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Abstract

Accumulation of abnormal tau in neurofibrillary tangles (NFT) occurs in Alzheimer disease (AD) and a spectrum of
tauopathies. These tauopathies have diverse and overlapping morphological phenotypes that obscure classification and
quantitative assessments. Recently, powerful machine learning-based approaches have emerged, allowing the recognition
and quantification of pathological changes from digital images. Here, we applied deep learning to the neuropathological
assessment of NFT in postmortem human brain tissue to develop a classifier capable of recognizing and quantifying tau
burden. The histopathological material was derived from 22 autopsy brains from patients with tauopathies. We used a
custom web-based informatics platform integrated with an in-house information management system to manage whole slide
images (WSI) and human expert annotations as ground truth. We utilized fully annotated regions to train a deep learning
fully convolutional neural network (FCN) implemented in PyTorch against the human expert annotations. We found that the
deep learning framework is capable of identifying and quantifying NFT with a range of staining intensities and diverse
morphologies. With our FCN model, we achieved high precision and recall in naive WSI semantic segmentation, correctly
identifying tangle objects using a SegNet model trained for 200 epochs. Our FCN is efficient and well suited for the practical
application of WSIs with average processing times of 45 min per WSI per GPU, enabling reliable and reproducible large-
scale detection of tangles. We measured performance on test data of 50 pre-annotated regions on eight naive WSI across
various tauopathies, resulting in the recall, precision, and an F1 score of 0.92, 0.72, and 0.81, respectively. Machine learning
is a useful tool for complex pathological assessment of AD and other tauopathies. Using deep learning classifiers, we have
the potential to integrate cell- and region-specific annotations with clinical, genetic, and molecular data, providing unbiased
data for clinicopathological correlations that will enhance our knowledge of the neurodegeneration.
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Introduction

Tau-related neurodegenerative disorders, the tauopathies,
comprise a heterogeneous group of disorders with a clinical
spectrum that includes primary motor symptoms, movement
disorder, psychiatric dysfunction, and cognitive impairment
[1]. Histomorphologically, tauopathies are characterized by
intracellular deposition of hyperphosphorylated tau protein.
Various isoform compositions, morphology, and anatomical
distributions of intracellular tau represent distinct diagnostic
features of tauopathies [1-3]. How pathological tau causes
neuronal dysfunction and degeneration is unclear. Several
mechanisms have been implicated, including both genetic
and environmental risk factors, but most cases are idio-
pathic [1, 3-5]. Sporadic tauopathies, such as the vast
majority of Alzheimer disease (AD) and progressive
supranuclear palsy (PSP) cases, are associated with com-
mon genetic risk alleles [1, 3]. Rare highly penetrant
mutations in the microtubule-associated protein tau gene are
associated with some forms of frontotemporal lobar
degeneration [6]. Environmental factors, such as traumatic
brain injury in the case of chronic traumatic encephalopathy
(CTE) or putative neurotoxins, have also been implicated
[7, 8]. Pathological changes in tau metabolism and post-
translational modifications result in the accumulation of
toxic forms of misfolded tau aggregates in neurons and glial
cells in various brain regions. These misfolded aggregates
are associated with loss of function and ultimately cell death
[1, 2].

