Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Considerations for obstetric management of births 22–25 weeks’ gestation

Abstract

Preterm birth between 22 and 25 5/7 weeks complicates <1% of live births within the United States though contributes more than 20% of infant mortality within the first year of life. Ante- and intrapartum interventions such as antenatal corticosteroids, magnesium sulfate, and tocolytic and antibiotic therapies have been shown effective in optimizing postnatal prognosis in births at 24 weeks and beyond. Interventions, mode of delivery, and resuscitation plans should ideally be discussed with the perinatology, neonatology, and nursing teams with the family using shared decision making. Observational data have alluded to similar postnatal benefits in births at 22–23 weeks; however, these data are limited by small sample sizes, inconsistencies in outcome reporting, and variations in management strategies. Future studies to evaluate the utility of these interventions among births at 22–23 weeks are warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. National institute of child health and human development neonatal research network. Intensive care for extreme prematurity–moving beyond gestational age. N. Engl J Med. 2008;358:1672–81. https://doi.org/10.1056/NEJMoa073059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seasely AR, Jauk VC, Szychowski JM, Ambalavanan N, Tita AT, Casey BM. Maternal and neonatal outcomes at periviable gestation throughout delivery admission. Am J Perinatol. 2024;41:e2952–e2958. https://doi.org/10.1055/s-0043-1776347.

    Article  PubMed  Google Scholar 

  3. Draper ES, Gallimore ID, Smith LK, et al. MBRRACE-UK perinatal mortality surveillance report: UK perinatal deaths for births from January to December 2019. Infant Mortality Morbidity Stud. 2021. [MBRRACE-UK_Perinatal_Surveillance_Report_2020.pdf].

  4. Ancel PY, Goffinet F, EPIPAGE-2 Writing Group, Kuhn P, Langer B, Matis J, Hernandorena X, et al. Survival and morbidity of preterm children born at 22 through 34 weeks’ gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr 2015;169:230–8. https://doi.org/10.1001/jamapediatrics.2014.3351. Erratum in: JAMA Pediatr. 2015 Apr;169(4):323. https://doi.org/10.1001/jamapediatrics.2015.0528. Alberge, Catherine [Corrected to Alberge, Corine].

    Article  PubMed  Google Scholar 

  5. Morgan AS, Zeitlin J, Källén K, Draper ES, Maršál K, Norman M, et al. Birth outcomes between 22 and 26 weeks’ gestation in national population-based cohorts from Sweden, England and France. Acta Paediatr. 2022;111:59–75. https://doi.org/10.1111/apa.16084.

    Article  PubMed  Google Scholar 

  6. Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402:1261–71. https://doi.org/10.1016/S0140-6736(23)00878-4. Erratum in: Lancet. 2024 Feb 17;403(10427):618. doi: 10.1016/S0140-6736(24)00267-8.

    Article  PubMed  Google Scholar 

  7. MacDorman MF, Matthews TJ, Mohangoo AD, Zeitlin J. International comparisons of infant mortality and related factors: United States and Europe, 2010. Natl Vital–Stat Rep. 2014;63:1–6.

    PubMed  Google Scholar 

  8. Woods CR, Davis DW, Duncan SC, Myers JA, O’Shea TM. Variation in classification of live birth with newborn period death versus fetal death at the local level may impact reported infant mortality rate. BMC Pediatr. 2014;14:108.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics System, Fetal Deaths on CDC WONDER Online Database. Data are from the Fetal Death Records 2014-2022, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/fetal-deaths-expanded-current.html on Nov 24, 2024 9:32:41 AM.

  10. Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics System, Natality on CDC WONDER Online Database. Data are from the Natality Records 2016-2023, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/natality-expanded-current.html on Nov 24, 2024 9:33:08 AM.

  11. Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022 6:106–115. https://doi.org/10.1016/S2352-4642(21)00311-4. Epub 2021 Nov 17. Erratum in: Lancet Child Adolesc Health. 2022 Jan;6(1):e4. Doi: 10.1016/S2352-4642(21)00382-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Centers for Disease Control and Prevention, National Center for Health Statistics. National Vital Statistics System, Linked Birth / Infant Deaths on CDC WONDER Online Database. Data are from the Linked Birth / Infant Deaths Records 2017-2021, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/lbd-current-expanded.html on Jul 31, 2024 12:36:24 PM.

