Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-invasive carbon dioxide monitoring in neonates: methods, benefits, and pitfalls

A Correction to this article was published on 14 September 2021

This article has been updated

Abstract

Wide fluctuations in partial pressure of carbon dioxide (PaCO2) can potentially be associated with neurological and lung injury in neonates. Blood gas measurement is the gold standard for assessing gas exchange but is intermittent, invasive, and contributes to iatrogenic blood loss. Non-invasive carbon dioxide (CO2) monitoring has become ubiquitous in anesthesia and critical care and is being increasingly used in neonates. Two common methods of non-invasive CO2 monitoring are end-tidal and transcutaneous. A colorimetric CO2 detector (a modified end-tidal CO2 detector) is recommended by the International Liaison Committee on Resuscitation (ILCOR) and the American Academy of Pediatrics to confirm endotracheal tube placement. Continuous CO2 monitoring is helpful in trending PaCO2 in critically ill neonates on respiratory support and can potentially lead to early detection and minimization of fluctuations in PaCO2. This review includes a description of the various types of CO2 monitoring and their applications, benefits, and limitations in neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time capnogram in which end-tidal CO2 (EtCO2) is traced against time.
Fig. 2: Types of EtCO2 monitoring.
Fig. 3: Trancutaneous CO2 monitoring.
Fig. 4: Confirmation of the endotracheal tube (ETT) placement in the delivery room.
Fig. 5: Importance of capnography in confirmation of endotracheal tube (ETT) position.
Fig. 6: Causes for persistent purple coloration of colorimetric CO2 detector in neonates.

Similar content being viewed by others

Change history

References

  1. Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, et al. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. J Am Med Assoc. 2018;319:2190–201. https://doi.org/10.1001/jama.2018.5725

    Article  CAS  Google Scholar 

  2. Manja V, Saugstad OD, Lakshminrusimha S. Oxygen saturation targets in preterm infants and outcomes at 18–24 months: a systematic review. Pediatrics. 2017;139 https://doi.org/10.1542/peds.2016-1609.

  3. Travers CP, Carlo WA. Carbon dioxide and brain injury in preterm infants. J Perinatol. 2021;41:183–4. https://doi.org/10.1038/s41372-020-00842-5

    Article  PubMed  CAS  Google Scholar 

  4. Hoffman SB, Lakhani A, Viscardi RM. The association between carbon dioxide, cerebral blood flow, and autoregulation in the premature infant. J Perinatology. 2021;41:324–9. https://doi.org/10.1038/s41372-020-00835-4

    Article  CAS  Google Scholar 

  5. Fabres J, Carlo WA, Phillips V, Howard G, Ambalavanan N. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics. 2007;119:299–305. https://doi.org/10.1542/peds.2006-2434

    Article  PubMed  Google Scholar 

  6. Bhavani-Shankar K, Moseley H, Kumar AY, Delph Y. Capnometry and anaesthesia. Can J Anaesth. 1992;39:617–32. https://doi.org/10.1007/bf03008330

    Article  PubMed  CAS  Google Scholar 

  7. Smalhout B. The first years of clinical capnography. 430–56, https://doi.org/10.1017/CBO9780511933837.042 (2011).

  8. Haldane J, Graham JI. Methods of gas analysis. Haldane method of gas analysis. London: Charles Griffin and Company, Ltd.; 1912.

  9. Kreuzer LB. Ultralow gas concentration infrared absorption spectroscopy. J Appl Phys. 1971;42:2934–43. https://doi.org/10.1063/1.1660651

    Article  CAS  Google Scholar 

  10. Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  11. Van Wagenen RA, Westenskow DR, Benner RE, Gregonis DE, Coleman DL. Dedicated monitoring of anesthetic and respiratory gases By Raman scattering. J Clin Monit. 1986;2:215–22. https://doi.org/10.1007/BF02851168

    Article  Google Scholar 

  12. Luft K. Über eine neue methode der registrierenden gasanalyse mit hilfe der absorption ultraroter strahlen ohne spektrale zerlegung. Z Tech Phys. 1943;24:97–104.

