Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation and infection in plasma cell disorders: how pathogens shape the fate of patients

Abstract

The role of infection and chronic inflammation in plasma cell disorders (PCD) has been well-described. Despite not being a diagnostic criterion, infection is a common complication of most PCD and represents a significant cause of morbidity and mortality in this population. As immune-based therapeutic agents are being increasingly used in multiple myeloma, it is important to recognize their impact on the epidemiology of infections and to identify preventive measures to improve outcomes. This review outlines the multiple factors attributed to the high infectious risk in PCD (e.g. the underlying disease status, patient age and comorbidities, and myeloma-directed treatment), with the aim of highlighting future prophylactic and preventive strategies that could be implemented in the clinic. Beyond this, infection and pathogens as an entity are believed to also influence disease biology from initiation to response to treatment and progression through a complex interplay involving pathogen exposure, chronic inflammation, and immune response. This review will outline both the direct and indirect role played by oncogenic pathogens in PCD, highlight the requirement for large-scale studies to decipher the precise implication of the microbiome and direct pathogens in the natural history of myeloma and its precursor disease states, and understand how, in turn, pathogens shape plasma cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of pathogens on the hallmarks of plasma cell disorders.
Fig. 2: Risk factors of infection in plasma cell disorders.
Fig. 3: Impact of disease stage and treatment regimen on infection in clinical trials.
Fig. 4: Possible algorithm for antimicrobial prophylaxis and/vaccinations.

Similar content being viewed by others

References

  1. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    Article  CAS  PubMed  Google Scholar 

  2. Grulich AE, Li Y, McDonald A, Correll PKL, Law MG, Kaldor JM. Rates of non-AIDS-defining cancers in people with HIV infection before and after AIDS diagnosis. AIDS. 2002;16:1155–61.

    Article  PubMed  Google Scholar 

  3. Briault S, Courtois-Capella M, Duarte F, Aucouturier P, Preud’Homme JL. Isotypy of serum monoclonal immunoglobulins in human immunodeficiency virus-infected adults. Clin Exp Immunol. 1988;74:182–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Collett D, Mumford L, Banner NR, Neuberger J, Watson C. Comparison of the incidence of malignancy in recipients of different types of organ: a UK Registry audit. Am J Transpl J Am Soc Transpl Am Soc Transpl Surg. 2010;10:1889–96.

    Article  CAS  Google Scholar 

  5. Cowan AJ, Johnson CK, Libby EN. Plasma cell diseases and organ transplant: a comprehensive review. Am J Transpl. 2018;18:1046–58.

    Article  Google Scholar 

  6. Mameli G, Fozza C, Niegowska M, Corda G, Ruda MF, Barraqueddu F, et al. Epstein-Barr virus infection is associated to patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Leuk Lymphoma. 2017;58:466–9.

    Article  PubMed  Google Scholar 

  7. Rajput S, Minhas K, Azam I, Shaikh U, Hussain A, Lalani E-N. LMP1 expression in bone marrow trephines of patients with multiple myeloma confers a survival advantage. Leuk Lymphoma. 2019;60:1991–2001.

    Article  CAS  PubMed  Google Scholar 

  8. Lu F, Martin KA, Soldan SS, Kossenkov AV, Wickramasinghe P, Vladimirova O, et al. Defective Epstein-Barr Virus Genomes and Atypical Viral Gene Expression in B-Cell Lines Derived from Multiple Myeloma Patients. J Virol. 2021;95:e0008821.

    Article  PubMed  Google Scholar 

  9. Guihot A, Dupin N, Marcelin A-G, Gorin I, Bedin A-S, Bossi P, et al. Low T Cell Responses to Human Herpesvirus 8 in Patients with AIDS-Related and Classic Kaposi Sarcoma. J Infect Dis. 2006;194:1078–88.