Pathological tau forms inclusions in neurons and glia
with histomorphologically distinguishable features. In neu-
rons, these take the form of the classical flame-shaped
intracellular neurofibrillary tangles (NFTs), granular pre-
NFTs, extracellular “ghost” tangles, ring tangles, and glo-
bose tangles, among others [9]. In glia, there is a spectrum
of characteristic histomorphological forms that are com-
monly associated with specific diseases, including glial
plaques of corticobasal degeneration, tufted astrocytes of
PSP, globular astroglial inclusions in globular glial tauo-
pathy, ramified astrocytes of Pick disease, and thorn-shaped
astrocytes as well as granular fuzzy astrocytes of aging-
related tau astrogliopathy [9-11]. One recently proposed
classification scheme codifies seven primary tauopathies,
and two secondary tauopathies under the umbrella of neu-
rodegenerative diseases, each with a unique constellation of
regional vulnerability and histomorphology of tau aggre-
gates that define them [1, 2]. Pathological accumulation of
hyperphosphorylated tau is also described in various
infectious/post-infectious, metabolic, genetic/chromosomal,
neoplastic’hamartomatous, and myopathic diseases [12].
Given the complexity and morphological overlap, diag-
nosing these diseases is a challenge for neuropathologists,
and commands a high degree of expertise.
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Microscopic analysis of stained postmortem sections by
a trained expert remains the only modality of confirmatory
diagnosis of tauopathies. Despite the continuous effort and
improvements in the field, the analyses required for defi-
nitive diagnosis and subtyping of neurodegenerative dis-
eases remain highly time- and cost-consuming and are
subject to a substantial degree of inter- and intra-observer
variability, thus lacking overall accuracy and precision.
The gold standard for histomorphological assessment of tau
burden and progression in Alzheimer’s disease is the Braak
staging system, which focuses on the hierarchical sequence
of tau accumulation, but not a quantitative measurement of
tau burden, although distribution and qualitative NFT and
thread density are correlated in this staging system [13].
Despite this limitation, the Braak staging system has been
widely accepted and adopted for decades for its simplicity
and robustness. Recent interest in differential semi-
quantitative assessment of tau burden in AD is exempli-
fied in the work of Jellinger [14]. Further, various stages of
intracellular pathologic tau accumulation are described
(e.g., pre-tangles, mature NFTs, and so-called “ghost”
tangles—the remnants of the tau fibrillary scaffold after
neuronal cell death; Fig. 1). The Braak staging approach
does not address these features, and thus inherently lacks
granularity and quantification. At the same time, the field of
diagnostic neuropathology is facing challenges related to
the overall lack of accuracy, demanded by the ever-
evolving research and healthcare standards, and dis-
crepancies with clinicopathological correlations, with a
recognized need to address these issues [15].

Recently, there has been an increasing interest in
developing computational methods to assist the pathologist
in histological analysis via digital microscopic whole slide
images (WSI). This is primarily intended to reduce the
human error rate and bring about uniformity and accuracy
in pathological diagnosis [16]. One of the approaches that
has been anticipated and sought after for nearly half a
century is artificial intelligence (AI) [17, 18]. The most
advanced Al, called deep learning (DL), is now used for
complex tasks such as speech recognition, language trans-
lation, and image recognition and interpretation [19-21].
Litjens et al. provide a comprehensive survey of published
studies on the use of AI/DL in medical image analysis
including WSI in pathology [17]. Although machine
learning-based methods have had limited application in
diagnostic pathology to date, due to the variability of
laboratory standards and outcomes, and lack of reliable
computer-backed platforms, advances have been made
recently. The relevance and potential of automated classi-
fication algorithms in surgical pathology are exemplified by
its application to the histologic grading and progression of
breast and prostate cancer [17, 22, 23]. These endeavors
pave a way toward increased use of machine learning for



Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy 1021

—p A e —

= = X
e~ .,-—N-O.L-_

A=t

_ e

, —
L ,’0

,.

—

——]

Fig. 1 Morphological forms of neurofibrillary tangles (NFT) and
progression. Tau is a microtubule-associated protein with normal roles
in cytoskeletal stability and synaptic function. Early in disease pro-
gression, abnormal hyperphosphorylated tau aggregates (“‘oligomers”)
accumulate as pre-NFT visible by immunohistochemistry as fine
granular puncta in neurons. Tau oligomers are proposed to propagate

improving stratification, characterization, and quantification
for many other disease processes, including the neuro-
pathological assessment of tauopathies and AD cohorts. To
date, no datasets derived from the application of machine-
based learning to neurodegenerative disease are available.