    CAS  Google Scholar 

  13. Kalenda Z. The capnogram as a guide to the efficacy of cardiac massage. Resuscitation. 1978;6:259–63. https://doi.org/10.1016/0300-9572(78)90006-0

    Article  PubMed  CAS  Google Scholar 

  14. Kalenda, Z. Mastering infra-red capnography. Kerckebosch BV; 1989.

  15. J.H, E. ASA adopts basic monitoring standards. APSF Newsletter https://www.apsf.org/article/asa-adopts-basic-monitoring-standards; 1987.

  16. Severinghaus JW. Methods of measurement of blood and gas carbon dioxide during anesthesia. Anesthesiology. 1960;21:717–26. https://doi.org/10.1097/00000542-196011000-00014

    Article  PubMed  CAS  Google Scholar 

  17. Severinghaus J. Carbon dioxide tension and perfusion in the tissue. Der Anaesthesist. 1960;9:50–55.

    PubMed  CAS  Google Scholar 

  18. Hazinski TA, Severinghaus JW. Transcutaneous analysis of arterial PCO2. Med Instrum. 1982;16:150–3.

    PubMed  CAS  Google Scholar 

  19. Severinghaus JW. A combined transcutaneous PO2-PCO2 electrode with electrochemical HCO3- stabilization. J Appl Physiol. 1981;51:1027–32. https://doi.org/10.1152/jappl.1981.51.4.1027

    Article  PubMed  CAS  Google Scholar 

  20. Severinghaus JW, Bradley AF, Stafford MJ. Transcutaneous PCO2 electrode design with internal silver heat path. Birth Defects Orig Artic Ser. 1979;15:265–70.

    PubMed  CAS  Google Scholar 

  21. Powers KA & Dhamoon AS. StatPearls. StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC.; 2020.

  22. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80:681–715. https://doi.org/10.1152/physrev.2000.80.2.681

    Article  PubMed  CAS  Google Scholar 

  23. Bhavani-Shankar K, Philip JH. Defining segments and phases of a time capnogram. Anesthesia Analgesia. 2000;91:973–7.

    Article  CAS  Google Scholar 

  24. Kodali BhavaniS. Capnography outside the operating rooms. Anesthesiology. 2013;118:192–201. https://doi.org/10.1097/ALN.0b013e318278c8b6

    Article  PubMed  Google Scholar 

  25. Sullivan KJ, Kissoon N, Goodwin SR. End-tidal carbon dioxide monitoring in pediatric emergencies. Pediatr Emerg Care. 2005;21:327–32. https://doi.org/10.1097/01.pec.0000159064.24820.bd

    Article  PubMed  Google Scholar 

  26. Lopez E, Mathlouthi J, Lescure S, Krauss B, Jarreau PH, Moriette G. Capnography in spontaneously breathing preterm infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46:896–902. https://doi.org/10.1002/ppul.21445

    Article  PubMed  Google Scholar 

  27. Kodali, BS, Capnogram, T, Phase, I & Screen, CM. Bhavani Shankar Kodali; Capnography Outside the Operating Rooms. Anesthesiology. 2013;118:192–201. https://doi.org/10.1097/ALN.0b013e318278c8b6

  28. Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics. 2008;122:e1219–1224. https://doi.org/10.1542/peds.2008-1300

    Article  PubMed  Google Scholar 

  29. Proquitté H, Krause S, Rüdiger M, Wauer RR, Schmalisch G. Current limitations of volumetric capnography in surfactant-depleted small lungs. Pediatr Crit Care Med. 2004;5:75–80. https://doi.org/10.1097/01.Pcc.0000102384.60676.E5