  13. Tyson JE, Stoll BJ. Evidence-based ethics and the care and outcome of extremely premature infants. Clin Perinatol. 2003;30:363–87. https://doi.org/10.1016/s0095-5108(03)00028-9. PMID: 12875360

    Article  PubMed  Google Scholar 

  14. Mactier H, Bates SE, Johnston T, Lee-Davey C, Marlow N, Mulley K, et al. BAPM Working Group. Perinatal management of extreme preterm birth before 27 weeks of gestation: a framework for practice. Arch Dis Child Fetal Neonatal Ed. 2020;105:232–9. https://doi.org/10.1136/archdischild-2019-318402.

    Article  PubMed  Google Scholar 

  15. Cummings J. COMMITTEE ON FETUS AND NEWBORN. Antenatal counseling regarding resuscitation and intensive care before 25 weeks of gestation. Pediatrics. 2015;136:588–95. https://doi.org/10.1542/peds.2015-2336.

    Article  PubMed  Google Scholar 

  16. Ambalavanan N, Carlo WA, Tyson JE, Langer JC, Walsh MC, Parikh NA, et al. Generic Database; Subcommittees of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Outcome trajectories in extremely preterm infants. Pediatrics. 2012;130:e115–25. https://doi.org/10.1542/peds.2011-3693.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Skupski DW, McCullough LB, Levene M, Chervenak FA. Improving obstetric estimation of outcomes of extremely premature neonates: an evolving challenge. J Perinat Med. 2010;38:19–22. https://doi.org/10.1515/jpm.2010.013.

    Article  PubMed  Google Scholar 

  18. Boland RA, Cheong JLY, Stewart MJ, Kane SC, Doyle LW. Disparities between perceived and true outcomes of infants born at 23-25 weeks’ gestation. Aust N. Z J Obstet Gynaecol. 2022;62:255–62. https://doi.org/10.1111/ajo.13443.

    Article  PubMed  Google Scholar 

  19. Itabashi K, Miyazawa T, Kusuda S, Wada K. Japan Pediatric Society Newborn Committee. Changes in mortality rates among extremely preterm infants born before 25 weeks’ gestation: Comparison between the 2005 and 2010 nationwide surveys in Japan. Early Hum Dev. 2021;155:105321 https://doi.org/10.1016/j.earlhumdev.2021.105321.

    Article  PubMed  Google Scholar 

  20. Norman M, Hallberg B, Abrahamsson T, Björklund LJ, Domellöf M, Farooqi A, et al. Association between year of birth and 1-year survival among extremely preterm infants in Sweden during 2004-2007 and 2014-2016. JAMA. 2019;321:1188–99. https://doi.org/10.1001/jama.2019.2021. Erratum in: JAMA. 2024 Jan 16;331(3):262. https://doi.org/10.1001/jama.2023.26372.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Farooqi A, Hakansson S, Serenius F, Kallen K, Björklund L, Normann E, et al. One-year survival and outcomes of infants born at 22 and 23 weeks of gestation in Sweden 2004-2007, 2014-2016 and 2017-2019. Arch Dis Child Fetal Neonatal Ed. 2023;109:10–17. https://doi.org/10.1136/archdischild-2022-325164.

    Article  PubMed  Google Scholar 

  22. Isayama T, Miyakoshi K, Namba F, Hida M, Morioka I, Ishii K, et al. Survival and unique clinical practices of extremely preterm infants born at 22-23 weeks’ gestation in Japan: a national survey. Arch Dis Child Fetal Neonatal Ed. 2024;110:17–22. https://doi.org/10.1136/archdischild-2023-326355.

    Article  PubMed  Google Scholar 

  23. de Laat MW, Wiegerinck MM, Walther FJ, Boluyt N, Mol BW, van der Post JA, et al. Nederlandse Vereniging voor Kindergeneeskunde; Nederlandse Vereniging voor Obstetrie en Gynaecologie. Richtlijn ‘Perinataal beleid bij extreme vroeggeboorte’ [Practice guideline ‘Perinatal management of extremely preterm delivery’]. Ned Tijdschr Geneeskd. 2010;154:A2701. Dutch.

    PubMed  Google Scholar 

  24. Gordon HG, Shub A, Stewart MJ, Kane SC, Cheong JL, Roberts CT, et al. In-utero transfer, survival-focused care and survival to 28-days at 22-24 weeks’ gestation pre- and post- implementation of an extreme prematurity management guideline in Victoria, Australia. BMJ Paediatr Open. 2024;8:e002462 https://doi.org/10.1136/bmjpo-2023-002462.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nair Shah N, Krishna I, Vyas-Read S, Patel RM. Neonatal and obstetric provider perceptions and management at 22 weeks’ gestation. Am J Perinatol. 2024;41:e879–e885. https://doi.org/10.1055/a-1969-1237.

