Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MOLECULAR TARGETS FOR THERAPY

Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition

Abstract

Internal tandem duplication mutations of FLT3 (FLT3/ITD) confer poor prognosis in AML. FLT3 tyrosine kinase inhibitors (TKIs) alone have limited and transient clinical efficacy thus calling for new targets for more effective combination therapy. In a loss-of-function RNAi screen, we identified NOTCH4 as one such potential target whose inhibition proved cytotoxic to AML cells, and also sensitized them to FLT3 inhibition. Further investigation found increased NOTCH4 expression in FLT3/ITD AML cell lines and primary patient samples. Inhibition of NOTCH4 by shRNA knockdown, CRISPR-Cas9-based knockout or γ-secretase inhibitors synergized with FLT3 TKIs to kill FLT3/ITD AML cells in vitro. NOTCH4 inhibition sensitized TKI-resistant FLT3/ITD cells to FLT3 TKI inhibition. The combination reduced phospho-ERK and phospho-AKT, indicating inhibition of MAPK and PI3K/AKT signaling pathways. It also led to changes in expression of genes involved in regulating cell cycling, DNA repair and transcription. A patient-derived xenograft model showed that the combination reduced both the level of leukemic involvement of primary human FLT3/ITD AML cells and their ability to engraft secondary recipients. In summary, these results demonstrate that NOTCH4 inhibition synergizes with FLT3 TKIs to eliminate FLT3/ITD AML cells, providing a new therapeutic target for AML with FLT3/ITD mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NOTCH4 is essential for the survival of FLT3/ITD cells and its inhibition sensitizes FLT3/ITD AML cells to FLT3 TKI.
Fig. 2: NOTCH4 knockdown sensitizes FLT3/ITD AML cells to TKI treatment.
Fig. 3: Gilteritinib and γ-secretase inhibitors have a synergistic effect on FLT3/ITD AML cells.
Fig. 4: Gilteritinib and γ-secretase inhibitors have a synergistic effect on primary AML sample cells with FLT3/ITD mutations.
Fig. 5: γ-secretase inhibitors reduce MAPK/ERK activity of FLT3/ITD cells and impact expression of cancer-related genes.
Fig. 6: Combination of FLT3 TKI and/or NOTCH4 inhibition eliminates FLT3/ITD AML cells and reduces disease progression in vivo.

Similar content being viewed by others

Data availability

All data generated and analyzed in this study are included in this published article and its supplementary materials and figures.

References

  1. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    CAS  PubMed  Google Scholar 

  2. Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003;17:1738–52.

    CAS  PubMed  Google Scholar 

  3. Small D. FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program. 2006;1:178–84.

  4. Cancer Genome Atlas, Network Research, Ley TJ, Miller C, Ding L, Raphael BJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Google Scholar 

  5. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutamtewagul G, Vigil CE. Clinical use of FLT3 inhibitors in acute myeloid leukemia. Onco Targets Ther. 2018;11:7041–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Perl AE. Availability of FLT3 inhibitors: how do we use them? Blood. 2019;134:741–745.

    CAS  PubMed  Google Scholar 

  10. Chu SH, Small D. Mechanisms of resistance to FLT3 inhibitors. Drug Resist Updat. 2009;12:8–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kayser S, Levis MJ. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk Lymphoma. 2014;55:243–55.

    CAS  PubMed  Google Scholar 

  12. Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms underlying resistance to FLT3 Inhibitors in acute myeloid leukemia. Biomedicines. 2020;8:245.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G, et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006;441:106–110.

    CAS  PubMed  Google Scholar 

  14. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–76.

    CAS  PubMed  Google Scholar 

  15. Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131:965–73.

    CAS  PubMed  Google Scholar 

  16. Vercauteren SM, Sutherland HJ. Constitutively active Notch4 promotes early human hematopoietic progenitor cell maintenance while inhibiting differentiation and causes lymphoid abnormalities in vivo. Blood. 2004;104:2315–22.

    CAS  PubMed  Google Scholar 

  17. Ye Q, Shieh JH, Morrone G, Moore MA. Expression of constitutively active Notch4 (Int-3) modulates myeloid proliferation and differentiation and promotes expansion of hematopoietic progenitors. Leukemia. 2004;18:777–87.

    CAS  PubMed  Google Scholar 

  18. Li Y, Jin C, Bai H, Gao Y, Sun S, Chen L, et al. Human NOTCH4 is a key target of RUNX1 in megakaryocytic differentiation. Blood. 2018;131:191–201.

    PubMed  PubMed Central  Google Scholar 

  19. Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, et al. Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med. 2013;210:321–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in cancer: Molecular mechanisms and therapeutic perspectives. Cancer Manag Res. 2021;13:7033–45.

    PubMed  PubMed Central  Google Scholar 

  21. Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007;109:1643–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu R, Li L, Nguyen B, Seo J, Wu M, Seale T, et al. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct Target Ther. 2021;6:186.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang A, Ju HQ, Liu K, Zhan G, Liu D, Wen S, et al. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer let. 2016;377:149–57.

    CAS  Google Scholar 

  24. Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer. 2008;47:8–20.