    Article  PubMed  Google Scholar 

  30. Hagerty JJ, Kleinman ME, Zurakowski D, Lyons AC, Krauss B. Accuracy of a new low-flow sidestream capnography technology in newborns: a pilot study. J Perinatol. 2002;22:219–25. https://doi.org/10.1038/sj.jp.7210672

    Article  PubMed  Google Scholar 

  31. Williams E, Dassios T, Greenough A. Assessment of sidestream end-tidal capnography in ventilated infants on the neonatal unit. Pediatr Pulmonol. 2020;55:1468–73. https://doi.org/10.1002/ppul.24738

    Article  PubMed  Google Scholar 

  32. Duyu M, Bektas AD, Karakaya Z, Bahar M, Gunalp A, Caglar YM, et al. Comparing the novel microstream and the traditional mainstream method of end-tidal CO2 monitoring with respect to PaCO2 as gold standard in intubated critically ill children. Sci Rep. 2020;10:22042 https://doi.org/10.1038/s41598-020-79054-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kugelman A, Bromiker R, Riskin A, Shoris I, Ronen M, Qumqam N, et al. Diagnostic accuracy of capnography during high-frequency ventilation in neonatal intensive care units. Pediatr Pulmonol. 2016;51:510–6. https://doi.org/10.1002/ppul.23319

    Article  PubMed  Google Scholar 

  34. Johns RJ, Lindsay WJ, Shepard RH. A system for monitoring pulmonary ventilation. Biomed Sci Instrum. 1969;5:119–21.

    PubMed  CAS  Google Scholar 

  35. O’Connor TA, Grueber R. Transcutaneous measurement of carbon dioxide tension during long-distance transport of neonates receiving mechanical ventilation. J Perinatol. 1998;18:189–92.

    PubMed  Google Scholar 

  36. Berkenbosch JW, Tobias JD. Transcutaneous carbon dioxide monitoring during high-frequency oscillatory ventilation in infants and children. Crit Care Med. 2002;30:1024–7. https://doi.org/10.1097/00003246-200205000-00011

    Article  PubMed  Google Scholar 

  37. Hand IL, Shepard EK, Krauss AN, Auld PA. Discrepancies between transcutaneous and end-tidal carbon dioxide monitoring in the critically ill neonate with respiratory distress syndrome. Crit Care Med. 1989;17:556–9. https://doi.org/10.1097/00003246-198906000-00015

    Article  PubMed  CAS  Google Scholar 

  38. Geven WB, Nagler E, de Boo T, Lemmens W. Combined transcutaneous oxygen, carbon dioxide tensions and end-expired CO2 levels in severely ill newborns. Adv Exp Med Biol. 1987;220:115–20. https://doi.org/10.1007/978-1-4613-1927-6_21

    Article  PubMed  CAS  Google Scholar 

  39. Epstein MF, Cohen AR, Feldman HA, Raemer DB. Estimation of PaCO2 by two noninvasive methods in the critically ill newborn infant. J Pediatr. 1985;106:282–6. https://doi.org/10.1016/s0022-3476(85)80306-1

    Article  PubMed  CAS  Google Scholar 

  40. Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesthesia Analgesia. 2007;105:S48–S52. https://doi.org/10.1213/01.ane.0000278642.16117.f8

    Article  PubMed  Google Scholar 

  41. Garlapati P, Phan R, Lakshminrusimha S, Vali P. Accuracy of transcutaneous CO2 monitoring in newborns undergoing therapeutic hypothermia. J Investig Med. 128–129.

  42. Technical manual Sentec. https://www.sentec.com/fileadmin/documents/Labeling/Technical_Manuals/HB-005752-t-SDM_Technical_Manual.pdf.

  43. Siobal MS. Monitoring exhaled carbon dioxide. Respiratory Care. 2016;61:1397 https://doi.org/10.4187/respcare.04919

    Article  PubMed  Google Scholar 

  44. Kelly JS, Wilhoit RD, Brown RE, James R. Efficacy of the FEF colorimetric end-tidal carbon dioxide detector in children. Anesth Analg. 1992;75:45–50.