    Article  PubMed  Google Scholar 

  26. Tucker Edmonds B, McKenzie F, Farrow V, Raglan G, Schulkin J. A national survey of obstetricians’ attitudes toward and practice of periviable intervention. J Perinatol. 2015;35:338–43. https://doi.org/10.1038/jp.2014.201.

    Article  CAS  PubMed  Google Scholar 

  27. WHO ACTION Trials Collaborators, Oladapo OT, Vogel JP, Piaggio G, Nguyen MH, Althabe F, et al. Antenatal dexamethasone for early preterm birth in low-resource countries. N Engl J Med. 2020;383:2514–25. https://doi.org/10.1056/NEJMoa2022398.

    Article  PubMed Central  Google Scholar 

  28. Abiramalatha T, Bandyopadhyay T, Ramaswamy VV, Shaik NB, Thanigainathan S, Pullattayil AK, et al. Risk factors for periventricular leukomalacia in preterm infants: a systematic review, meta-analysis, and GRADE-based assessment of certainty of evidence. Pediatr Neurol. 2021;124:51–71. https://doi.org/10.1016/j.pediatrneurol.2021.08.003.

    Article  PubMed  Google Scholar 

  29. Gamsu HR, Mullinger BM, Donnai P, Dash CH. Antenatal administration of betamethasone to prevent respiratory distress syndrome in preterm infants: report of a UK multicentre trial. Br J Obstet Gynaecol. 1989;96:401–10. https://doi.org/10.1111/j.1471-0528.1989.tb02413.x.

    Article  CAS  PubMed  Google Scholar 

  30. Papageorgiou AN, Desgranges MF, Masson M, Colle E, Shatz R, Gelfand MM. The antenatal use of betamethasone in the prevention of respiratory distress syndrome: a controlled double-blind study. Pediatrics. 1979;63:73–9.

    Article  CAS  PubMed  Google Scholar 

  31. Herrera TI, Vaz Ferreira MC, Toso A, Villarroel L, Silvera F, Ceriani-Cernadas JM, et al. Neocosur neonatal network. neonatal outcomes of antenatal corticosteroids in preterm multiple pregnancies compared to singletons. Early Hum Dev. 2019;130:44–50. https://doi.org/10.1016/j.earlhumdev.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

  32. Travers CP, Clark RH, Spitzer AR, Das A, Garite TJ, Carlo WA. Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: prospective cohort study. BMJ. 2017;356:j1039 https://doi.org/10.1136/bmj.j1039.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020;12:CD004454 https://doi.org/10.1002/14651858.CD004454.pub4.

    Article  PubMed  Google Scholar 

  34. Ehret DEY, Edwards EM, Greenberg LT, Bernstein IM, Buzas JS, Soll RF, et al. Association of antenatal steroid exposure with survival among infants receiving postnatal life support at 22 to 25 weeks’ gestation. JAMA Netw Open. 2018;1:e183235 https://doi.org/10.1001/jamanetworkopen.2018.3235.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chawla S, Wyckoff MH, Rysavy MA, Patel RM, Chowdhury D, Natarajan G, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Association of Antenatal Steroid Exposure at 21 to 22 Weeks of Gestation With Neonatal Survival and Survival Without Morbidities. JAMA Netw Open. 2022;5:e2233331 https://doi.org/10.1001/jamanetworkopen.2022.33331.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mori R, Kusuda S, Fujimura M. Neonatal Research Network Japan. Antenatal corticosteroids promote survival of extremely preterm infants born at 22 to 23 weeks of gestation. J Pediatr. 2011;159:110–.e1. https://doi.org/10.1016/j.jpeds.2010.12.039.

    Article  CAS  PubMed  Google Scholar 

  37. Travers CP, Carlo WA, McDonald SA, Das A, Bell EF, Ambalavanan N, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Mortality and pulmonary outcomes of extremely preterm infants exposed to antenatal corticosteroids. Am J Obstet Gynecol. 2018;218:130.e1–130.e13. https://doi.org/10.1016/j.ajog.2017.11.554.

    Article  PubMed  Google Scholar 

  38. Carlo WA, McDonald SA, Fanaroff AA, Vohr BR, Stoll BJ, Ehrenkranz RA, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks’ gestation. JAMA. 2011;306:2348–58. https://doi.org/10.1001/jama.2011.1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayes EJ, Paul DA, Stahl GE, Seibel-Seamon J, Dysart K, Leiby BE, et al. Effect of antenatal corticosteroids on survival for neonates born at 23 weeks of gestation. Obstet Gynecol. 2008;111:921–6. https://doi.org/10.1097/AOG.0b013e318169ce2d.

