenopausal women. Am J Physiol - Heart Circ Physiol. 2009;297:H1899–H903.

    Article  PubMed  CAS  Google Scholar 

  111. Colado JC, Triplett NT, Tella V, Saucedo P, Abellán J. Effects of aquatic resistance training on health and fitness in postmenopausal women. Eur J Appl Physiol. 2009;106:113–22.

    Article  PubMed  Google Scholar 

  112. Bergström I, Lombardo C, Brinck J. Physical training decreases waist circumference in postmenopausal borderline overweight women. Acta Obstet Gynecol Scand. 2009;88:308–13.

    Article  PubMed  Google Scholar 

  113. Arsenault BJ, Côté M, Cartier A, Lemieux I, Després J-P, Ross R, et al. Effect of exercise training on cardiometabolic risk markers among sedentary, but metabolically healthy overweight or obese post-menopausal women with elevated blood pressure. Atherosclerosis. 2009;207:530–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Chen SE, Peng FL, Deng SX. Changes in the physique and functional indexes of post-menopausal women afrer aerobic exercise for 12 weeks. J Clinical Rehab Tissue Engineering Research. 2007;11:7924–7.

    CAS  Google Scholar 

  115. Chen SE, Peng FL, Deng SX. Changes of physical indexes, blood glucose and fat in middle-aged and elder post-menopausal women after 12 weeks circular resistance training. J Clinical Rehab Tissue Engineering Research. 2007;11:3333–6.

    CAS  Google Scholar 

  116. Casey DP, Pierce GL, Howe KS, Mering MC, Braith RW. Effect of resistance training on arterial wave reflection and brachial artery reactivity in normotensive postmenopausal women. Eur J Appl Physiol. 2007;100:403–8.

    Article  PubMed  Google Scholar 

  117. Chen Q. Reaearch on result of aerobic exercise and resistance training against hypertension in postmenopausal women. Fujian Normal University 2006.

  118. Fairey AS, Courneya KS, Field CJ, Bell GJ, Jones LW, Martin BS, et al. Effect of exercise training on C-reactive protein in postmenopausal breast cancer survivors: a randomized controlled trial. Brain Behav Immun. 2005;19:381–8.

    Article  PubMed  CAS  Google Scholar 

  119. McGavock J, Mandic S, Lewanczuk R, Koller M, Vonder Muhll I, Quinney A, et al. Cardiovascular adaptations to exercise training in postmenopausal women with type 2 diabetes mellitus. Cardiovasc Diabetol. 2004;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, et al. Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res. 2004;27:947–53.

    Article  PubMed  CAS  Google Scholar 

  121. Elliott KJ, Sale C, Cable NT. Effects of resistance training and detraining on muscle strength and blood lipid profiles in postmenopausal women. Br J Sports Med. 2002;36:340–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hamdorf PA, Penhall RK. Walking with its training effects on the fitness and activity patterns of 79-91 year old females. Aust N Z J Med. 1999;29:22–8.

    Article  PubMed  CAS  Google Scholar 

  123. Ready AE, Naimark B, Ducas J, Sawatzky JAV, Boreskie SL, Drinkwater DT, et al. Influence of walking volume on health benefits in women post-menopause. Med Sci Sports Exerc. 1996;28:1097–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2022YFC2010201), the Fundamental Research Funds for the Central Universities (Grant No. 2024TNJN002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JL, PZZ, YTY. Data curation: JL, YTY. Formal Analysis: JL. Funding acquisition: PZZ. Investigation: JL, YTY. Methodology: JL, PZZ. Project administration: JL. Resources: JL. Software: JL, YTY. Supervision: PZZ. Writing-original draft: JL, PZZ, YTY. Writing-review & editing: PZZ, JL.

Corresponding author

Correspondence to Peizhen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, P. & Yang, Y. Effects of different exercise modes on the risk factors of arteriosclerosis in postmenopausal women: A systematic review and network meta-analysis. J Hum Hypertens 39, 601–618 (2025). https://doi.org/10.1038/s41371-025-01064-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41371-025-01064-y

Search

Quick links