    PubMed  CAS  Google Scholar 

  45. Blank D, Rich W, Leone T, Garey D, Finer N. Pedi-cap color change precedes a significant increase in heart rate during neonatal resuscitation. Resuscitation. 2014;85:1568–72.

    Article  Google Scholar 

  46. Leone TA, Lange A, Rich W, Finer NN. Disposable colorimetric carbon dioxide detector use as an indicator of a patent airway during noninvasive mask ventilation. Pediatrics. 2006;118:e202–204. https://doi.org/10.1542/peds.2005-2493

    Article  PubMed  Google Scholar 

  47. O’Donnell CP, Kamlin CO, Davis PG, Morley CJ. Endotracheal intubation attempts during neonatal resuscitation: success rates, duration, and adverse effects. Pediatrics. 2006;117:e16–21. https://doi.org/10.1542/peds.2005-0901

    Article  PubMed  Google Scholar 

  48. Schmolzer GM, Kamlin OC, Dawson JA, te Pas AB, Morley CJ, Davis PG. Respiratory monitoring of neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed. 2010;95:F295–303. https://doi.org/10.1136/adc.2009.165878

    Article  PubMed  Google Scholar 

  49. Garey DM, Ward R, Rich W, Heldt G, Leone T, Finer NN. Tidal volume threshold for colorimetric carbon dioxide detectors available for use in neonates. Pediatrics. 2008;121:e1524–1527. https://doi.org/10.1542/peds.2007-2708

    Article  PubMed  Google Scholar 

  50. Bennett NP. Carbon dioxide detector. https://www.mercurymed.com/wp-content/uploads/RDR_CarbonDioxideDetector.pdf.

  51. Schmölzer GM, Roehr CCC. WITHDRAWN: techniques to ascertain correct endotracheal tube placement in neonates. Cochrane Database Syst Rev. 2018;7:CD010221–CD010221. https://doi.org/10.1002/14651858.CD010221.pub3

    Article  PubMed  Google Scholar 

  52. NHS. Improvement never events list 2018. https://nhsicorporatesite.blob.core.windows.net/green/uploads/documents/Never_Events_list_2018_FINAL_v5.pdf Accessed 23 Apr 2018).

  53. Cook TM, Woodall N, Harper J, Benger J. Major complications of airway management in the UK: results of the fourth national audit project of the royal college of anaesthetists and the difficult airway society. Part 2: intensive care and emergency departments. Br J Anaesth. 2011;106:632–42. https://doi.org/10.1093/bja/aer059

    Article  PubMed  CAS  Google Scholar 

  54. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142:S366–s468. https://doi.org/10.1161/cir.0000000000000916

    Article  PubMed  Google Scholar 

  55. Sanders AB, Atlas M, Ewy GA, Kern KB, Bragg S. Expired PCO2 as an index of coronary perfusion pressure. Am J Emerg Med. 1985;3:147–9.

    Article  CAS  Google Scholar 

  56. Sutton RM, French B, Meaney PA, Topjian AA, Parshuram CS, Edelson DP, et al. Physiologic monitoring of CPR quality during adult cardiac arrest: a propensity-matched cohort study. Resuscitation. 2016;106:76–82. https://doi.org/10.1016/j.resuscitation.2016.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pryds O, Greisen G, Lou H, Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990;117:119–25. https://doi.org/10.1016/s0022-3476(05)72459-8

    Article  PubMed  CAS  Google Scholar 

  58. Chandrasekharan PK, Rawat M, Nair J, Gugino SF, Koenigsknecht C, Swartz DD, et al. Continuous end-tidal carbon dioxide monitoring during resuscitation of asphyxiated term lambs. Neonatology. 2016;109:265–73. https://doi.org/10.1159/000443303