    Article  CAS  PubMed  Google Scholar 

  10. Myeloma - Cancer Stat Facts. SEER. https://seer.cancer.gov/statfacts/html/mulmy.html (accessed 7 Aug2020).

  11. Boyle EM, Williams L, Blaney P, Ashby C, Bauer M, Walker BA et al. Improving prognostic assignment in older adults with multiple myeloma using acquired genetic features, clonal hemopoiesis and telomere length. Leukemia 2021: 1–4.

  12. Nair S, Branagan AR, Liu J, Boddupalli CS, Mistry PK, Dhodapkar MV. Clonal Immunoglobulin against Lysolipids in the Origin of Myeloma. N. Engl J Med. 2016;374:555–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moss JL, Pinto CN, Srinivasan S, Cronin KA, Croyle RT. Persistent Poverty and Cancer Mortality Rates: An Analysis of County-Level Poverty Designations. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2020;29:1949–54.

    Article  Google Scholar 

  14. Bosseboeuf A, Feron D, Tallet A, Rossi C, Charlier C, Garderet L et al. Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens. JCI Insight 2017; 2. https://doi.org/10.1172/jci.insight.95367.

  15. Duberg A-S, Nordström M, Törner A, Reichard O, Strauss R, Janzon R, et al. Non-Hodgkin’s lymphoma and other nonhepatic malignancies in Swedish patients with hepatitis C virus infection. Hepatol Baltim. Md. 2005;41:652–9.

    Google Scholar 

  16. Koduru S, Wong E, Strowig T, Sundaram R, Zhang L, Strout MP, et al. Dendritic cell–mediated activation-induced cytidine deaminase (AID)–dependent induction of genomic instability in human myeloma. Blood. 2012;119:2302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garrett WS. Cancer and the microbiota. Science. 2015;348:80–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calcinotto A, Brevi A, Chesi M, Ferrarese R, Garcia Perez L, Grioni M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun. 2018;9:4832.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jasiński M, Biliński J, Basak GW. The Role of the Gut Microbiome in Pathogenesis, Biology, and Treatment of Plasma Cell Dyscrasias. Front Oncol. 2021;11:741376.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antoine Pepeljugoski C, Morgan G, Braunstein M. Analysis of Intestinal Microbiome in Multiple Myeloma Reveals Progressive Dysbiosis Compared to MGUS and Healthy Individuals. Blood. 2019;134:3076.

    Article  Google Scholar 

  21. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell. 2018;33:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pianko MJ, Devlin SM, Littmann ER, Chansakul A, Mastey D, Salcedo M, et al. Minimal residual disease negativity in multiple myeloma is associated with intestinal microbiota composition. Blood Adv. 2019;3:2040–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kristinsson SY, Tang M, Pfeiffer RM, Björkholm M, Goldin LR, Blimark C, et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. Haematologica. 2012;97:854–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blimark C, Holmberg E, Mellqvist U-H, Landgren O, Björkholm M, Hultcrantz M, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100:107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Augustson BM, Begum G, Dunn JA, Barth NJ, Davies F, Morgan G, et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United kingdom Medical Research Council trials between 1980 and 2002-Medical Research Council Adult Leukaemia Working Party. J Clin Oncol Off J Am Soc. Clin Oncol. 2005;23:9219–26.

    Google Scholar 

  26. Xia J, Wang L, Zhou X, Wang J, Wang H, Guo H. Early mortality in elderly patients undergoing treatment for multiple myeloma in real-world practice. J Int Med Res. 2018;46:2230–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mohty M, Cavo M, Fink L, Gonzalez-McQuire S, Leleu H, Mateos M-V, et al. Understanding mortality in multiple myeloma: Findings of a European retrospective chart review. Eur J Haematol. 2019;103:107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Teh BW, Harrison SJ, Worth LJ, Spelman T, Thursky KA, Slavin MA. Risks, severity and timing of infections in patients with multiple myeloma: a longitudinal cohort study in the era of immunomodulatory drug therapy. Br J Haematol. 2015;171:100–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lenhoff S, Hjorth M, Holmberg E, Turesson I, Westin J, Nielsen JL, et al. Impact on survival of high-dose therapy with autologous stem cell support in patients younger than 60 years with newly diagnosed multiple myeloma: a population-based study. Nordic Myeloma Study Group. Blood. 2000;95:7–11.