    Article  CAS  PubMed  Google Scholar 

  40. Yim CL, Tam M, Chan HL, Tang SM, Au SCL, Yip WWK, et al. Association of antenatal steroid and risk of retinopathy of prematurity: a systematic review and meta-analysis. Br J Ophthalmol. 2018;102:1336–41. https://doi.org/10.1136/bjophthalmol-2017-311576.

    Article  PubMed  Google Scholar 

  41. Sacco A, Cornish EF, Marlow N, David AL, Giussani DA. The effect of antenatal corticosteroid use on offspring cardiovascular function: A systematic review. BJOG. 2023;130:325–33. https://doi.org/10.1111/1471-0528.17316.

    Article  CAS  PubMed  Google Scholar 

  42. Walters AGB, Gamble GD, Crowther CA, Dalziel SR, Eagleton CL, McKinlay CJD, et al. Cardiovascular outcomes 50 years after antenatal exposure to betamethasone: Follow-up of a randomised double-blind, placebo-controlled trial. PLoS Med. 2024;21:e1004378 https://doi.org/10.1371/journal.pmed.1004378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crowther CA, Anderson PJ, McKinlay CJ, Harding JE, Ashwood PJ, Haslam RR, et al. ACTORDS Follow-up Group. Mid-childhood outcomes of repeat antenatal corticosteroids: a randomized controlled trial. Pediatrics. 2016;138:e20160947 https://doi.org/10.1542/peds.2016-0947.

    Article  PubMed  Google Scholar 

  44. Gentle SJ, Carlo WA, Tan S, Gargano M, Ambalavanan N, Chawla S, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Neonatal Research Network. Association of Antenatal Corticosteroids and Magnesium Sulfate Therapy With Neurodevelopmental Outcome in Extremely Preterm Children. Obstet Gynecol. 2020;135:1377–86. https://doi.org/10.1097/AOG.0000000000003882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sotiriadis A, Tsiami A, Papatheodorou S, Baschat AA, Sarafidis K, Makrydimas G. Neurodevelopmental outcome after a single course of antenatal steroids in children born preterm: a systematic review and meta-analysis. Obstet Gynecol. 2015;125:1385–96. https://doi.org/10.1097/AOG.0000000000000748.

    Article  CAS  PubMed  Google Scholar 

  46. Salokorpi T, Sajaniemi N, Hällback H, Kari A, Rita H, von Wendt L. Randomized study of the effect of antenatal dexamethasone on growth and development of premature children at the corrected age of 2 years. Acta Paediatr. 1997;86:294–8. https://doi.org/10.1111/j.1651-2227.1997.tb08893.x.

    Article  CAS  PubMed  Google Scholar 

  47. Ciapponi A, Klein K, Colaci D, Althabe F, Belizán JM, Deegan A, et al. Dexamethasone versus betamethasone for preterm birth: a systematic review and network meta-analysis. Am J Obstet Gynecol MFM. 2021;3:100312 https://doi.org/10.1016/j.ajogmf.2021.100312.

    Article  CAS  PubMed  Google Scholar 

  48. Williams MJ, Ramson JA, Brownfoot FC. Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth. Cochrane Database Syst Rev. 2022;8:CD006764 https://doi.org/10.1002/14651858.CD006764.pub4.

    Article  PubMed  Google Scholar 

  49. Elimian A, Garry D, Figueroa R, Spitzer A, Wiencek V, Quirk JG. Antenatal betamethasone compared with dexamethasone (betacode trial): a randomized controlled trial. Obstet Gynecol. 2007;110:26–30. https://doi.org/10.1097/01.AOG.0000268281.36788.81.

    Article  CAS  PubMed  Google Scholar 

  50. Crowther CA, Ashwood P, Andersen CC, Middleton PF, Tran T, Doyle LW, et al. ASTEROID Study Group. Maternal intramuscular dexamethasone versus betamethasone before preterm birth (ASTEROID): a multicentre, double-blind, randomised controlled trial. Lancet Child Adolesc Health. 2019;3:769–80. https://doi.org/10.1016/S2352-4642(19)30292-5.

    Article  PubMed  Google Scholar 

  51. Chawanpaiboon S, Chukaew R, Pooliam J. A comparison of 2 doses of antenatal dexamethasone for the prevention of respiratory distress syndrome: an open-label, noninferiority, pragmatic randomized trial. Am J Obstet Gynecol. 2024;230:260.e1–260.e19. https://doi.org/10.1016/j.ajog.2023.07.006.