    Article  PubMed  CAS  Google Scholar 

  59. Leahy FA, Cates D, MacCallum M, Rigatto H. Effect of CO2 and 100% O2 on cerebral blood flow in preterm infants. J Appl Physiol Respir Environ Exerc Physiol. 1980;48:468–72. https://doi.org/10.1152/jappl.1980.48.3.468

    Article  PubMed  CAS  Google Scholar 

  60. van Kaam AH, De Jaegere AP, Rimensberger PC. Incidence of hypo- and hyper-capnia in a cross-sectional European cohort of ventilated newborn infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F323–326. https://doi.org/10.1136/archdischild-2012-302649

    Article  PubMed  Google Scholar 

  61. Kugelman A, Golan A, Riskin A, Shoris I, Ronen M, Qumqam N, et al. Impact of continuous capnography in ventilated neonates: a randomized, multicenter study. J Pediatr. 2016;168:56–61.e52. https://doi.org/10.1016/j.jpeds.2015.09.051

    Article  PubMed  Google Scholar 

  62. Kaiser JR, Gauss CH, Pont MM, Williams DK. Hypercapnia during the first 3 days of life is associated with severe intraventricular hemorrhage in very low birth weight infants. J Perinatol. 2006;26:279–85. https://doi.org/10.1038/sj.jp.7211492

    Article  PubMed  CAS  Google Scholar 

  63. Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L, et al. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics. 1996;98:918–24.

    Article  CAS  Google Scholar 

  64. Erickson SJ, Grauaug A, Gurrin L, Swaminathan M. Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health. 2002;38:560–2. https://doi.org/10.1046/j.1440-1754.2002.00041.x

    Article  PubMed  CAS  Google Scholar 

  65. Lingappan K, Kaiser JR, Srinivasan C, Gunn AJ. Relationship between PCO2 and unfavorable outcome in infants with moderate-to-severe hypoxic ischemic encephalopathy. Pediatr Res. 2016;80:204–8. https://doi.org/10.1038/pr.2016.62

    Article  PubMed  CAS  Google Scholar 

  66. Klinger G, Beyene J, Shah P, Perlman M. Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed. 2005;90:F49–52. https://doi.org/10.1136/adc.2003.048785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Leone TA, Lange A, Rich W, Finer NN. Disposable colorimetric carbon dioxide detector use as an indicator of a patent airway during noninvasive mask ventilation. Pediatrics. 2006;118:e202–e204.

    Article  Google Scholar 

  68. Finer NN, Rich W, Wang C, Leone T. Airway obstruction during mask ventilation of very low birth weight infants during neonatal resuscitation. Pediatrics. 2009;123:865–9.

    Article  Google Scholar 

  69. Schmölzer GM, Dawson JA, Kamlin COF, O’Donnell CP, Morley CJ, Davis PG. Airway obstruction and gas leak during mask ventilation of preterm infants in the delivery room. Arch Dis Child. 2011;96:F254–F257. https://doi.org/10.1136/adc.2010.191171

    Article  Google Scholar 

  70. van Os S, Cheung PY, Pichler G, Aziz K, O’Reilly M, Schmolzer GM. Exhaled carbon dioxide can be used to guide respiratory support in the delivery room. Acta Paediatr. 2014;103:796–806. https://doi.org/10.1111/apa.12650

    Article  PubMed  Google Scholar 

  71. O’Reilly M, Cheung PY, Aziz K, Schmolzer GM. Short- and intermediate-term outcomes of preterm infants receiving positive pressure ventilation in the delivery room. Crit Care Res Pract. 2013;2013:715915 https://doi.org/10.1155/2013/715915

    Article  PubMed  PubMed Central  Google Scholar 

  72. Perlman JM, Wyllie J, Kattwinkel J, Wyckoff MH, Aziz K, Guinsburg R, et al. Part 7: neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132:S204–241. https://doi.org/10.1161/CIR.0000000000000276