    CAS  PubMed  Google Scholar 

  30. Hargreaves RM, Lea JR, Griffiths H, Faux JA, Holt JM, Reid C, et al. Immunological factors and risk of infection in plateau phase myeloma. J Clin Pathol. 1995;48:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Offidani M, Corvatta L, Polloni C, Gentili S, Brioni A, Visani G, et al. Infectious complications in patients with multiple myeloma treated with new drug combinations containing thalidomide. Leuk Lymphoma. 2011;52:776–85.

    Article  CAS  PubMed  Google Scholar 

  32. Teh BW, Harrison SJ, Slavin MA, Worth LJ. Epidemiology of bloodstream infections in patients with myeloma receiving current era therapy. Eur J Haematol. 2017;98:149–53.

    Article  CAS  PubMed  Google Scholar 

  33. Chanan-Khan A, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau J-L, et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol Off J Am Soc. Clin Oncol. 2008;26:4784–90.

    CAS  Google Scholar 

  34. Teh BW, Slavin MA, Harrison SJ, Worth LJ. Prevention of viral infections in patients with multiple myeloma: the role of antiviral prophylaxis and immunization. Expert Rev Anti Infect Ther. 2015;13:1325–36.

    Article  CAS  PubMed  Google Scholar 

  35. Chari A, Samur MK, Martinez-Lopez J, Cook G, Biran N, Yong K, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. Blood. 2020;136:3033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee LYW, Cazier J-B, Starkey T, Briggs SEW, Arnold R, Bisht V et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol 2020. https://doi.org/10.1016/S1470-2045(20)30442-3.

  37. Hultcrantz M, Richter J, Rosenbaum C, Patel D, Smith E, Korde N et al. COVID-19 infections and outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. MedRxiv Prepr Serv Health Sci 2020. https://doi.org/10.1101/2020.06.09.20126516.

  38. Wang B, Van Oekelen O, Mouhieddine TH, Del Valle DM, Richter J, Cho HJ et al. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. MedRxiv Prepr Serv Health Sci 2020. https://doi.org/10.1101/2020.06.04.20122846.

  39. Lortholary O, Ascioglu S, Moreau P, Herbrecht R, Marinus A, Casassus P, et al. Invasive aspergillosis as an opportunistic infection in nonallografted patients with multiple myeloma: a European Organization for Research and Treatment of Cancer/ Invasive Fungal Infections Cooperative Group and the Intergroupe Français du Myélome. Clin Infect Dis Publ Infect Dis Soc Am. 2000;30:41–46.

    Article  CAS  Google Scholar 

  40. Teh BW, Teng JC, Urbancic K, Grigg A, Harrison SJ, Worth LJ, et al. Invasive fungal infections in patients with multiple myeloma: a multi-center study in the era of novel myeloma therapies. Haematologica. 2015;100:e28–31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fillatre P, Decaux O, Jouneau S, Revest M, Gacouin A, Robert-Gangneux F, et al. Incidence of Pneumocystis jiroveci pneumonia among groups at risk in HIV-negative patients. Am J Med. 2014;127:e11–17.

    Article  Google Scholar 

  42. Demonchy J, Cordier C, Fréalle E, Demarquette H, Herbaux C, Escure G, et al. Case Report: Two Cases of Cryptosporidiosis in Heavily Pretreated Patients With Myeloma. Clin Lymphoma Myeloma Leuk. 2021;21:e545–e547.

    Article  PubMed  Google Scholar 

  43. Mainwaring CJ, Williams MA, Singer CR, Lush RJ, Smith JG, Haynes CL, et al. Monocyte dysfunction in patients with multiple myeloma and lymphoplasmacytic disorders is related to serum paraprotein levels. Br J Haematol. 1999;105:948–54.