We aimed to develop and test a novel DL algorithm
using convolutional neural networks [20] that would be
able to recognize, classify, and quantify diagnostic ele-
ments of tauopathies on WSI of postmortem human brain
tissue specimens from patients with tau-associated neuro-
degenerative conditions in order to better stratify patients
for clinical and other correlative studies (Fig. 2). In this
study, we focused on the development, validation, and
testing of the DL algorithms for recognition and quantifi-
cation of NFT in an array of tauopathies. This will allow us
to apply these trained networks for larger disease-specific
cohorts and to generate quantitative data for clin-
icopathological correlations, as well as for molecular and
genetic studies, and enable further diagnostic and ther-
apeutic strategies.

from cell to cell. Aggregates coalesce to form fibrillary inclusions as
mature intracellular NFT (iNFT). Neurites begin to die back or col-
lapse and synaptic failure ensues. Cell death leaves only the extra-
cellular aggregate remnant (eNFT), sometimes referred to as a
tombstone or ghost tangle

Materials and methods
Case material

De-identified autopsy brain tissues were obtained from 22
representative individuals with AD, primary age-related
tauopathy (PART), PSP, and CTE [24] (Table 1). This
cohort was a convenience sample selected by the investi-
gators. We used the following selection criteria: (i) clinical/
pathological: well-characterized clinical case, representative
of a variety of pathognomonic diagnostic histomorpholo-
gical features, and with minimal or absent neuropathologi-
cal comorbidities; (ii) technical: adequately stained tissue
with minimal or no artifacts.

Immunohistochemistry
We used standard histological coronal sections from formalin-
fixed paraffin-embedded (FFPE) postmortem brain tissue,

representing  hippocampal formation and dorsolateral
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Fig. 2 Schematic overview of data annotation and deep learning
pipeline. NFT are annotated using whole slide images, marking rec-
tangular areas with complete annotations of NFT objects to give a
visual context of NFT against the background. Image patches are
extracted for network training that generates pixel-wise segmentations

prefrontal cortex. For PART and AD cases, the immunohis-
tochemistry (IHC) of all cases was performed at the University
of Texas Southwestern (UTSW) using anti-phosphorylated tau
antibodies (ATS, Invitrogen, Waltham, MA) at 1:200 dilution
using a Leica Bond III automated immunostainer (Leica
Microsystems, Buffalo Grove, IL). PSP and CTE cases were
immunostained at the Neuropathology Research Core at
Mount Sinai with anti-phosphorylated tau antibodies (ATS,
Invitrogen) at 1:2000 dilution using a Ventana autostainer
(Roche Diagnostics, Rotkreuz, Switzerland).

Slide digitization

All sections were digitized to obtain digital WSI. For PSP
and CTE, WSI were acquired using the Ultra Fast Scanner
Digital Pathology Slide Scanner (Philips, Amsterdam,
Netherlands), which scans histological samples mounted
on standard glass slides at x40 magnification (0.25 pum/
pixel) and saves them in the proprietary iSyntax format.
For PART and AD cases, all slides were scanned using an
Aperio CS image scanner (Leica Microsystems) at x20
magnification (0.50 um/pixel) and saved in .svs format.
All images in proprietary formats were then converted
into a GeoTIFF and stored on the server behind the hos-
pital firewall for interactive display over the intranet.

SPRINGER NATURE

for NFT and background. Performance is determined using a separate
novel set of images (test set) by comparing expert annotation with the
trained network. Quantitative evaluation on unseen test slides provides
a characterization of the behavior of the trained network in terms of
robustness, reliability, and reproducibility

Pathological annotations

WSI were uploaded to the Precise Informatics Platform
(PIP) developed by the Center for Computational and
Systems Pathology at Mount Sinai (MP, JK, JZ, and GF),
which allows for the management of thousands of images
with pathologist annotations. Authors previously have
applied machine learning to prostate cancer for Gleason
grading [23, 25], and it is currently being used in our CLIA-
approved laboratory. In addition, PIP enables graphics
processing unit (GPU)-accelerated DL for rapid validation
and visualization of how DL classifiers perform in different
scenarios (brain regions, cell types, and staining). Annota-
tions were generated using the PIP collaborative web-based
user interface for outlining (Fig. 3). An NFT was oper-
ationalized as an object, i.e. “foreground”, with cytoplasmic
fine granular, coarse granular, or fibrillary/condensed ATS
immunopositivity morphologically consistent with a neuron
based on the histological context. In addition, extracellular
AT8-positive structures morphologically consistent with the
neuronal somatodendritic compartment were counted as
ghost tangles. Partial neurites lacking connection to the
soma or hillock were excluded. Other AT8-positive struc-
tures including neuropil threads, neuropil granules/grains,
and ambiguous non-neuronal phospho-tau staining were
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Table 1 Sample data

