Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Reconsidering transcutaneous bilirubinometry for management of neonatal hyperbilirubinemia: is it time for change?

Abstract

Despite growing concerns about the adverse effects of painful procedures in neonates, current guidelines continue to recommend using total serum bilirubin (TSB) levels to make decisions in the treatment of hyperbilirubinemia. Transcutaneous bilirubin assessment (TcB) has been studied extensively, but its presumed reliability is only based on how well it correlates with TSB. This assumes that TSB is the “gold standard” for determining the risk of bilirubin-induced neurotoxicity, although there is no direct evidence linking specific TSB levels to that risk. Furthermore, TSB levels are subject to variability due to the margin of error of the laboratory analysis. TcBs avoid skin-breaking procedures and have the additional advantages of decreased turn-around time, nursing and laboratory staff time, and costs. TcB procedures could be standardized, and new guidelines with increased reliance on them could significantly reduce painful procedures in these patients without increasing the risk of bilirubin neurotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kemper A, Newman T, Slaughter J, Maisels J, Watchko J, Downs S, et al. Clinical practice guideline revision: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2022;150:e2022058859.

    Article  PubMed  Google Scholar 

  2. Selvanathan T, Miller S. Brain health in preterm infants: importance of early-life pain and analgesia exposure. Pediatr Res. 2024;96:1397–403.

    Article  PubMed  Google Scholar 

  3. McPherson C, Miller S, El-Dib M, Massaro A, Inder T. The influence of pain, agitation, and their management on the immature brain. Pediatr Res. 2020;88:168–75.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Valeri B, Holsti L, Linhares M. Neonatal pain and developmental outcomes in children born preterm: a systematic review. Clin J Pain. 2015;31:355–62.

    Article  PubMed  Google Scholar 

  5. Valeri B, Ranger M, Chau C, Cepeda I, Synnes A, Linhares M, et al. Neonatal invasive procedures predict pain intensity at school age in children born very preterm. Clin J Pain. 2016;32:1086–93.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cong X, Wu J, Vittner D, Xu W, Hussain N, Galvin S, et al. The impact of cumulative pain/stress on neurobehavioral development of preterm infants in the NICU. Early Hum Dev. 2017;108:9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cook K, De Asis-Cruz J, Kim J, Basu S, Andescavage N, Murnick J, et al. Experience of early-life pain in premature infants is associated with atypical cerebellar development and later neurodevelopmental deficits. BMC Med. 2023;21:435.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vinall J, Noel M, Disher T, Caddell K, Campbell-Yeo M. Memories of infant pain in the neonatal intensive care unit influence posttraumatic stress symptoms in mothers of infants born preterm. Clin J Pain. 2018;34:936–43.

    Article  PubMed  Google Scholar 

  9. Syed A, Hamzah F, Embong H, Ahmed S. A randomised comparative study assessing parental anxiety levels during bilirubin measurement in neonatal jaundice: a comparison of conventional blood taking and transcutaneous bilirubin method. Med Health. 2025;20:271–80.

    Article  Google Scholar 

  10. Hynes S, Moore Z, Patton D, O’Connor T, Nugent L. Accuracy of transcutaneous bilirubin versus serum bilirubin measurement in preterm infants receiving phototherapy: a systematic review. Adv Neonatal Care. 2020;20:E118–26. https://doi.org/10.1097/ANC.0000000000000738.

    Article  PubMed  Google Scholar 

  11. Okwundu C, Olowoyeye A, Uthman OA, Smith J, Wiysonge CS, Bhutani VK, et al. Transcutaneous bilirubinometry versus total serum bilirubin measurement for newborns (Review). Cochrane Database Syst Rev. 2023;5:CD012660.

    PubMed  Google Scholar 

  12. Weber J, Vadasz-Chates N, Wade C, Micetic B, Gerkin R, Rao S. Transcutaneous bilirubin monitoring in preterm infants of 23 to 34 weeks’ gestation. Am J Perinatol. 2023;40:788–92. https://doi.org/10.1055/s-0041-1731277.

    Article  PubMed  Google Scholar 

  13. Fatih Ozden M, Kahvecioglu D, Tas M, Cetinkaya AK, Oktem A. Can transcutaneous bilirubin levels obtained from covered skin replace serum bilirubin measurement in neonates undergoing phototherapy? Asian Biomed (Res Rev News). 2025;19:183–9. https://doi.org/10.2478/abm-2025-0025.