    Article  CAS  PubMed  Google Scholar 

  44. Cheson BD, Walker HS, Heath ME, Gobel RJ, Janatova J. Defective binding of the third component of complement (C3) to Streptococcus pneumoniae in multiple myeloma. Blood. 1984;63:949–57.

    Article  CAS  PubMed  Google Scholar 

  45. Cheson BD, Plass RR, Rothstein G. Defective opsonization in multiple myeloma. Blood. 1980;55:602–6.

    Article  CAS  PubMed  Google Scholar 

  46. Godfrey J, Benson DM. The role of natural killer cells in immunity against multiple myeloma. Leuk Lymphoma. 2012;53:1666–76.

    Article  CAS  PubMed  Google Scholar 

  47. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138:563–79.

    Article  CAS  PubMed  Google Scholar 

  48. SchĂ¼tt P, Brandhorst D, Stellberg W, Poser M, Ebeling P, MĂ¼ller S, et al. Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections. Leuk Lymphoma. 2006;47:1570–82.

    Article  PubMed  Google Scholar 

  49. Teh BW, Harrison SJ, Pellegrini M, Thursky KA, Worth LJ, Slavin MA. Changing treatment paradigms for patients with plasma cell myeloma: impact upon immune determinants of infection. Blood Rev. 2014;28:75–86.

    Article  PubMed  Google Scholar 

  50. Mills KH, Cawley JC. Abnormal monoclonal antibody-defined helper/suppressor T-cell subpopulations in multiple myeloma: relationship to treatment and clinical stage. Br J Haematol. 1983;53:271–5.

    Article  CAS  PubMed  Google Scholar 

  51. Tete SM, Bijl M, Sahota SS, Bos NA. Immune defects in the risk of infection and response to vaccination in monoclonal gammopathy of undetermined significance and multiple myeloma. Front Immunol. 2014;5:257.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moss P, Gillespie G, Frodsham P, Bell J, Reyburn H. Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia. Blood. 1996;87:3297–306.

    Article  CAS  PubMed  Google Scholar 

  53. Joshua D, Suen H, Brown R, Bryant C, Ho PJ, Hart D, et al. The T Cell in Myeloma. Clin Lymphoma Myeloma Leuk. 2016;16:537–42.

    Article  PubMed  Google Scholar 

  54. Dumontet C, Hulin C, Dimopoulos MA, Belch A, Dispenzieri A, Ludwig H, et al. A predictive model for risk of early grade ≥ 3 infection in patients with multiple myeloma not eligible for transplant: analysis of the FIRST trial. Leukemia. 2018;32:1404–13.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Djebbari F, Panitsas F, Eyre TA, Prodger C, Davies F, Burton K et al. Infection-related morbidity in a large study of transplant non-eligible newly diagnosed myeloma patients treated with UK standard of care. Haematologica 2020. https://doi.org/10.3324/haematol.2019.240762.

  56. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis Publ Infect Dis Soc Am. 2000;30:931–3.

    Article  CAS  Google Scholar 

  57. Nucci M, Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis Publ Infect Dis Soc Am. 2009;49:1211–25.

    Article  CAS  Google Scholar 

  58. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24:331–41.

    Article  CAS  PubMed  Google Scholar 

  59. Castle SC. Clinical relevance of age-related immune dysfunction. Clin Infect Dis Publ Infect Dis Soc Am. 2000;31:578–85.

    Article  CAS  Google Scholar 

  60. Pritz T, Lair J, Ban M, Keller M, Weinberger B, Krismer M, et al. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol. 2015;45:738–46.

    Article  CAS  PubMed  Google Scholar 

  61. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123:958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138:563–79.

    Article  CAS  PubMed  Google Scholar 

  63. Pal R, Monaghan SA, Hassett AC, Mapara MY, Schafer P, Roodman GD, et al. Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood. 2010;115:605–14.

