Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

The epigenetic state of the cell of origin defines mechanisms of leukemogenesis

Abstract

Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generating AML of defined cellular origin by engineering the MLL-AF9 translocation in human HSPCs.
Fig. 2: Retention of stemness programs in HSC leukemia.
Fig. 3: Defining the global MLL-AF9-driven and -independent epigenome of AMLs of defined cellular origin.
Fig. 4: AML dependencies identified in the HSC-AML epigenetic program.
Fig. 5: Vulnerability of HSC AML to transcriptional inhibition and perturbation of mRNA splicing.

Similar content being viewed by others

Data availability

Sequencing data are available in Gene Expression Omnibus (GSE262561).

References

  1. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19:138–52.

    CAS  PubMed  Google Scholar 

  2. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.

    PubMed  PubMed Central  Google Scholar 

  3. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest. 2011;121:384–95.

    CAS  PubMed  Google Scholar 

  4. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

    CAS  PubMed  Google Scholar 

  5. Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJ, et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia. 2013;27:852–60.

    CAS  PubMed  Google Scholar 

  6. Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433–7.

    CAS  PubMed  Google Scholar 

  7. Wahlster L, Daley GQ. Progress towards generation of human haematopoietic stem cells. Nat Cell Biol. 2016;18:1111–7.

    CAS  PubMed  Google Scholar 

  8. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173:1535–1548.e1516.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. George J, Uyar A, Young K, Kuffler L, Waldron-Francis K, Marquez E, et al. Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells. Nat Commun. 2016;7:12166.

    PubMed  PubMed Central  Google Scholar 

  10. Zeisig BB, Garcia-Cuellar MP, Winkler TH, Slany RK. The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene. 2003;22:1629–37.

    CAS  PubMed  Google Scholar 

  11. Pei S, Minhajuddin M, Adane B, Khan N, Stevens BM, Mack SC, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell. 2018;23:86–100.e106.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    CAS  PubMed  Google Scholar 

  13. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501.

    CAS  PubMed  Google Scholar 

  14. Rowe RG, Lummertz da Rocha E, Sousa P, Missios P, Morse M, Marion W, et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J Exp Med. 2019;216:527–38.

  15. Morris V, Wang D, Li Z, Marion W, Hughes T, Sousa P, et al. Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Rep. 2022;39:110752.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pollyea DA, Jordan CT. Therapeutic targeting of acute myeloid leukemia stem cells. Blood. 2017;129:1627–35.

    CAS  PubMed  Google Scholar 

  17. Jeong J, Jager A, Domizi P, Pavel-Dinu M, Gojenola L, Iwasaki M, et al. High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells. Blood Adv. 2019;3:2825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10:120–36.

    CAS  PubMed  Google Scholar 

  19. Cesana M, Guo MH, Cacchiarelli D, Wahlster L, Barragan J, Doulatov S, et al. A CLK3-HMGA2 alternative splicing axis impacts human hematopoietic stem cell molecular identity throughout development. Cell Stem Cell. 2018;22:575–588.e577.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X, et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell. 2019;178:1509–1525.e1519.

    CAS  PubMed  Google Scholar 

  21. Aguade-Gorgorio J, Jami-Alahmadi Y, Calvanese V, Kardouh M, Fares I, Johnson H, et al. MYCT1 controls environmental sensing in human haematopoietic stem cells. Nature. 2024;630:412–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife. 2017;6:e21856.

  23. Janssens DH, Meers MP, Wu SJ, Babaeva E, Meshinchi S, Sarthy JF, et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat Genet. 2021;53:1586–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell. 2007;1:324–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo H, Chu Y, Wang L, Chen X, Chen Y, Cheng H, et al. PBX3 is essential for leukemia stem cell maintenance in MLL-rearranged leukemia. Int J Cancer. 2017;141:324–35.