    Article  CAS  PubMed  Google Scholar 

  52. Schmitz T, Doret-Dion M, Sentilhes L, Parant O, Claris O, Renesme L, et al. BETADOSE trial study group; Groupe de Recherche en Obstétrique et Gynécologie. Neonatal outcomes for women at risk of preterm delivery given half dose versus full dose of antenatal betamethasone: a andomized, multicentre, double-blind, placebo-controlled, non-inferiority trial. Lancet. 2022;400:592–604. https://doi.org/10.1016/S0140-6736(22)01535-5. Erratum in: Lancet. 2022 Oct 22;400(10361):1404. Doi: 10.1016/S0140-6736(22)01696-8.

    Article  CAS  PubMed  Google Scholar 

  53. Battarbee AN, Ros ST, Esplin MS, Biggio J, Bukowski R, Parry S, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Genomics and Proteomics Network for Preterm Birth Research (GPN-PBR). Optimal timing of antenatal corticosteroid administration and preterm neonatal and early childhood outcomes. Am J Obstet Gynecol MFM. 2020;2:100077 https://doi.org/10.1016/j.ajogmf.2019.100077.

    Article  PubMed  Google Scholar 

  54. Norman M, Piedvache A, Børch K, Huusom LD, Bonamy AE, Howell EA, et al. Effective Perinatal Intensive Care in Europe (EPICE) Research Group. Association of Short Antenatal Corticosteroid Administration-to-Birth Intervals With Survival and Morbidity Among Very Preterm Infants: Results From the EPICE Cohort. JAMA Pediatr. 2017;171:678–86. https://doi.org/10.1001/jamapediatrics.2017.0602.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Norman J, Shennan A, Jacobsson B, Stock SJ. FIGO Working Group for Preterm Birth. FIGO good practice recommendations on the use of prenatal corticosteroids to improve outcomes and minimize harm in babies born preterm. Int J Gynaecol Obstet. 2021;155:26–30. https://doi.org/10.1002/ijgo.13836. Erratum in: Int J Gynaecol Obstet. 2022 May;157(2):486. https://doi.org/10.1002/ijgo.14145. PMID: 34520057.

    Article  PubMed  Google Scholar 

  56. Abbasalizadeh F, Pouya K, Zakeri R, Asgari-Arbat R, Abbasalizadeh S, Parnianfard N. Prenatal administration of betamethasone and neonatal respiratory distress syndrome in multifetal pregnancies: a randomized controlled trial. Curr Clin Pharm. 2020;15:164–9. https://doi.org/10.2174/1574884714666191007154936.

    Article  CAS  Google Scholar 

  57. Rossi RM, DeFranco EA, Hall ES. Association of antenatal corticosteroid exposure and infant survival at 22 and 23 weeks. Am J Perinatol. 2023;40:1789–97. https://doi.org/10.1055/s-0041-1740062.

    Article  PubMed  Google Scholar 

  58. Nelson KB, Grether JK. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995;95:263–9.

    Article  CAS  PubMed  Google Scholar 

  59. Crowther CA, Hiller JE, Doyle LW, Haslam RR, Australasian Collaborative Trial of Magnesium Sulphate (ACTOMg SO4) Collaborative Group. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial. JAMA. 2003;290:2669–76. https://doi.org/10.1001/jama.290.20.2669.

    Article  CAS  PubMed  Google Scholar 

  60. Rouse DJ, Hirtz DG, Thom E, Varner MW, Spong CY, Mercer BM, et al. Eunice Kennedy Shriver NICHD maternal-fetal medicine units network. A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy. N. Engl J Med. 2008;359:895–905. https://doi.org/10.1056/NEJMoa0801187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crowther CA, Middleton PF, Voysey M, Askie L, Duley L, Pryde PG, et al. AMICABLE Group. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: An individual participant data meta-analysis. PLoS Med. 2017;14:e1002398 https://doi.org/10.1371/journal.pmed.1002398.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marret S, Marpeau L, Zupan-Simunek V, Eurin D, Lévêque C, Hellot MF, et al. PREMAG trial group. Magnesium sulphate given before very-preterm birth to protect infant brain: the randomised controlled PREMAG trial*. BJOG. 2007;114:310–8. https://doi.org/10.1111/j.1471-0528.2006.01162.x.

    Article  CAS  PubMed  Google Scholar 

  63. Mittendorf R, Dambrosia J, Pryde PG, Lee KS, Gianopoulos JG, Besinger RE, et al. Association between the use of antenatal magnesium sulfate in preterm labor and adverse health outcomes in infants. Am J Obstet Gynecol. 2002;186:1111–8. https://doi.org/10.1067/mob.2002.123544.