ID Age Sex Diagnosis Scanner Source
Training/validation set

1 102 F PART Aperio UTSW
2 103 M PART Aperio UTSW
3 100 M PART Aperio UTSW
4 102 F PART Aperio UTSW
5 97 F PART Aperio UTSW
6 98 M PART Aperio UTSW
7 67 F PART Aperio UTSW
8 85 F PART Aperio UTSW
9 73 M CTE Philips BU/VA
10 73 M CTE Philips BU/VA
11 84 M CTE Philips BU/VA
12 84 M CTE Philips BU/VA
13 84 M CTE Philips BU/VA
14 80 M PSP Philips ISMMS
Testing set

1 91 F PART Aperio UTSW
2 87 M AD Aperio UTSW
3 102 F PART Aperio UTSW
4 84 M CTE Philips BU/VA
5 73 M CTE Philips BU/VA
6 80 F PSP Philips ISMMS
7 87 F PSP Philips ISMMS
8 80 F PSP Philips ISMMS

UTSW University of Texas Southwestern; ISMMS Icahn School of
Medicine at Mount Sinai; BU Boston University; PART primary age-
related tauopathy; CTE chronic traumatic encephalopathy; AD
Alzheimer diseases; PSP progressive supranuclear palsy

categorized as “background”. The total number of 22 WSI
was divided into 14 for training and validation (model
selection), with 8 reserved as a test set for performance
evaluation.

We conducted a concordance study to assess the inter-
rater reliability using a custom interface within the PIP
platform. A total of 471 unique patches of mixed human
expert-annotated ground truth NFTs and Al-detected false
positives were independently assessed by three neuro-
pathologists (MS, JFC, or CB) and compared using a Fleiss’
kappa statistic.

Fully convolutional network (FCN) training and
model selection

The training dataset consisted of WSI of sections from
14 subjects (Table 1). In total, 178 representative rectan-
gular regions of interests (ROI) were selected by the
investigators for analysis. The criteria for ROI were as

follows: (1) a representative cortical area with an adequate
IHC of diagnostic quality, (2) a representative variety of
recognizable distinct histological ATS8-stained elements,
and (3) intact tissue without detachment or large tissue
folds. All NFT forms were computed together. The total
number of ATS8-positive NFTs of various morphologies
ranging from pre-tangles to mature NFTs and ghost tangles
used for fully convolutional neural network training and
model selection was 2221. We further extracted image
patches of size 512 x 512 pixels at x20 by partitioning the
ROIs. The total number of patches was 3177, comprising
2414 from Aperio scanned PART and AD WSIs, as well as
763 from Philips scanned CTE and PSP WSIs (Fig. 4). We
further assigned 200 patches from this dataset to the vali-
dation set (for model selection), with the remainder used for
training a neural network classifier.

For deep convolutional neural network generation, we
used a modified version of the fully convolutional SegNet
architecture (Fig. 5) [26]. We used three spatial scales
(number of blocks containing multiple convolution layers
followed by a pooling layer) in the network to model the
visual context for NFT. Weight parameters for the neural
network are the minima for the pixel-wise binary cross
entropy loss. Specifically, given a set of training example
images I with associated ground truth labels y, the FCN
with weights w generates pixel probability at each location
x for NFT objects as p;(x) = FCN(J;(x),w), yielding the
following loss function:

Low) = =057 ) Tog(pi(x) + (1 = y(x) Tog(1 — pi(x))]
Jj=1 X

This differentiable loss function is minimized using
stochastic gradient descent, which performs gradient
updates on small batches of images. A set of gradient
update iterations that utilize the complete set of training
images, comprising multiple small batches, is called an
epoch. Each update iteration can be computed efficiently in
parallel using commodity GPU hardware. We used the
PyTorch software package (http://www.pytorch.org) for
building our neural network model [27].