    Article  CAS  PubMed  Google Scholar 

  64. Teh BW, Harrison SJ, Worth LJ, Thursky KA, Slavin MA. Infection risk with immunomodulatory and proteasome inhibitor-based therapies across treatment phases for multiple myeloma: A systematic review and meta-analysis. Eur J Cancer Oxf Engl 1990. 2016;67:21–37.

    CAS  Google Scholar 

  65. Ying L, YinHui T, Yunliang Z, Sun H. Lenalidomide and the risk of serious infection in patients with multiple myeloma: a systematic review and meta-analysis. Oncotarget. 2017;8:46593–600.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen M, Zhao Y, Xu C, Wang X, Zhang X, Mao B. Immunomodulatory drugs and the risk of serious infection in multiple myeloma: systematic review and meta-analysis of randomized and observational studies. Ann Hematol. 2018;97:925–44.

    Article  CAS  PubMed  Google Scholar 

  67. Li L, Wang L. Multiple Myeloma: What Do We Do About Immunodeficiency? J Cancer. 2019;10:1675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fardet L, Petersen I, Nazareth I. Common Infections in Patients Prescribed Systemic Glucocorticoids in Primary Care: A Population-Based Cohort Study. PLoS Med. 2016;13:e1002024.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nahi H, Chrobok M, Gran C, Lund J, Gruber A, Gahrton G, et al. Infectious complications and NK cell depletion following daratumumab treatment of Multiple Myeloma. PloS One. 2019;14:e0211927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boyle EM, Leleu X, Petillon M-O, Karlin L, Doyen C, Demarquette H, et al. Daratumumab and dexamethasone is safe and effective for triple refractory myeloma patients: final results of the IFM 2014-04 (Etoile du Nord) trial. Br J Haematol. 2019;187:319–27.

    Article  CAS  PubMed  Google Scholar 

  71. Bensinger WI, Buckner CD, Anasetti C, Clift R, Storb R, Barnett T, et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood. 1996;88:2787–93.

    Article  CAS  PubMed  Google Scholar 

  72. Ketterer N, Espinouse D, Chomarat M, Dumontet C, Moullet I, Rieux C, et al. Infections following peripheral blood progenitor cell transplantation for lymphoproliferative malignancies: etiology and potential risk factors. Am J Med. 1999;106:191–7.

    Article  CAS  PubMed  Google Scholar 

  73. Reich G, Mapara MY, Reichardt P, Dörken B, Maschmeyer G. Infectious complications after high-dose chemotherapy and autologous stem cell transplantation: comparison between patients with lymphoma or multiple myeloma and patients with solid tumors. Bone Marrow Transpl. 2001;27:525–9.

    Article  CAS  Google Scholar 

  74. Kolbe K, Domkin D, Derigs HG, Bhakdi S, Huber C, Aulitzky WE. Infectious complications during neutropenia subsequent to peripheral blood stem cell transplantation. Bone Marrow Transpl. 1997;19:143–7.

    Article  CAS  Google Scholar 

  75. GorschlĂ¼ter M, Glasmacher A, Sarazin S, Hackbarth F, Hoebert E, Orlopp K, et al. CD4+ T lymphocyte counts after autologous transplantation in multiple myeloma: a retrospective study. Leuk Lymphoma. 2007;48:506–12.

    Article  PubMed  Google Scholar 

  76. Steingrimsdottir H, Gruber A, Kalin M, Björkholm M. Late infections after blood progenitor cell transplantation in patients with multiple myeloma. Am J Med. 2001;110:329–30.

    Article  CAS  PubMed  Google Scholar 

  77. Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma. 2018;59:2056–67.

    Article  CAS  PubMed  Google Scholar 

  78. Hill JA, Li D, Hay KA, Green ML, Cherian S, Chen X, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood. 2018;131:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Munshi NC, Anderson J, Larry D, Shah N, Jagannath S, Berdeja JG, Lonial S, et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results. J Clin Oncol. 2020;38:8503.

