Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MULTIPLE MYELOMA, GAMMOPATHIES

Robust anti-myeloma effect of TAS0612, an RSK/AKT/S6K inhibitor, with venetoclax regardless of cytogenetic abnormalities

Abstract

Multiple myeloma (MM) remains a difficult-to-treat disease even with the latest therapeutic advances due to the complex, overlapping, and heterogeneous cytogenetic, genetic, and molecular abnormalities. To address this challenging problem, we previously identified the universal and critical roles of RSK2 and AKT, the effector signaling molecules downstream of PDPK1, regardless of cytogenetic and genetic profiles. Based on this, in this study, we investigated the anti-myeloma potency of TAS0612, a triple inhibitor against RSK, including RSK2, AKT, and S6K. Treatment with TAS0612 exerted the anti-proliferative effect via cell cycle blockade and the induction of apoptosis in human myeloma-derived cell lines (HMCLs) with diverse cytogenetic and genetic profiles. Ex vivo treatment with TAS0612 also significantly reduced the viability of patient-derived primary myeloma cells with diverse cytogenetic profiles. TAS0612 simultaneously caused the upregulation of several tumor suppressor genes, modulated prognostic genes according to the MMRF CoMMpass data, and downregulated a series of Myc- and mTOR-related genes. Moreover, the combination of TAS0612 with venetoclax (VEN) showed the synergy in inducing apoptosis in HMCLs irrespective of the t(11;14) translocation status. TAS0612 alone and combined with VEN are new potent candidate therapeutic strategies for MM, regardless of cytogenetic/genetic profiles, facilitating its future clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular and cellular effects of TAS0612 on Human Myeloma Cell Lines.
Fig. 2: Comprehensive gene expression change induced by TAS0612 in HMCLs.
Fig. 3: Molecular effects induced by TAS0612 in HMCLs.
Fig. 4: Ex vivo growth Inhibitory effect of TAS0612 on patient-derived myeloma cells.
Fig. 5: Combinatory effect of TAS0612 and Venetoclax in HMCLs.
Fig. 6: In vivo effect of TAS0612 alone and in combination with VEN against HMCL-xenografted model.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. human myeloma cell lines,

  2. 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, yellow tetrazole

  3. Annexin-V

  4. propidium iodide

  5. control

  6. β-actin

  7. standard deviation

  8. Multiple Myeloma Research Foundation

  9. false discovery rate

  10. normal enrichment score

  11. venetoclax

  12. standard error

References

  1. Zanwar S, Nandakumar B, Kumar S. Immune-based therapies in the management of multiple myeloma. Blood Cancer J. 2020;10:84.

    PubMed  PubMed Central  Google Scholar 

  2. Rasche L, Wäsch R, Munder M, Goldschmidt H, Raab MS. Novel immunotherapies in multiple myeloma—chances and challenges. Haematologica. 2021;106:2555–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Oekelen O, Nath K, Mouhieddine TH, Farzana T, Aleman A, Melnekoff DT, et al. Interventions and outcomes of patients with multiple myeloma receiving salvage therapy after BCMA-directed CAR T therapy. Blood. 2023;141:756–65.

    PubMed  Google Scholar 

  4. Swan D, Routledge D, Harrison S. The evolving status of immunotherapies in multiple myeloma: the future role of bispecific antibodies. Br J Haematol. 2022;196:488–506.

    CAS  PubMed  Google Scholar 

  5. Schürch CM, Rasche L, Frauenfeld L, Weinhold N, Fend F. A review on tumor heterogeneity and evolution in multiple myeloma: pathological, radiological, molecular genetics, and clinical integration. Virchows Arch Int J Pathol. 2020;476:337–51.

    Google Scholar 

  6. Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327:464–77.

    CAS  PubMed  Google Scholar 

  7. Brioli A, Melchor L, Cavo M, Morgan GJ. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol. 2014;165:441–54.

    PubMed  Google Scholar 

  8. Hervé AL, Florence M, Philippe M, Michel A, Thierry F, Kenneth A, et al. Molecular heterogeneity of multiple myeloma: pathogenesis, prognosis, and therapeutic implications. J Clin Oncol J Am Soc Clin Oncol. 2011;29:1893–7.

    Google Scholar 

  9. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8:268.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maura F, Rajanna AR, Ziccheddu B, Poos AM, Derkach A, Maclachlan K, et al. Genomic classification and individualized prognosis in multiple myeloma. J Clin Oncol J Am Soc Clin Oncol. 2024;42:1229–40.

    CAS  Google Scholar 

  11. Hideshima T, Anderson KC. Signaling pathway mediating myeloma cell growth and survival. Cancers. 2021;13:216.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. John L, Krauth MT, Podar K, Raab MS. Pathway-directed therapy in multiple myeloma. Cancers. 2021;13:1668.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 2012;122:3456–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu J, Hu WX. Targeting signaling pathways in multiple myeloma: Pathogenesis and implication for treatments. Cancer Lett. 2018;414:214–21.