FCN testing

We applied the trained SegNet to a set of eight naive WSIs,
capturing a range of scanner and staining variabilities. For
these, we used one WSI for AD, two for PART, three for
PSP, and two for CTE (Table 1). The total number of fully
annotated rectangular ROI on eight naive slides represent-
ing various nosologies was 50. The total number of ATS8
positive structures among the various morphologies was
618. Positive features were used to interrogate network
performance.

SPRINGER NATURE
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Fig. 4 Machine learning training dataset. a Examples of the annotated immunohistochemically stained with anti-phospho-tau antisera (ATS),
diagnostically ~ important elements of NFT on sections extracted from the whole slide images. b Examples of image patches
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Fig. 5 SegNet architecture for NFT detection. The network archi-
tecture consists of three encoding and three decoding layers. The
network is fully convolutional and utilizes neighborhood visual con-
text to generate pixel-wise segmentation of NFT objects using a
softmax classifier at the final layer. We show the visualization of the
network features for the first two encoding blocks to provide a

Results

First, we computed the optimal weight parameters for NFT
detection in 200 epochs. Network weights were updated to
reduce training loss, and, at each update, we computed the
loss on validation data, which is separate from training data,
to ensure that performance between the two does not
diverge. In cases where training loss is reduced and vali-
dation loss is increased, the estimated network weights will
result in a model overfitted to the training set. It will per-
form well on training data but will have suboptimal per-
formance on novel data. We performed data augmentation
at each epoch on a random subset of training samples,
which includes contrast shift and geometric changes (flips
and rotations). This augmentation step provides a richer
example for our network and reduces the likelihood of
overfitting. The training process for a deep neural network
for detecting NFT by optimization of the cross-entropy loss
function is shown (Fig. 6). Optimization was performed
using stochastic gradient descent on the training data;
selecting the model that minimizes the separate validation
data ensures that the network model can be generalized and
applied to unseen WSI. These results indicate that our
network weights are optimal and are not overfitted to the
training data.

The network achieves high sensitivity for both validation
and test data, with a lower precision on the test set com-
pared to the validation set as our current network generates
more false positives in the naive test WSIs (Figs. 7, 8). On
validation, we have achieved recall, precision, and F1 score

conceptual view of how the network utilizes more complex features in
deeper layers for pixel classification. a An example input image;
b Segmentation image after FCN; ¢, d Features extracted from FCN-
hidden layer blocks 1 and 2, respectively. FCN fully convolutional
network

14000

12000 -

10000 -

8000 -

cross entropy loss

6000

4000 A

0 25 50 75 100 125 150 175
training epoch (iteration)
Fig. 6 Deep neural network optimization. The model construction was
optimized for training loss by selecting the model with the lowest
validation loss. The plot shows cross entropy loss at each optimization
epoch for training data (blue) and validation data (red). The loss was

minimized for the training data and selected the network model as the
one that minimizes loss for the validation data

of 0.91, 0.80, and 0.86, respectively. On testing, we
achieved overall recall, precision, and F1 score of 0.92,
0.72, and 0.81, respectively. The overall FCN performance
was higher in the high-tau-burden AD/PART cohort com-
pared to the low-to-moderate tau burden PSP/CTE cohort.
The FCN was trained using data where AD/PART is higher
in proportion (Table 2). The Fleiss’ kappa for inter-rater
reliability between neuropathologists determined on a col-
lection of patches consisting of a mix of network-defined

SPRINGER NATURE
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Fig. 7 FCN performance in WSI
compared to expert annotated
ground truth. High (a-d) and
low (e-h) background sections
showed similar results. a, e
Naive digitized slide, AT8 IHC.
b, f Expert annotated ground
truth. ¢, g FCN detection of
NFTs. d, h Overlapping image
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Fig. 8 False positives and false negatives examples of FCN calling
(green—FCN, blue or magenta—expert annotation). a FCN recog-
nizes two NFTs as one (one TP and one FN), at the same panel FCN
labels indeterminate p-tau accumulation is NFT (FP). b FCN

recognizes two NFTs as one (one TP and one FN). ¢ panel FCN labels
one indeterminate p-tau accumulation is NFT (FP) as well as correctly
recognizes one TP