    Article  PubMed  Google Scholar 

  73. Hawkes GA, Kelleher J, Ryan CA, Dempsey EM. A review of carbon dioxide monitoring in preterm newborns in the delivery room. Resuscitation. 2014;85:1315–9. https://doi.org/10.1016/j.resuscitation.2014.07.012

    Article  PubMed  CAS  Google Scholar 

  74. Maconochie IK, Aickin R, Hazinski MF, Atkins DL, Bingham R, Couto TB, et al. Pediatric life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2020;142:S140–S184. https://doi.org/10.1161/CIR.0000000000000894

    Article  PubMed  Google Scholar 

  75. GM., W. Textbook of neonatal resuscitation, 7th edition.

  76. Aziz HF, Martin JB, Moore JJ. The pediatric disposable end-tidal carbon dioxide detector role in endotracheal intubation in newborns. J Perinatol. 1999;19:110–3. https://doi.org/10.1038/sj.jp.7200136

    Article  PubMed  CAS  Google Scholar 

  77. Molloy EJ, Deakins K. Are carbon dioxide detectors useful in neonates? Arch Dis Child Fetal Neonatal Ed. 2006;91:F295–298. https://doi.org/10.1136/adc.2005.082008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Roberts WA, Maniscalco WM, Cohen AR, Litman RS, Chhibber A. The use of capnography for recognition of esophageal intubation in the neonatal intensive care unit. Pediatr Pulmonol. 1995;19:262–8. https://doi.org/10.1002/ppul.1950190504

    Article  PubMed  CAS  Google Scholar 

  79. Repetto JE, Donohue P-CP, Baker SF, Kelly L, Nogee LM. Use of capnography in the delivery room for assessment of endotracheal tube placement. J Perinatol. 2001;21:284–7. https://doi.org/10.1038/sj.jp.7210534

    Article  PubMed  CAS  Google Scholar 

  80. Schmolzer GM, Poulton DA, Dawson JA, Kamlin CO, Morley CJ, Davis PG. Assessment of flow waves and colorimetric CO2 detector for endotracheal tube placement during neonatal resuscitation. Resuscitation. 2011;82:307–12. https://doi.org/10.1016/j.resuscitation.2010.11.008

    Article  PubMed  Google Scholar 

  81. Jones HE, Kaltenbach K, Heil SH, Stine SM, Coyle MG, Arria AM, et al. Neonatal abstinence syndrome after methadone or buprenorphine exposure. N Engl J Med. 2010;363:2320–31. https://doi.org/10.1056/NEJMoa1005359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607–11. https://doi.org/10.1056/nejm198803103181005

    Article  PubMed  CAS  Google Scholar 

  83. Merchant RM, Topjian AA, Panchal AR, Cheng A, Aziz K, Berg KM, et al. Part 1: executive summary: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142:S337–s357. https://doi.org/10.1161/cir.0000000000000918

    Article  PubMed  Google Scholar 

  84. Chandrasekharan P, Vali P, Rawat M, Mathew B, Gugino SF, Koenigsknecht C, et al. Continuous capnography monitoring during resuscitation in a transitional large mammalian model of asphyxial cardiac arrest. Pediatr Res. 2017;81:898–904. https://doi.org/10.1038/pr.2017.26

    Article  PubMed  PubMed Central  Google Scholar 

  85. O’Currain E, Thio M, Dawson JA, Donath SM, Davis PG. Respiratory monitors to teach newborn facemask ventilation: a randomised trial. Arch Dis Child. 2019;104:F582 https://doi.org/10.1136/archdischild-2018-316118

    Article  Google Scholar 

  86. Kong JY, Rich W, Finer NN, Leone TA. Quantitative end-tidal carbon dioxide monitoring in the delivery room: a randomized controlled trial. J Pediatr. 2013;163:104–.e101. https://doi.org/10.1016/j.jpeds.2012.12.016

    Article  PubMed  CAS  Google Scholar 

  87. Hawkes GA, Kenosi M, Finn D, O’Toole JM, O’Halloran KD, Boylan GB, et al. Delivery room end tidal CO2 monitoring in preterm infants <32 weeks. Arch Dis Child Fetal Neonatal Ed. 2016;101:F62–65. https://doi.org/10.1136/archdischild-2015-308315

    Article  PubMed  Google Scholar 

  88. Kugelman A, Golan A, Riskin A, Shoris I, Ronen M, Qumqam N, et al. Impact of continuous capnography in ventilated neonates: a randomized, multicenter study. J Pediatr. 2016;168:56–61. e52.