    Article  PubMed  Google Scholar 

  14. Konana O, Bahr T, Strike H, Coleman J, Snow G, Christensen R. Decision accuracy and safety of transcutaneous bilirubin screening at Intermountain Healthcare. J Pediatr. 2021;228:53–7.

    Article  PubMed  Google Scholar 

  15. Nagar G, Vandermeer B, Campbell S, Kumar M. Reliability of transcutaneous bilirubin devices in preterm infants: a systematic review. Pediatrics. 2013;132:871–81.

    Article  PubMed  Google Scholar 

  16. Jegathesan T, Campbell D, Ray J, Shah V, Berger H, Hayeems R, et al. Transcutaneous versus total serum bilirubin measurements in preterm infants. Neonatology. 2021;118:443–53.

    Article  PubMed  Google Scholar 

  17. Kurokawa D, Nakamura H, Yokota T, Iwatani S, Morisawa T, Katayama Y, et al. Screening for hyperbilirubinemia in Japanese very low birth weight infants using transcutaneous bilirubinometry. J Pediatr. 2016;168:77–81.

    Article  PubMed  Google Scholar 

  18. Sankar M, Rangasamy R, Joe P, Katheria A, Villosis M, Cortes M, et al. Transcutaneous bilirubin levels in extremely preterm infants less than 30 weeks gestation. J Perinatol. 2023;43:220–5.

    Article  PubMed  Google Scholar 

  19. Arman D, Topcuoğlu S, Gürsoy T, Ovalı F, Karatekin G. The accuracy of transcutaneous bilirubinometry in preterm infants. J Perinatol. 2020;40:212–8.

    Article  PubMed  Google Scholar 

  20. Bhargava V, Tawfik D, Niebuhr B, Jain S. Transcutaneous bilirubin estimation in extremely low birth weight infants receiving phototherapy: a prospective observational study. BMC Pediatr. 2018;18:227.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Juster-Reicher A, Flidel-Rimon O, Rozin I, Shinwell E. Correlation of transcutaneous bilirubinometry (TcB) and total serum bilirubin (TsB) levels after phototherapy. J Matern Fetal Neonatal Med. 2015;28:1329–31.

    Article  PubMed  Google Scholar 

  22. Thamwiriyakul N, Siripattanapipong P, Bowornkitiwong W, Chaweerat R, Ngernchamn S. Validity of transcutaneous bilirubin measurements during and after phototherapy in term and late preterm infants. Eur J Pediatr. 2024;183:5037–41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alsaedi S. Transcutaneous bilirubin measurements can be used to measure bilirubin levels during phototherapy. Int J Pediatr. 2018;2018:4856390.

  24. Hulzebos C, Vader-van Imhoff D, Bos A, Dijk P. Should transcutaneous bilirubin be measured in preterm infants receiving phototherapy? The relationship between transcutaneous and total serum bilirubin in preterm infants with and without phototherapy. PLoS ONE. 2019;14:e0218131.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang S, Liu F, Chen H. Comparison of transcutaneous and serum bilirubin before, under, and after phototherapy in term and late-preterm infants. Kaohsiung J Med Sci. 2019;35:715–24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhutani V, Gourley G, Adler S, Kreamer B, Dalin C, Johnson L. Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia. Pediatrics. 2000;106:e17.

    Article  PubMed  Google Scholar 

  27. Bental YA, Shiff Y, Dorsht N, Litig E, Tuval L, Mimouni FB. Bhutani-based nomograms for the prediction of significant hyperbilirubinaemia using transcutaneous measurements of bilirubin. Acta Paediatr. 2009;98:1902–8. https://doi.org/10.1111/j.1651-2227.2009.01385.x.

    Article  PubMed  Google Scholar 

  28. Bosschaart N, Kok J, Newsum A, Ouweneel D, Mentink R, van Leeuwen TG, et al. Limitations and opportunities of transcutaneous bilirubin measurements. Pediatrics. 2012;129:689–94.

    Article  PubMed  Google Scholar 

  29. Greene DN, Liang J, Holmes D, Resch A, Lorey T. Neonatal total bilirubin measurements: still room for harmonization. Clin Biochem. 2014;47:1112–5.

    Article  PubMed  Google Scholar 

  30. Lo SF, Doumas BT. The status of bilirubin measurements in U.S. laboratories: why is accuracy elusive? Semin Perinatol. 2011;35:141–7.

    Article  PubMed  Google Scholar 

  31. Hegyi T, Hiatt I, Gertner I, Zanni R, Tolentino T. Transcutaneous bilirubinometry II. Dermal bilirubin kinetics during phototherapy. Pediatr Res. 1983;17:888–91.