    Article  Google Scholar 

  81. La Torre G, Mannocci A, Colamesta V, D’Egidio V, Sestili C, Spadea A. Influenza and Pneumococcal Vaccination in Hematological Malignancies: a Systematic Review of Efficacy, Effectiveness, and Safety. Mediterr J Hematol Infect Dis. 2016;8:e2016044.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Renaud L, Schraen S, Fouquet G, Guidez S, Demarquette H, Nudel M, et al. Response to pneumococcal vaccination in multiple myeloma. Cancer Med. 2019;8:3822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stadtmauer EA, Vogl DT, Luning Prak E, Boyer J, Aqui NA, Rapoport AP, et al. Transfer of influenza vaccine-primed costimulated autologous T cells after stem cell transplantation for multiple myeloma leads to reconstitution of influenza immunity: results of a randomized clinical trial. Blood. 2011;117:63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hahn M, Schnitzler P, Schweiger B, Kunz C, Ho AD, Goldschmidt H, et al. Efficacy of single versus boost vaccination against influenza virus in patients with multiple myeloma. Haematologica. 2015;100:e285–88.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Branagan AR, Duffy E, Albrecht RA, Cooper DL, Seropian S, Parker TL, et al. Clinical and serologic responses following a two dose series of high-dose influenza vaccine in plasma cell disorders: a prospective, single-arm trial. Clin Lymphoma Myeloma Leuk. 2017;17:296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Terpos E, Gavriatopoulou M, Ntanasis-Stathopoulos I, Briasoulis A, Gumeni S, Malandrakis P, et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment. Blood. Cancer J. 2021;11:1–9.

    Google Scholar 

  87. Bird S, Panopoulou A, Shea RL, Tsui M, Saso R, Sud A, et al. Response to first vaccination against SARS-CoV-2 in patients with multiple myeloma. Lancet Haematol. 2021;8:e389–92.

    Article  PubMed  PubMed Central  Google Scholar 

  88. McGirr A, Widenmaier R, Curran D, Espié E, Mrkvan T, Oostvogels L, et al. The comparative efficacy and safety of herpes zoster vaccines: A network meta-analysis. Vaccine. 2019;37:2896–909.

    Article  CAS  PubMed  Google Scholar 

  89. Winston DJ, Mullane KM, Cornely OA, Boeckh MJ, Brown JW, Pergam SA, et al. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2018;391:2116–27.

    Article  Google Scholar 

  90. Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, et al. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J Clin Oncol Off J Am Soc. Clin Oncol. 2018;36:3043–54.

    Google Scholar 

  91. Satlin MJ, Vardhana S, Soave R, Shore TB, Mark TM, Jacobs SE, et al. Impact of Prophylactic Levofloxacin on Rates of Bloodstream Infection and Fever in Neutropenic Patients with Multiple Myeloma Undergoing Autologous Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2015;21:1808–14.

    Article  CAS  Google Scholar 

  92. Jung S-H, Kang S-J, Jang H-C, Ahn J-S, Yang D-H, Lee S-S, et al. Effect of levofloxacin prophylaxis for prevention of severe infections in multiple myeloma patients receiving bortezomib-containing regimens. Int J Hematol. 2014;100:473–7.

    Article  CAS  PubMed  Google Scholar 

  93. Drayson MT, Bowcock S, Planche T, Iqbal G, Pratt G, Yong K, et al. Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Oncol. 2019;20:1760–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yahav D, Gafter-Gvili A, Muchtar E, Skalsky K, Kariv G, Yeshurun M, et al. Antiviral prophylaxis in haematological patients: systematic review and meta-analysis. Eur J Cancer Oxf Engl 1990. 2009;45:3131–48.

    Google Scholar 

  95. Glenny A-M, Fernandez Mauleffinch LM, Pavitt S, Walsh T Interventions for the prevention and treatment of herpes simplex virus in patients being treated for cancer. Cochrane Database Syst Rev 2009;CD006706.