Table 2 Performance of the fully
convolutional neural network for
NFT detection

Training/Validation Testing
Metrics Total Total PART CTE PSP
Recall, TP/(TP + EN), sensitivity 0.91 092 096 0.78 0.88
Precision, TP/(TP + FP), PPV 0.80 0.72 0.77 0.75 0.63

F1 score (harmonic mean of precision and recall)  0.85 0.81  0.85 077 073

F1 score harmonic mean is calculated as 2*Precision*Recall/(Precision + Recall); NFT neurofibrillary
tangle; PART primary age-related tauopathy; CTE chronic traumatic encephalopathy; PSP progressive

supranuclear palsy

false positives and true positives was 0.78 (p-value <
0.0001) (Table 3).

We trained and tested our FCN on various staining
conditions. The true positive (TP), false positive (FP), and
false negative (FN) values in high background WSI (Aperio
scanned AD and PART cases from UTSW) were 329, 98,
and 14, respectively. The TP, FP, and FN values in low
background WSI (Philips scanned PSP and CTE cases from
MSSM) were 244, 122, and 45, respectively. Overall FCN
performance represented with an F1 score was higher in the
high-background high-tau-burden AD/PART cohort (0.85)
compared to the low-background and low-to-moderate tau-
burden PSP/CTE cohort (0.75) (Table 4).

SPRINGER NATURE

The object detection time for a single whole slide image
ranged from 10min to 2h (averaging 45 min) using one
NVIDIA Titan Xp GPU, with performance depending on
the digital scan resolution and magnification. Fully auto-
matic detection of NFTs at this performance level will
enable large-scale analysis of WSL

Discussion

In this study, we present a novel machine learning-based
method using automated qualitative and quantitative
assessment of NFT on IHC-stained preparations. The value
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Table 3 Inter-rater reliability analysis

Unique patches, NFT, and background 471
Raters 3

Fleiss’ kappa statistic 0.78

Z score 294

p value <0.0001

Table 4 Network performance on various staining and scanning
conditions

Background

Metrics High (Aperio) Low (Philips)
True positives (TP) 329 244

False positives (FP) 98 122

False negatives (FN) 14 45

Precision 0.77 0.67

Recall 0.96 0.85

F1 score 0.85 0.75

The FCN was validated in various staining conditions and in various
backgrounds intensity. The TP, FP, and FN values in high background
WSI (Aperio scanned AD and PART cases from UTSW) were 329,
98, and 14, respectively. The TP, FP, and FN values in low
background WSI (Philips scanned PSP and CTE cases from MSSM)
were 244, 122, and 45, respectively. Overall FCN performance
exemplified with an F1 score was higher in the high-background high-
tau-burden AD/PART cohort (0.85) versus in the low-background and
low-to-moderate tau-burden PSP/CTE cohort (0.75). An F1 score
harmonic mean is calculated as 2*Precision*Recall/(Precision +
Recall)

of a reproducible, rapid, and unbiased approach to augment
labor-intensive manual counting of histopathological fea-
tures is well recognized. Implementation of DL is a com-
pelling computational tool that can address this gap. DL
enables the rapid development of new algorithms and tools
but requires the creation of computational infrastructure and
large neuropathological datasets containing richly varied
high-quality annotations. This is greatly facilitated by a
collaborative annotation platform that utilizes powerful
GPU hardware and rapid feedback from computational
algorithms. We have achieved a significant milestone by
developing a web-based platform for data management,
visual exploration, object outlining, multi-user review, and
evaluation of DL algorithm results in WSI. Our NFT clas-
sifier currently takes an average of 45 min to lh to com-
putationally identify and count NFT on an entire WSI,
illustrating the feasibility of applying this approach to large
datasets. To our knowledge, this is among the first frame-
works available for building and evaluating DL algorithms
using large-scale image data in neuropathology.

Our long-term goal is to develop a comprehensive plat-
form that can be utilized across contexts (e.g., basic

research laboratories, brain banks, and clinical neuro-
pathology laboratories) with variability in sampling proto-
cols, tissue section quality, staining methodology, and
pathological features. Hence, in our current study, several
steps were taken to increase the adaptability of the neural
network. We used multiple brain regions, a spectrum of
different tau-related diseases, a variety of staining condi-
tions, and images acquired on two different slide-scanning
platforms. These steps have laid the groundwork to provide
a highly adaptable and robust tangle classifier for use on
immunohistochemically stained sections that can be readily
integrated into existing clinical neuropathology and
research.