    Article  CAS  PubMed  Google Scholar 

  64. Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, et al. Magpie Trial Collaboration Group. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet. 2002;359:1877–90. https://doi.org/10.1016/s0140-6736(02)08778-0.

    Article  PubMed  Google Scholar 

  65. Shepherd ES, Goldsmith S, Doyle LW, Middleton P, Marret S, Rouse DJ, et al. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2024;5:CD004661 https://doi.org/10.1002/14651858.CD004661.pub4.

    Article  PubMed  Google Scholar 

  66. Wolf HT, Brok J, Henriksen TB, Greisen G, Salvig JD, Pryds O, et al. MASP research group. Antenatal magnesium sulphate for the prevention of cerebral palsy in infants born preterm: a double-blind, randomised, placebo-controlled, multi-centre trial. BJOG. 2020;127:1217–25. https://doi.org/10.1111/1471-0528.16239.

    Article  CAS  PubMed  Google Scholar 

  67. Neilson JP, West HM, Dowswell T. Betamimetics for inhibiting preterm labour. Cochrane Database Syst Rev. 2014;2014:CD004352 https://doi.org/10.1002/14651858.CD004352.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Han S, Crowther CA, Moore V. Magnesium maintenance therapy for preventing preterm birth after threatened preterm labour. Cochrane Database Syst Rev. 2013;2013:CD000940 https://doi.org/10.1002/14651858.CD000940.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Flenady V, Wojcieszek AM, Papatsonis DN, Stock OM, Murray L, Jardine LA, et al. Calcium channel blockers for inhibiting preterm labour and birth. Cochrane Database Syst Rev. 2014;2014:CD002255. https://doi.org/10.1002/14651858.CD002255.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ara I, Banu H. A prospective randomised trial of nifedipine versus placebo in preterm labour. Bangladesh J Obstet Gynecol. 2008;23:61–4.

    Article  Google Scholar 

  71. Zhang X, Liu M. Clinical observations on the prevention and treatment of premature labor with nifedipine. Hua‐Hsi i Ko Ta Hsueh Hsueh Pao [J West China Univ Med Sci]. 2002;33:288–90.

    CAS  PubMed  Google Scholar 

  72. Reinebrant HE, Pileggi-Castro C, Romero CL, Dos Santos RA, Kumar S, Souza JP, et al. Cyclo-oxygenase (COX) inhibitors for treating preterm labour. Cochrane Database Syst Rev. 2015;2015:CD001992 https://doi.org/10.1002/14651858.CD001992.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Panter KR, Hannah ME, Amankwah KS, Ohlsson A, Jefferies AL, Farine D. The effect of indomethacin tocolysis in preterm labour on perinatal outcome: a randomised placebo‐controlled trial. Br J Obstet Gynaecol. 1999;106:467–73.

    Article  CAS  PubMed  Google Scholar 

  74. Mercer BM, Miodovnik M, Thurnau GR, Goldenberg RL, Das AF, Ramsey RD, et al. Antibiotic therapy for reduction of infant morbidity after preterm premature rupture of the membranes. A randomized controlled trial. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. JAMA. 1997;278:989–95.

    Article  CAS  PubMed  Google Scholar 

  75. Mercer B, Moretti M, Rogers R, Sibai B. Antibiotic prophylaxis in preterm premature rupture of the membranes: prospective randomized doubleblind trial of 220 patients. Am J Obstet Gynecol. 1992;166:794–802.

    Article  CAS  PubMed  Google Scholar 

  76. Günes A, Kiyak H, Yüksel S, Bolluk G, Erbiyik RM, Gedikbasi A. Predicting previable preterm premature rupture of membranes (pPPROM) before 24 weeks: maternal and fetal/neonatal risk factors for survival. J Obstet Gynaecol. 2022;42:597–606. https://doi.org/10.1080/01443615.2021.1935818.

    Article  CAS  PubMed  Google Scholar 

  77. LeMoine F, Moore RC, Chapple A, Moore FA, Sutton E. Neonatal survivability following previable PPROM after hospital readmission for intervention. AJP Rep. 2020;10:e395–e402. https://doi.org/10.1055/s-0040-1721421.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Esteves JS, de Sá RA, de Carvalho PR, Coca Velarde LG. Neonatal outcome in women with preterm premature rupture of membranes (PPROM) between 18 and 26 weeks. J Matern Fetal Neonatal Med. 2016;29:1108–12. https://doi.org/10.3109/14767058.2015.1035643.