    Article  PubMed  Google Scholar 

  32. Ahmed M, Mostafa S, Fisher G, Reynolds TM. Comparison between transcutaneous bilirubinometry and total serum bilirubin measurements in preterm infants <35 weeks gestation. Ann Clin Biochem. 2010;47:72–7.

    Article  PubMed  Google Scholar 

  33. McLean S, Baerg K, Smith-Fehr J, Szafron M. Cost savings with transcutaneous screening versus total serum bilirubin measurement for newborn jaundice in hospital and community settings: a cost-minimization analysis. CMAJ Open. 2018;6:E285–91.

    Article  Google Scholar 

  34. Cat FC, Cat A, Cicek T, Gulec SG. Evaluation of the relationship between transcutaneous bilirubin measurement and total serum bilirubin in neonatal patients followed for jaundice. Sisli Etfal Hastan Tip Bul. 2021;55:262–7. https://doi.org/10.14744/SEMB.2020.79837.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Agrawal G, Garg K, Sitaraman S, Sarna A. Comparison of diagnostic accuracy of different sites for transcutaneous bilirubin measurement in early preterm infants. Indian J Pediatr. 2019;86:32–7. https://doi.org/10.1007/s12098-018-2739-4.

    Article  PubMed  Google Scholar 

  36. Yoruk I, Oguz D, Elevli M, Ataoglu E. Accuracy of transcutaneous bilirubin measurement from unexposed skin with a new generation device in neonates receiving phototherapy. Med Bull Haseki. 2022;60:113–9.

    Article  Google Scholar 

  37. Costa-Posada U, Concheiro-Guisán A, Táboas-Ledo MF, González-Colmenero E, González-Durán ML, Suarez-Albo M, et al. Accuracy of transcutaneous bilirubin on covered skin in preterm and term newborns receiving phototherapy using a JM-105 bilirubinometer. J Perinatol. 2020;40:226–31. https://doi.org/10.1038/s41372-019-0557-9.

    Article  PubMed  Google Scholar 

  38. Sardar S, Sarkar N, Ghosh M, Pal S. An Observational Prospective Study to Compare Transcutaneous Bilirubin with Serum Bilirubin in Preterm Newborn Requiring Phototherapy. J Clin Neonatol. 2021;10:59–67.

    Article  Google Scholar 

  39. Kallimath A, Patnaik S, Suryawanshi P, Deshmukh R, Malshe N. The use of a simple and affordable skin patch for measurement of transcutaneous bilirubin levels in neonates during phototherapy. Front Pediatr. 2024;12:1434770. https://doi.org/10.3389/fped.2024.1434770.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chitra R, Prince S, Chandrasekaran A, Sundar S. Development and validation of a noninvasive diffuse reflectance spectroscopic method for bilirubin estimation in neonates. J Biophotonics. 2025;18:e202400505. https://doi.org/10.1002/jbio.202400505.

    Article  Google Scholar 

  41. Dam-Vervloet AJ, van Erk MD, Doorn N, Lip SGJ, Timmermans NA, Vanwinsen L, et al. Inter-device reproducibility of transcutaneous bilirubin meters. Pediatr Res. 2021;89:770–5. https://doi.org/10.1038/s41390-020-01118-6.

    Article  PubMed  Google Scholar 

  42. Casnocha Lucanova L, Zibolenova J, Matasova K Jr, Matasova K, Zibolen M. The use of transcutaneous bilirubin nomograms for the prevention of bilirubin neurotoxicity in the neonates. Front Public Health. 2023;11:1212667. https://doi.org/10.3389/fpubh.2023.1212667.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Varvarigou A, Fouzas S, Skylogianni E, Mantagou L, Bougioukou D, Mantagos S. Transcutaneous bilirubin nomogram for prediction of significant neonatal hyperbilirubinemia. Pediatrics. 2009;124:1052–9. https://doi.org/10.1542/peds.2008-2322.

    Article  PubMed  Google Scholar 

  44. Boo NY, Ishak S. Prediction of severe hyperbilirubinaemia using the Bilicheck transcutaneous bilirubinometer. J Paediatr Child Health. 2007;43:297–302. https://doi.org/10.1111/j.1440-1754.2007.01062.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Wimmer Jr.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimmer, J.E. Reconsidering transcutaneous bilirubinometry for management of neonatal hyperbilirubinemia: is it time for change?. J Perinatol (2026). https://doi.org/10.1038/s41372-025-02532-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41372-025-02532-6

Search

Quick links