    CAS  PubMed  Google Scholar 

  15. Perroud C, Thurian D, Andres M, Künzi A, Wiedemann G, Zeerleder S, et al. Effect of MAPK activation via mutations in NRAS, KRAS and BRAF on clinical outcome in newly diagnosed multiple myeloma. Hematol Oncol. 2023;41:912–21.

    CAS  PubMed  Google Scholar 

  16. Shaffer AL, Emre NCT, Lamy L, Ngo VN, Wright G, Xiao W, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matthews GM, de Matos Simoes R, Dhimolea E, Sheffer M, Gandolfi S, Dashevsky O, et al. NF-κB dysregulation in multiple myeloma. Semin Cancer Biol. 2016;39:68–76.

    CAS  PubMed  Google Scholar 

  18. Xu J, Pfarr N, Endris V, Mai EK, Md Hanafiah NH, Lehners N, et al. Molecular signaling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK pathway activation. Oncogenesis. 2017;6:e337.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zöllinger A, Stühmer T, Chatterjee M, Gattenlöhner S, Haralambieva E, Müller-Hermelink HK, et al. Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood. 2008;112:3403–11.

    PubMed  Google Scholar 

  20. Chavan SS, He J, Tytarenko R, Deshpande S, Patel P, Bailey M, et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017;7:e535.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gagliardi PA, Puliafito A, Primo L. PDK1: at the crossroad of cancer signaling pathways. Semin Cancer Biol. 2018;48:27–35.

    CAS  PubMed  Google Scholar 

  22. Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2023;1878:188971.

    CAS  PubMed  Google Scholar 

  23. Cho YY. RSK2 and its binding partners in cell proliferation, transformation and cancer development. Arch Pharm Res. 2017;40:291–303.

    CAS  PubMed  Google Scholar 

  24. Cho YY. Molecular targeting of ERKs/RSK2 signaling in cancers. Curr Pharm Des. 2017;23:4247–58.

    CAS  PubMed  Google Scholar 

  25. Shimura Y, Kuroda J, Ri M, Nagoshi H, Yamamoto-Sugitani M, Kobayashi T, et al. RSK2(Ser227) at N-terminal kinase domain is a potential therapeutic target for multiple myeloma. Mol Cancer Ther. 2012;11:2600–9.

    CAS  PubMed  Google Scholar 

  26. Chinen Y, Kuroda J, Shimura Y, Nagoshi H, Kiyota M, Yamamoto-Sugitani M, et al. Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma. Cancer Res. 2014;74:7418–29.

    CAS  PubMed  Google Scholar 

  27. Isa R, Horinaka M, Tsukamoto T, Mizuhara K, Fujibayashi Y, Taminishi-Katsuragawa Y, et al. The rationale for the dual-targeting therapy for RSK2 and AKT in multiple myeloma. Int J Mol Sci. 2022;23:2919.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shibata T, Watari K, Kawahara A, Sudo T, Hattori S, Murakami Y, et al. Targeting phosphorylation of Y-box-binding protein YBX1 by TAS0612 and everolimus in overcoming antiestrogen resistance. Mol Cancer Ther. 2020;19:882–94.

    CAS  PubMed  Google Scholar 

  29. Katsuragawa-Taminishi Y, Mizutani S, Kawaji-Kanayama Y, Onishi A, Okamoto H, Isa R, et al. Triple targeting of RSK, AKT, and S6K as pivotal downstream effectors of PDPK1 by TAS0612 in B-cell lymphomas. Cancer Sci. 2023;114:4691–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ichikawa K, Ito S, Kato E, Abe N, Machida T, Iwasaki J, et al. TAS0612, a novel RSK, AKT, and S6K inhibitor, exhibits antitumor effects in preclinical tumor models. Mol Cancer Ther. 2023;23:174–86.

    Google Scholar 

  31. Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, Chinen Y, Tanba K, Kuwahara-Ota S, et al. Serine-227 in the N-terminal kinase domain of RSK2 is a potential therapeutic target for mantle cell lymphoma. Cancer Med. 2020;9:5185–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 2022;50:W739–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    CAS  PubMed  Google Scholar 

  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo C, Chénard-Poirier M, Roda D, de Miguel M, Harris SJ, Candilejo IM, et al. Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: a single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol. 2020;21:1478–88.

    CAS  PubMed  Google Scholar 

  37. Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat Med. 2023;29:1103–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Heuck CJ, Jethava Y, Khan R, van Rhee F, Zangari M, Chavan S, et al. Inhibiting MEK in MAPK pathway-activated myeloma. Leukemia. 2016;30:976–80.