  96. Dignani MC, Mykietiuk A, Michelet M, Intile D, Mammana L, Desmery P, et al. Valacyclovir prophylaxis for the prevention of Herpes simplex virus reactivation in recipients of progenitor cells transplantation. Bone Marrow Transpl. 2002;29:263–7.

    Article  CAS  Google Scholar 

  97. Eisen D, Essell J, Broun ER, Sigmund D, DeVoe M. Clinical utility of oral valacyclovir compared with oral acyclovir for the prevention of herpes simplex virus mucositis following autologous bone marrow transplantation or stem cell rescue therapy. Bone Marrow Transpl. 2003;31:51–55.

    Article  CAS  Google Scholar 

  98. Teh B, Worth L, Harrison S, Spelman T, Thursky K, Slavin M The timing and clinical predictors of herpesvirus infections in patients with myeloma in the setting of antiviral prophylaxis. 2015.

  99. Erard V, Guthrie KA, Varley C, Heugel J, Wald A, Flowers MED, et al. One-year acyclovir prophylaxis for preventing varicella-zoster virus disease after hematopoietic cell transplantation: no evidence of rebound varicella-zoster virus disease after drug discontinuation. Blood. 2007;110:3071–7.

    Article  CAS  PubMed  Google Scholar 

  100. Truong Q, Veltri L, Kanate AS, Hu Y, Craig M, Hamadani M, et al. Impact of the duration of antiviral prophylaxis on rates of varicella-zoster virus reactivation disease in autologous hematopoietic cell transplantation recipients. Ann Hematol. 2014;93:677–82.

    Article  PubMed  Google Scholar 

  101. Pour L, Adam Z, Buresova L, Krejci M, Krivanova A, Sandecka V, et al. Varicella-zoster virus prophylaxis with low-dose acyclovir in patients with multiple myeloma treated with bortezomib. Clin Lymphoma Myeloma. 2009;9:151–3.

    Article  CAS  PubMed  Google Scholar 

  102. Lee JY, Lim SH, Lee M-Y, Kim H, Sinn DH, Gwak G-Y, et al. Hepatitis B reactivation in multiple myeloma patients with resolved hepatitis B undergoing chemotherapy. Liver Int Off J Int Assoc Study. Liver. 2015;35:2363–9.

    CAS  Google Scholar 

  103. Worth LJ, Dooley MJ, Seymour JF, Mileshkin L, Slavin MA, Thursky KA. An analysis of the utilisation of chemoprophylaxis against Pneumocystis jirovecii pneumonia in patients with malignancy receiving corticosteroid therapy at a cancer hospital. Br J Cancer. 2005;92:867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Slavin MA, Thursky KA, Worth LJ, Chang CC, Morrissey CO, Blyth CC, et al. Introduction to the updated Australian and New Zealand consensus guidelines for the use of antifungal agents in the haematology/oncology setting, 2014. Intern Med J. 2014;44:1267–76.

    Article  CAS  PubMed  Google Scholar 

  105. La Hoz RM, Morris MI, Infectious AST. Diseases Community of Practice. Intestinal parasites including Cryptosporidium, Cyclospora, Giardia, and Microsporidia, Entamoeba histolytica, Strongyloides, Schistosomiasis, and Echinococcus: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33:e13618.

    Google Scholar 

  106. Chapel HM, Lee M, Hargreaves R, Pamphilon DH, Prentice AG. Randomised trial of intravenous immunoglobulin as prophylaxis against infection in plateau-phase multiple myeloma. The UK Group for Immunoglobulin Replacement Therapy in Multiple Myeloma. Lancet Lond Engl. 1994;343:1059–63.

    Article  CAS  Google Scholar 

  107. Musto P, Brugiatelli M, Carotenuto M. Prophylaxis against infections with intravenous immunoglobulins in multiple myeloma. Br J Haematol. 1995;89:945–6.