  25. Li L, Piloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F, et al. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood. 2008;111:3849–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li L, Bailey E, Greenblatt S, Huso D, Small D. Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice. Blood. 2011;118:4935–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bailey E, Li L, Duffield AS, Ma HS, Huso DL, Small D. FLT3/D835Y mutation knock-in mice display less aggressive disease compared with FLT3/internal tandem duplication (ITD) mice. Proc Natl Acad Sci. 2013;110:21113–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tarumoto Y, Lu B, Somerville TDD, Huang YH, Milazzo JP, Wu XS, et al. LKB1, Salt-Inducible Kinases, and MEF2C are linked dependencies in acute myeloid leukemia. Mol Cell. 2018;69:1017–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Knudsen ES, Witkiewicz AK, Rubin SM. Cancer takes many paths through G1/S. Trends Cell Biol. 2023;S0962–8924:00211–8.

    Google Scholar 

  30. Oh P, Lobry C, Gao J, Tikhonova A, Loizou E, Manet J, et al. In vivo mapping of notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell. 2013;13:190–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I, et al. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell. 2008;3:314–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takam Kamga P, Dal Collo G, Resci F, Bazzoni R, Mercuri A, Quaglia FM, et al. Notch signaling molecules as prognostic biomarkers for acute myeloid leukemia. Cancers. 2019;11:1958.

    PubMed  PubMed Central  Google Scholar 

  33. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    CAS  PubMed  Google Scholar 

  34. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014;123:2451–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Arcaini L, Rossi D, Lucioni M, Nicola M, Bruscaggin A, Fiaccadori V, et al. The NOTCH pathway is recurrently mutated in diffuse large B-cell lymphoma associated with hepatitis C virus infection. Haematologica. 2015;100:246–52.

    PubMed  PubMed Central  Google Scholar 

  36. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012;119:63–1971.

    Google Scholar 

  37. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209:1537–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koch U, Radtke F. Notch signaling in solid tumors. Curr Top Dev Biol. 2010;92:411–55.

    CAS  PubMed  Google Scholar 

  39. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11:338–51.

    CAS  PubMed  Google Scholar 

  40. Lobry C, Ntziachristos P, Ndiaye-Lobry D, Oh P, Cimmino L, Zhu N, et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med. 2013;210:301–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tohda S, Sakano S, Ohsawa M, Murakami N, Nara N. A novel cell line derived from de novo acute myeloblastic leukaemia with trilineage myelodysplasia which proliferates in response to a Notch ligand, Delta-1 protein. Br J Haematol. 2002;117:373–78.

    CAS  PubMed  Google Scholar 

  42. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506:240–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li D, Li T, Shang Z, Zhao L, Xu Q, Tan J, et al. Combined inhibition of Notch and FLT3 produces synergistic cytotoxic effects in FLT3/ITD(+) acute myeloid leukemia. Signal Transduct Target Ther. 2020;5:21.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Le Q, Hadland B, Meshinchi S, Bernstein I. Notch blockade overcomes endothelial cell-mediated resistance of FLT3/ITD-positive AML progenitors to AC220 treatment. Leukemia. 2021;35:601–05.

    CAS  PubMed  Google Scholar 

  45. Bazarbachi AH, Al Hamed R, Malard F, Mohty M, Bazarbachi A. Allogeneic transplant for FLT3-ITD mutated AML: a focus on FLT3 inhibitors before, during, and after transplant. Ther Adv Hematol. 2019;10:2040620719882666.

  46. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S, et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood. 2011;117:3286–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang X, Sexauer A, Levis M. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulated kinase. Br J Haematol. 2014;164:61–72.

    CAS  PubMed  Google Scholar 

  49. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell. 2012;22:668–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bruner JK, Ma HS, Li L, Qin ACR, Rudek MA, Jones RJ, et al. Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase-Driven Leukemias and Other Malignancies. Cancer Res. 2017;77:5554–63.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (R01 CA090668 (DS) and P30 CA006973, T32 CA60441 (CMS), Commonwealth Fund and the Giant Food Pediatric Cancer Research Fund (DS). RZ is supported by the China Scholarship Council and National Natural Science Foundation of China (No. 82200187). DS is also supported by the Kyle Haydock Professorship. DS has also received research funding and has served as a consultant to Pharos I, B&T for an unrelated project and serves on the SAB of In Silico Medicine, Inc. and Mitomed.

Author information

Authors and Affiliations

Authors

Contributions

RZ, CMS and SHC designed experiments, performed experiments and analyzed data; LL, BHN, JS, MW and AD performed data analysis and provided technical support; LMS and YH provided technical support; ML provided patient samples; DS designed experiments and analyzed data. RZ wrote the first version of the manuscript; RZ, CMS, LL and DS revised the manuscript.

Corresponding author

Correspondence to Donald Small.

Ethics declarations

Competing interests

The authors declare no competing financial interest. DS does serve on the SAB of InSilico Medicine and Mitomed and receives research support and serves as a consultant for an unrelated project from Pharos, Ltd. ML has received honoraria from Daiichi Sankyo, Novartis, and Agios; has served in a consulting or advisory role for Daiichi Sankyo, Novartis, and Agios; and has received research funding from Astellas and Novartis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Shirley, C.M., Chu, S.H. et al. Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition. Leukemia 38, 1581–1591 (2024). https://doi.org/10.1038/s41375-024-02292-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-024-02292-w

Search

Quick links