DL algorithms are based on concepts developed in the
1940s and have started being used in medical imaging only
recently. Use of these algorithms are becoming practical due
to the development of GPU hardware and they have been
successfully applied to solve various image classification,
detection, and segmentation tasks [17, 20]. Several groups
are applying similar Al technologies to histopathology and
have compared them to human experts. For example, in
dermatology and ophthalmology, DL algorithms were able
to outperform a human expert [28, 29]. The recent BreAst
Cancer Histology images Grand Challenge demonstrated
that Al is able to push forward the state-of-the-art accuracy
(87%) [22]. Another study by Esteva et al. utilized a pre-
trained GoogleNet Inception v3 CNN with ~1.28 million
publicly available images of skin cancer [28]. The chal-
lenge, however, lies in the acquisition of a sufficient number
of relevant ground truth expert annotations. Further, even
when a body of data is annotated by domain experts, label
noise from intra- and inter-observer variability calling pre-
sents a significant limiting factor in developing the algo-
rithms, and therefore a rigorous quality control and expert
consensus are needed for training sets. Thus, published
studies demonstrate the promise of Al in aiding an expert in
making more efficient diagnoses.

Our SegNet fully convolutional neural network has
reached practically useful levels of performance but could
be improved. Given that we focused on NFT, performance
will be enhanced with larger and more varied annotated
training data that capture a wider range of neuropathologies
(e.g., amyloid plaques, Lewy bodies, cerebrovascular dis-
ease, etc.), staining parameters, and anatomical regions/sub-
regions. The limitations are mainly attributed to false
positives, many of which represent tau accumulation in glial
cells (data not shown). We also observed better network
performance in Aperio-scanned slides (AD and PART
cases), possibly due to the larger amount of annotation data
compared to Philips-scanned slides (CTE and PSP cases).
While the network performance is more robust in nosolo-
gies that contributed more annotations to the training
dataset, this can be overcome by increasing the total number
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of ground truth annotations and saturating the learning
curve.

In future disease-specific studies, we plan to use expan-
ded neuroanatomical sampling pertinent to targeted disease
entities. For example, it may be helpful to differentiate NFT
from different brain regions or different segments of one
region, e.g. NFTs of hippocampus proper pyramidal neu-
rons and of dentate gyrus granule neurons. Also, we com-
bined all NFTs into a single category; however, the
differentiation of pre-NFT, intracellular NFT, and ghost
NFT may help improve the performance and provide more
granular data. Finally, we focused our study on IHC stains,
but abnormal tau and other pathologies are demonstrable
using other methods, including silver and routine hema-
toxylin and eosin-stained sections. Networks built using
other staining modalities will likely lead to classifiers with
superior or useful complementary performance metrics.

Some additional computational issues remain to be
addressed. In machine learning, computational models
consist of numerous layers, which represent the multitude of
the subordinates of the ground truth (i.e., the classification
of interest from the training dataset with multiple levels of
abstraction to finally yield a supercategory). Visual object
recognition and object detection are amplified [19, 20], but
in narrow binary tasks of classification or segmentation
(normal versus abnormal, object versus background) classes
are heterogeneous. This creates a class imbalance, a well-
recognized challenge.

To our knowledge, this is one of the earliest frameworks
available for building and evaluating DL algorithms using
large-scale image data in neuropathology. Our study
demonstrates that deep machine learning represents a fea-
sible way to augment routine histological examination and
complement the semi-quantitative and descriptively quali-
tative approaches commonly deployed. This will provide
robust and reproducible data for clinicopathological corre-
lations, thus boosting our knowledge and understanding of
the pathogenesis of AD and other tauopathies. In conclu-
sion, quantitative data uncovered by Al networks will not
only augment the currently used qualitative and semi-
quantitative approaches in the assessment of the pathog-
nomonic features, but also will be used for correlative and
association analyses with clinical, radiological, genetic, and
biochemical data.
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