    Article  Google Scholar 

  89. Bhat YR, Abhishek N. Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Singap Med J. 2008;49:199–203.

    CAS  Google Scholar 

  90. Nangia S, Saili A, Dutta AK. End tidal carbon dioxide monitoring-its reliability in neonates. Indian J Pediatr. 1997;64:389–94. https://doi.org/10.1007/bf02845211

    Article  PubMed  CAS  Google Scholar 

  91. Aliwalas LL, Noble L, Nesbitt K, Fallah S, Shah V, Shah PS. Agreement of carbon dioxide levels measured by arterial, transcutaneous and end tidal methods in preterm infants < or = 28 weeks gestation. J Perinatol. 2005;25:26–29. https://doi.org/10.1038/sj.jp.7211202

    Article  PubMed  Google Scholar 

  92. Amuchou Singh S, Singhal N. Dose end-tidal carbon dioxide measurement correlate with arterial carbon dioxide in extremely low birth weight infants in the first week of life? Indian Pediatr. 2006;43:20–25.

    PubMed  Google Scholar 

  93. Rozycki HJ, Sysyn GD, Marshall MK, Malloy R, Wiswell TE. Mainstream end-tidal carbon dioxide monitoring in the neonatal intensive care unit. Pediatrics. 1998;101:648–53. https://doi.org/10.1542/peds.101.4.648

    Article  PubMed  CAS  Google Scholar 

  94. Lopez E, Grabar S, Barbier A, Krauss B, Jarreau PH, Moriette G. Detection of carbon dioxide thresholds using low-flow sidestream capnography in ventilated preterm infants. Intens Care Med. 2009;35:1942–9. https://doi.org/10.1007/s00134-009-1647-5

    Article  Google Scholar 

  95. Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child. 2005;90:F523 https://doi.org/10.1136/adc.2004.064717

    Article  CAS  Google Scholar 

  96. Paton JY, Swaminathan S, Sargent CW, Keens TG. Hypoxic and hypercapnic ventilatory responses in awake children with congenital central hypoventilation syndrome. Am Rev Respir Dis. 1989;140:368–72. https://doi.org/10.1164/ajrccm/140.2.368

    Article  PubMed  CAS  Google Scholar 

  97. Karlsson V, Sporre B, Hellström-Westas L, Ågren J. Poor performance of main-stream capnography in newborn infants during general anesthesia. Paediatr Anaesth. 2017;27:1235–40. https://doi.org/10.1111/pan.13266

    Article  PubMed  Google Scholar 

  98. Foy KE, Mew E, Cook TM, Bower J, Knight P, Dean S, et al. Paediatric intensive care and neonatal intensive care airway management in the United Kingdom: the PIC-NIC survey. Anaesthesia. 2018;73:1337–44. https://doi.org/10.1111/anae.14359

    Article  PubMed  CAS  Google Scholar 

  99. Proquitté H, Krause S, Rüdiger M, Wauer RR, Schmalisch G. Current limitations of volumetric capnography in surfactant-depleted small lungs. Pediatr Crit Care Med. 2004;5:75–80.

    Article  Google Scholar 

  100. Fouzas S, Häcki C, Latzin P, Proietti E, Schulzke S, Frey U. et al. Volumetric capnography in infants with bronchopulmonary dysplasia. J Pediatr. 2014;164:283.e281–3. https://doi.org/10.1016/j.jpeds.2013.09.034.