    Article  PubMed  Google Scholar 

  79. Knupp RJ, Pederson S, Blanchard C, Szychowski J, Etikala D, Sinkey R, et al. Antibiotic timing in previable prelabor rupture of membranes less than 24 weeks of gestation. Am J Perinatol. 2022;39:671–6. https://doi.org/10.1055/s-0040-1718876.

    Article  PubMed  Google Scholar 

  80. Society for Maternal-Fetal Medicine (SMFM), Battarbee AN, Osmundson SS, McCarthy AM, Louis JM, SMFM Publications Committee. Society for Maternal-Fetal Medicine Consult Series #71: Management of previable and periviable preterm prelabor rupture of membranes. Am J Obstet Gynecol. 2024;231:B2–B15. https://doi.org/10.1016/j.ajog.2024.07.016. Electronic address: pubs@smfm.orgEpub 2024 Jul 16.

    Article  Google Scholar 

  81. Boyer KM, Gotoff SP. Prevention of early-onset neonatal group B streptococcal disease with selective intrapartum chemoprophylaxis. N. Engl J Med. 1986;314:1665–9. https://doi.org/10.1056/NEJM198606263142603.

    Article  CAS  PubMed  Google Scholar 

  82. Boyer KM, Gadzala CA, Kelly PD, Gotoff SP. Selective intrapartum chemoprophylaxis of neonatal group B streptococcal early-onset disease. III. Interruption of mother-to-infant transmission. J Infect Dis. 1983;148:810–6. https://doi.org/10.1093/infdis/148.5.810.

    Article  CAS  PubMed  Google Scholar 

  83. Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 797. Obstet Gynecol. 2020 Feb;135:e51-e72 https://doi.org/10.1097/AOG.0000000000003668. Erratum in: Obstet Gynecol. 2020 Apr;135(4):978-979. https://doi.org/10.1097/AOG.0000000000003824.

  84. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics. Practice Bulletin No. 171: Management of Preterm Labor. Obstet Gynecol. 2016 Oct;128:e155-64. https://doi.org/10.1097/AOG.0000000000001711.

  85. Helenius K, Longford N, Lehtonen L, Modi N, Gale C. Neonatal Data Analysis Unit and the United Kingdom Neonatal Collaborative. Association of early postnatal transfer and birth outside a tertiary hospital with mortality and severe brain injury in extremely preterm infants: observational cohort study with propensity score matching. BMJ. 2019;367:l5678 https://doi.org/10.1136/bmj.l5678.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shlossman PA, Manley JS, Sciscione AC, Colmorgen GH. An analysis of neonatal morbidity and mortality in maternal (in utero) and neonatal transports at 24-34 weeks’ gestation. Am J Perinatol. 1997;14:449–56. https://doi.org/10.1055/s-2007-994178.

    Article  CAS  PubMed  Google Scholar 

  87. Lorch SA, Baiocchi M, Ahlberg CE, Small DS. The differential impact of delivery hospital on the outcomes of premature infants. Pediatrics. 2012;130:270–8. https://doi.org/10.1542/peds.2011-2820.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hohlagschwandtner M, Husslein P, Klebermass K, Weninger M, Nardi A, Langer M. Perinatal mortality and morbidity. Comparison between maternal transport, neonatal transport and inpatient antenatal treatment. Arch Gynecol Obstet. 2001;265:113–8. https://doi.org/10.1007/s004040100197.

    Article  CAS  PubMed  Google Scholar 

  89. Phibbs CS, Baker LC, Caughey AB, Danielsen B, Schmitt SK, Phibbs RH. Level and volume of neonatal intensive care and mortality in very-low-birth-weight infants. N. Engl J Med. 2007;356:2165–75. https://doi.org/10.1056/NEJMsa065029 .

    Article  CAS  PubMed  Google Scholar 

  90. Bottoms SF, Paul RH, Iams JD, Mercer BM, Thom EA, Roberts JM, et al. Obstetric determinants of neonatal survival: influence of willingness to perform cesarean delivery on survival of extremely low-birth-weight infants. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol. 1997;176:960–6. https://doi.org/10.1016/s0002-9378(97)70386-7.

    Article  CAS  PubMed  Google Scholar 

  91. Alfirevic Z, Milan SJ, Livio S. Caesarean section versus vaginal delivery for preterm birth in singletons. Cochrane Database Syst Rev. 2013;2013:CD000078 https://doi.org/10.1002/14651858.CD000078.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Roeckner JT, Peterson E, Rizzo J, Flores-Torres J, Odibo AO, Duncan JR. The impact of mode of delivery on maternal and neonatal outcomes during periviable birth (22-25 weeks). Am J Perinatol. 2022;39:1269–78. https://doi.org/10.1055/a-1788-5802.