    CAS  PubMed  Google Scholar 

  26. Kumar AR, Li Q, Hudson WA, Chen W, Sam T, Yao Q, et al. A role for MEIS1 in MLL-fusion gene leukemia. Blood. 2009;113:1756–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tarumoto Y, Lu B, Somerville TDD, Huang YH, Milazzo JP, Wu XS, et al. LKB1, salt-inducible kinases, and MEF2C are linked dependencies in acute myeloid leukemia. Mol Cell. 2018;69:1017–1027.e1016.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bewersdorf JP, Abdel-Wahab O. Translating recent advances in the pathogenesis of acute myeloid leukemia to the clinic. Genes Dev. 2022;36:259–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yokoyama A. Transcriptional activation by MLL fusion proteins in leukemogenesis. Exp Hematol. 2017;46:21–30.

    CAS  PubMed  Google Scholar 

  31. Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 2011;25:661–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170:564–576.e516.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Figg JW, Barajas JM, Obeng EA. Therapeutic approaches targeting splicing factor mutations in myelodysplastic syndromes and acute myeloid leukemia. Curr Opin Hematol. 2021;28:73–79.

    CAS  PubMed  Google Scholar 

  34. Lee SC, Dvinge H, Kim E, Cho H, Micol JB, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22:672–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Araki S, Dairiki R, Nakayama Y, Murai A, Miyashita R, Iwatani M, et al. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS ONE. 2015;10:e0116929.

    PubMed  PubMed Central  Google Scholar 

  36. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16:413–30.

  37. Yoshimi A, Lin KT, Wiseman DH, Rahman MA, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeisig BB, Fung TK, Zarowiecki M, Tsai CT, Luo H, Stanojevic B, et al. Functional reconstruction of human AML reveals stem cell origin and vulnerability of treatment-resistant MLL-rearranged leukemia. Sci Transl Med. 2021;13:eabc4822.

  39. Zhang T, Yang J, Vaikari VP, Beckford JS, Wu S, Akhtari M, et al. Apolipoprotein C2 - CD36 promotes leukemia growth and presents a targetable axis in acute myeloid leukemia. Blood Cancer Discov. 2020;1:198–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leung AY, Man CH, Kwong YL. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. Leukemia. 2013;27:260–8.

    CAS  PubMed  Google Scholar 

  41. Weiss E, Kretschmer D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 2018;39:815–29.

    CAS  PubMed  Google Scholar 

  42. Aguado-Llera D, Hamidi T, Domenech R, Pantoja-Uceda D, Gironella M, Santoro J, et al. Deciphering the binding between Nupr1 and MSL1 and their DNA-repairing activity. PLoS ONE. 2013;8:e78101.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu HC, Rerolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, et al. Actinomycin D TARGets NPM1c-primed mitochondria to restore PML-driven senescence in AML therapy. Cancer Discov. 2021;11:3198–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Man N, Sun XJ, Tan Y, Garcia-Cao M, Liu F, Cheng G, et al. Differential role of Id1 in MLL-AF9-driven leukemia based on cell of origin. Blood. 2016;127:2322–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jassinskaja M, Ghosh S, Watral J, Davoudi M, Claesson Stern M, Daher U, et al. A complex interplay of intra- and extracellular factors regulates the outcome of fetal- and adult-derived MLL-rearranged leukemia. Leukemia. 2024;38:1115–30.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the V Foundation, the National Institute for Diabetes, Digestive, and Kidney Disorders (R01DK134515), the Department of Defense (W81XWH2110301 and Convergent Science Virtual Cancer Center Director’s Award Pilot for Expanded Research), and the South Shore Action for Hope (to R.G.R.).

Author information

Authors and Affiliations

Authors

Contributions

Z.L., S.F., M.T., K.F., C-C.C., C.C., and D.W. performed research, M.F., P.C., K.L., T.L., and Q.Z. performed analysis of CUT&RUN and transcriptomic data, S.O., H.L., E.L.d.R., S.H., Q.Z., and R.G.R supervised research. R.G.R. wrote the manuscript.

Corresponding authors

Correspondence to Shaoyan Hu, Qian Zhu or R. Grant Rowe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Fierstein, S., Tanaka-Yano, M. et al. The epigenetic state of the cell of origin defines mechanisms of leukemogenesis. Leukemia 39, 87–97 (2025). https://doi.org/10.1038/s41375-024-02428-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-024-02428-y

This article is cited by

Search

Quick links