    CAS  PubMed  Google Scholar 

  39. Tatekawa S, Chinen Y, Ri M, Narita T, Shimura Y, Matsumura-Kimoto Y, et al. Epigenetic repression of miR-375 is the dominant mechanism for constitutive activation of the PDPK1/RPS6KA3 signalling axis in multiple myeloma. Br J Haematol. 2017;178:534–46.

    CAS  PubMed  Google Scholar 

  40. Turke AB, Song Y, Costa C, Cook R, Arteaga CL, Asara JM, et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 2012;72:3228–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell. 2001;8:85–94.

    CAS  PubMed  Google Scholar 

  42. Gao J, Zhao C, Liu Q, Hou X, Li S, Xing X, et al. Cyclin G2 suppresses Wnt/β-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1. J Exp Clin Cancer Res CR. 2018;37:317.

    CAS  PubMed  Google Scholar 

  43. Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ. YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res. 2010;70:3566–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Holien T, Våtsveen TK, Hella H, Waage A, Sundan A. Addiction to c-MYC in multiple myeloma. Blood. 2012;120:2450–3.

    CAS  PubMed  Google Scholar 

  45. Misund K, Keane N, Stein CK, Asmann YW, Day G, Welsh S, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34:322–6.

    PubMed  Google Scholar 

  46. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10:177.

    PubMed  PubMed Central  Google Scholar 

  47. Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28:210–2.

    CAS  PubMed  Google Scholar 

  48. Sidiqi MH, Al Saleh AS, Kumar SK, Leung N, Jevremovic D, Muchtar E, et al. Venetoclax for the treatment of multiple myeloma: Outcomes outside of clinical trials. Am J Hematol. 2021;96:1131–6.

    CAS  PubMed  Google Scholar 

  49. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DCS, et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA. 2006;103:14907–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Haschka MD, Soratroi C, Kirschnek S, Häcker G, Hilbe R, Geley S, et al. The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun. 2015;6:6891.

    CAS  PubMed  Google Scholar 

  51. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res. 2012;72:3069–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Taiho Pharmaceutical, the Japan Agency for Medical Research and Development (JP19ck0106516h0001, 24ck0106943h0001), JSPS KAKENHI Grant Number 22K08512, the Japanese Society of Hematology Research Grant, the Japan Leukemia Research Fund Award (JK), the Japanese Society for Myeloma Research Award, and a grant-in-aid from the Public Promoting Association Asano Foundation for Studies on Medicine (SM). The authors greatly thank all the participating patients and their families. We thank Ms. Mizushima K and Sakamoto-Inada N for their excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

H.O. and K.I. performed experiments, analyzed the data, and drafted the manuscript. S.M. assisted and supervised the experiments. Y.K-T., Y.K-K., K.M., A.M., R.I., T.F., T.T., and Y.S. supported experiments and analyzed the data. M.T. K.I. and J.K. designed and supervised the research and drafted the manuscript.

Corresponding author

Correspondence to Junya Kuroda.

Ethics declarations

Competing interests

This work is partly supported by Taiho Pharmaceutical Co., Ltd. J.K. is a consultant for Janssen Pharmaceutical, Abbvie, Pfizer, BeiGene, and Bristol-Myers Squibb (BMS), has received research funding from Kyowa Kirin, Chugai Pharmaceutical, Japan Blood Product Organization, Sumitomo Pharmaceutical, Otsuka Pharmaceutical, Asahikasei, and Mochida Pharmaceutical and has received honoraria from Janssen Pharmaceutical, Kyowa Kirin, Chugai Pharmaceutical, Ono Pharmaceutical, Sanofi, BMS, Novartis, Abbvie, Pfizer, and Astellas Pharmaceutical. S.M. has received honoraria from Sanofi and Ono Pharmaceutical. T.T. has received honoraria from BMS, Janssen Pharmaceutical, Sanofi, Kyowa Kirin, and Chugai Pharmaceutical. T.F. has received honoraria from Takeda Pharmaceutical. Y.S. has received honoraria from Ono Pharmaceutical, BMS, Janssen Pharmaceutical, Sanofi, Kyowa Kirin, Takeda Pharmaceutical, and Chugai Pharmaceutical. K.I. is an employee of Taiho Pharmaceutical.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. This study was conducted in accordance with the principles of the Declaration of Helsinki and was approved by the institutional review board of Kyoto Prefectural University of Medicine (RBMR-G-124-15). Written informed consent was obtained from all patients for the use of their BM cells. All animal care and treatments were approved by the Institutional Animal Care and Use Committee of Taiho Pharmaceutical Co., Ltd., and all procedures for animal experiments were performed according to the company’s guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, H., Mizutani, S., Tsukamoto, T. et al. Robust anti-myeloma effect of TAS0612, an RSK/AKT/S6K inhibitor, with venetoclax regardless of cytogenetic abnormalities. Leukemia 39, 211–221 (2025). https://doi.org/10.1038/s41375-024-02439-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-024-02439-9

This article is cited by

Search

Quick links