    Article  Google Scholar 

  101. Kirpalani H, Kechagias S, Lerman J. Technical and clinical aspects of capnography in neonates. J Med Eng Technol. 1991;15:154–61. https://doi.org/10.3109/03091909109023702

    Article  PubMed  CAS  Google Scholar 

  102. Schmolzer GM, O’Reilly M, Davis PG, Cheung PY, Roehr CC. Confirmation of correct tracheal tube placement in newborn infants. Resuscitation. 2013;84:731–7. https://doi.org/10.1016/j.resuscitation.2012.11.028

    Article  PubMed  Google Scholar 

  103. Suzuki K, Hooper SB, Cock ML, Harding R. Effect of lung hypoplasia on birth-related changes in the pulmonary circulation in sheep. Pediatr Res. 2005;57:530–6. https://doi.org/10.1203/01.PDR.0000155753.67450.01

    Article  PubMed  Google Scholar 

  104. Hughes SM, Blake BL, Woods SL, Lehmann CU. False-positive results on colorimetric carbon dioxide analysis in neonatal resuscitation: potential for serious patient harm. J Perinatol. 2007;27:800–1. https://doi.org/10.1038/sj.jp.7211831

    Article  PubMed  CAS  Google Scholar 

  105. Janaillac M, Labarinas S, Pfister RE, Karam O. Accuracy of transcutaneous carbon dioxide measurement in premature infants. Crit Care Res Pract. 2016;2016:8041967 https://doi.org/10.1155/2016/8041967

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sørensen LC, Brage-Andersen L, Greisen G. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension. Scand J Clin Lab Investig. 2011;71:548–52. https://doi.org/10.3109/00365513.2011.590601

    Article  CAS  Google Scholar 

  107. Jakubowicz JF, Bai S, Matlock DN, Jones ML, Hu Z, Proffitt B, et al. Effect of transcutaneous electrode temperature on accuracy and precision of carbon dioxide and oxygen measurements in the preterm infants. Respir Care. 2018;63:900–6. https://doi.org/10.4187/respcare.05887

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the funding sources listed below.

Funding

UC Davis Children’s Miracle Network, UC Davis Child Health Research Grant and First Tech Federal Union, Canadian Pediatric Society-Neonatal Resuscitation Program Research Grant, National Institutes of Health (NIH)/National Heart Lung and Blood Institute (NHLBI) K12 HL138052, HD072929 and UL1TR001412, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

Author information

Authors and Affiliations

Authors

Contributions

DS conceptualized, designed, drafted the initial manuscript, reviewed, and revised the manuscript. LZ, SI, PC, and SL contributed to the concept, reviewed, and revised the manuscript. All the authors have critically revised and approved the final version of the manuscript. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Deepika Sankaran.

Ethics declarations

Financial disclosure

Dr. Sankaran is supported by UC Davis Children’s Miracle Network, UC Davis Child Health Research Grant and First Tech Federal Credit Union, and Neonatal Resuscitation Program Research Grant from the Canadian Pediatric Society. Dr. Chandrasekharan is supported by the National Institutes of Health (NIH)/National Heart Lung and Blood Institute (NHLBI) K12 HL138052 and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) R03HD096510. Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1TR001412 to the University at Buffalo. Dr. Lakshminrusimha is supported by NICHD (HD072929). The funding agencies did not have any role in the design or submission of this manuscript. This review article does not contain a discussion of an unapproved/investigative use of a commercial product/device.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Under the heading “Types of non-invasive carbon dioxide monitoring” and subheading “Physical method (waveform capnography)” there is a number mentioned as “0.43 µm" which is an error, and it should read as “4.3 µm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaran, D., Zeinali, L., Iqbal, S. et al. Non-invasive carbon dioxide monitoring in neonates: methods, benefits, and pitfalls. J Perinatol 41, 2580–2589 (2021). https://doi.org/10.1038/s41372-021-01134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41372-021-01134-2

This article is cited by

Search

Quick links