    Article  PubMed  Google Scholar 

  93. Tucker Edmonds B, McKenzie F, Macheras M, Srinivas SK, Lorch SA. Morbidity and mortality associated with mode of delivery for breech periviable deliveries. Am J Obstet Gynecol. 2015;213:70.e1–70.e12. https://doi.org/10.1016/j.ajog.2015.03.002.

    Article  PubMed  Google Scholar 

  94. Reddy UM, Zhang J, Sun L, Chen Z, Raju TN, Laughon SK. Neonatal mortality by attempted route of delivery in early preterm birth. Am J Obstet Gynecol. 2012;207:117.e1–8. https://doi.org/10.1016/j.ajog.2012.06.023.

    Article  PubMed  Google Scholar 

  95. Czarny HN, Forde B, DeFranco EA, Hall ES, Rossi RM. Association between mode of delivery and infant survival at 22 and 23 weeks of gestation. Am J Obstet Gynecol MFM. 2021;3:100340 https://doi.org/10.1016/j.ajogmf.2021.100340.

    Article  PubMed  Google Scholar 

  96. Običan SG, Small A, Smith D, Levin H, Drassinower D, Gyamfi-Bannerman C. Mode of delivery at periviability and early childhood neurodevelopment. Am J Obstet Gynecol. 2015;213:578.e1–4. https://doi.org/10.1016/j.ajog.2015.06.047.

    Article  PubMed  Google Scholar 

  97. Kawakita T, Sondheimer T, Jelin A, Reddy UM, Landy HJ, Huang CC, et al. Maternal morbidity by attempted route of delivery in periviable birth. J Matern Fetal Neonatal Med. 2021;34:1241–8. https://doi.org/10.1080/14767058.2019.1631792.

    Article  PubMed  Google Scholar 

  98. Kinmond S, Aitchison TC, Holland BM, Jones JG, Turner TL, Wardrop CA. Umbilical cord clamping and preterm infants: a randomized trial. BMJ. 1993;306:172–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McDonnell M, Henderson-Smart DJ. Delayed umbilical cord clamping in preterm infants: a feasibility study. J Paediatr Child Health. 1997;33:308–10.

    Article  CAS  PubMed  Google Scholar 

  100. Rabe H, Wacker A, Hulskamp G, et al. A randomised controlled trial of delayed cord clamping in very low birth weight preterm infants. Eur J Pediatr. 2000;159:775–7.

    Article  CAS  PubMed  Google Scholar 

  101. Ibrahim HM, Krouskop RW, Lewis DF, Dhanireddy R. Placental transfusion: umbilical cord clamping and preterm infants. J Perinatol. 2000;20:351–4.

    Article  CAS  PubMed  Google Scholar 

  102. Mercer JS, McGrath MM, Hensman A, Silver H, Oh W. Immediate and delayed cord clamping in infants born between 24 and 32 weeks: a pilot randomized controlled trial. J Perinatol. 2003;23:466–72. https://doi.org/10.1038/sj.jp.7210970.

    Article  PubMed  Google Scholar 

  103. Tarnow-Mordi W, Morris J, Kirby A, Robledo K, Askie L, Brown R, et al. Australian Placental Transfusion Study Collaborative Group. Delayed versus immediate cord clamping in preterm infants. N Engl J Med. 2017;377:2445–55. https://doi.org/10.1056/NEJMoa1711281.

    Article  PubMed  Google Scholar 

  104. Katheria A, Reister F, Essers J, Mendler M, Hummler H, Subramaniam A, et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA. 2019;322:1877–86. https://doi.org/10.1001/jama.2019.16004.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Seidler AL, Aberoumand M, Hunter KE, Barba A, Libesman S, Williams JG, et al. iCOMP Collaborators. Deferred cord clamping, cord milking, and immediate cord clamping at preterm birth: a systematic review and individual participant data meta-analysis. Lancet. 2023;402:2209–22. https://doi.org/10.1016/S0140-6736(23)02468-6.

    Article  PubMed  Google Scholar 

  106. Costeloe K, Hennessy E, Gibson AT, Marlow N, Wilkinson AR. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics. 2000;106:659–71. https://doi.org/10.1542/peds.106.4.659.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

FL contributed to data curation, and manuscript writing, review, and editing. AB, CT, CB, and KG contributed to data contribution and manuscript review and editing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Felicia V. LeMoine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeMoine, F.V., Battarbee, A.N., Travers, C.P. et al. Considerations for obstetric management of births 22–25 weeks’ gestation. J Perinatol (2025). https://doi.org/10.1038/s41372-025-02289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-025-02289-y

Search

Quick links