    Article  CAS  PubMed  Google Scholar 

  108. Blombery P, Prince HM, Worth LJ, Main J, Yang M, Wood EM, et al. Prophylactic intravenous immunoglobulin during autologous haemopoietic stem cell transplantation for multiple myeloma is not associated with reduced infectious complications. Ann Hematol. 2011;90:1167–72.

    Article  CAS  PubMed  Google Scholar 

  109. Park S, Jung CW, Jang JH, Kim SJ, Kim WS, Kim K. Incidence of infection according to intravenous immunoglobulin use in autologous hematopoietic stem cell transplant recipients with multiple myeloma. Transpl Infect Dis J Transpl Soc. 2015;17:679–87.

    Article  CAS  Google Scholar 

  110. Girmenia C, Cavo M, Offidani M, Scaglione F, Corso A, Di Raimondo F, et al. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019;34:84–94.

    Article  PubMed  Google Scholar 

  111. Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N. Engl J Med. 2014;371:906–17.

    Article  CAS  PubMed  Google Scholar 

  112. Facon T, Kumar S, Plesner T, Orlowski RZ, Moreau P, Bahlis N, et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl J Med. 2019;380:2104–15.

    Article  CAS  PubMed  Google Scholar 

  113. Moreau P, Avet-Loiseau H, Facon T, Attal M, Tiab M, Hulin C, et al. Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. Blood. 2011;118:5752–8.

    Article  CAS  PubMed  Google Scholar 

  114. Durie BGM, Hoering A, Abidi MH, Rajkumar SV, Epstein J, Kahanic SP, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet Lond Engl. 2017;389:519–27.

    Article  CAS  Google Scholar 

  115. Moreau P, Hulin C, Macro M, Caillot D, Chaleteix C, Roussel M, et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial. Blood. 2016;127:2569–74.

    Article  CAS  PubMed  Google Scholar 

  116. Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K, Benboubker L, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet Lond Engl. 2019;394:29–38.

    Article  CAS  Google Scholar 

  117. Kumar SK, Jacobus SJ, Cohen AD, Weiss M, Callander N, Singh AK et al. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2020. https://doi.org/10.1016/S1470-2045(20)30452-6.

Download references

Author information

Authors and Affiliations

Authors

Contributions

EMB: designed the project. JC and EMB: reviewed the literature, wrote the manuscript. MB, LW, BB, DK, AS, BR, SA, GJM, FED: provided feedback, approved the manuscript.

Corresponding author

Correspondence to Eileen M. Boyle.

Ethics declarations

Competing interests

Jessica Caro: None. Marc Braunstein: Research Support – Janssen, Celgene; Advisory: ADC Therapeutics, Amgen, AstraZeneca, Celgene, Epizyme, Janssen, Karyopharm, Morphosys, Pfizer, Takeda, TG Therapeutics, Verastem; Faculty Bureau: Janssen. Louis Williams: None. Benedetto Bruno: None. David Kaminetzky: None. Ariel Siegel: None. Beatrice Razzo: None. Serge Alfandari: None. Gareth J Morgan: Janssen – research funding; Bristol-Myers Squibb – consultancy, honoraria; Takeda – consultancy, honoraria; Celgene Corporation – consultancy, honoraria, research funding; Roche – consultancy, honoraria; Amgen – consultancy, honoraria; GSK – consultancy, honoraria; Karyopharm – consultancy, honoraria. Faith E Davies: Adaptive – honoraria; Celgene Corporation – consultancy, honoraria, research funding; Janssen – consultancy, honoraria; Oncopeptide - consultancy, honoraria; Roche – consultancy, honoraria; Sanofi - consultancy, honoraria; Takeda – consultancy, honoraria. Eileen M Boyle: None.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caro, J., Braunstein, M., Williams, L. et al. Inflammation and infection in plasma cell disorders: how pathogens shape the fate of patients. Leukemia 36, 613–624 (2022). https://doi.org/10.1038/s41375-021-01506-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-021-01506-9

This article is cited by

Search

Quick links