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TO THE EDITOR:
Human cancer cell lines constitute useful models to study the
primary disease and many relevant findings in tumor biology have
been originated from them since the first immortalized cell line
(HeLa) was obtained [1]. The easy experimental intervention, the
purity of the transformed cells and their versatility to undergo
high-throughput screenings represent advantageous features of
the established cancer cell lines. In recent years, major efforts have
characterized in detail the multiomics make-up of hundreds of
cancer cell lines and studied their association with sensitivity to
anticancer drugs [2–5]. Most of these studies have been genetic-
centric and have not characterized in detail the epigenetic profiles
underlying the characteristics of these cells or their impact on the
efficacy of antitumoral compounds. In this regard, a past version of
a DNA methylation microarray [3, 6, 7] or a more time-consuming
readout such as reduced representation bisulfite sequencing [4, 8]
have been used in those attempts to interrogate the epigenetic
setting. Herein, we have obtained the DNA methylation profiles of
210 cell lines derived from hematological malignancies utilizing
comprehensive DNA methylation microarrays that interrogates
more than 850,000 and 285,000 CpG sites from human and mouse
genomes, respectively [9, 10]. Importantly, we also provide a
pharmacoepigenetic example of the potential use of this resource
by showing how DNA methylation can predict response to
nucleoside analogues.
In this regard, using the above-described platforms [9, 10], we

analyzed the DNA methylation profile of 180 and 30 human and
mouse hematological cell lines, respectively, as illustrated in
Fig. 1A (Supplementary Methods). Overall, these 210 samples
encompassed 80 lymphoma, 93 leukemia, 20 multiple myeloma
and 17 non-malignant transformed cell types (Fig. 1A). The entire
description of all the studied cell lines is shown in Dataset S1. The
complete DNA methylation data are freely available at the GEO
repository under accession number GSE270494. For both human
and mouse, we found by using the whole DNA methylome that

the hematological cell lines tend to cluster by disease (leukemia,
lymphoma or multiple myeloma) as shown in the unsupervised
hierarchical clustering (Fig. 1B) (Supplementary Methods).
Further dimensionality reduction analysis by t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Supplementary Meth-
ods) yielded similar findings for each specie (Supplementary
Fig. S1A). For the integration of human and mouse cells, we
found that samples clustered by disease within species clusters
(Supplementary Fig. S1A). Phylogenetic analysis (Supplementary
Methods) of the different hematological subtypes and species
according to the DNA methylation landscape provided addi-
tional evidence of the characteristic epigenetic blueprint of each
category (Fig. 1C). The phylogenetic tree reinforced the
differences between human and mouse DNA methylomes.
Additionally, we found that in humans, hematological cell lines
derived from B-cells shared the same node origin in the
phylogenetic tree. We next performed a supervised differential
methylation analysis (Supplementary Methods) between leuke-
mia, lymphoma and multiple myeloma derived cell lines for
human and mouse and we obtained a list of differentially
methylated CpG sites (available as Dataset S2). We plotted the
methylation β-values of these CpG sites in a heatmap where
hematological cell lines were hierarchically clustered and nearly
perfectly separated according to each hematological malignancy
(Fig. 1D). These differentially methylated CpG sites between the
three pathological entities were enriched in open sea regions
and promoter regions. Pathway enrichment analyses (Supple-
mentary Methods) unveiled an enrichment in pathways related
to phosphorylation regulation and transcription processes
(Supplementary Fig. S1B, C). The described clusters in Fig. 1B
and D were also observed without data imputation (Supple-
mentary Fig. S2). For both species, normal B and T-cells and
myeloid cells clustered apart from their derived malignancies
(Supplementary Fig. S3) and the corresponding differential CpG
sites are available in Supplementary Dataset S3.
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Focusing on the human samples, we further examined the
granularity of hematological cell lines by performing supervised
differential methylation analyses and obtaining lists of CpG
methylation sites characteristic of each specific disease in
comparison to the others (shown in Supplementary Dataset S4).
We used these CpG sites to perform a supervised hierarchical
clustering that enabled an effective discrimination of acute
myeloid leukemia (AML), chronic myeloid leukemia (CML), B-cell
acute lymphoid leukemia (B-ALL), T-cell acute lymphoid leukemia
(T-ALL), mantle cell lymphoma (MCL), Burkitt’s lymphoma (BL),
diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL),
T-cell lymphoma (TCL) and multiple myeloma (MM) in the
heatmap representation (Fig. 2A). The genomic loci and CpG
content of the DNA methylation sites that differentiate among the
mentioned ten hematological malignancies are shown in
Supplementary Fig. 4A. Additional dimensionality reduction
analysis using t-SNE (Supplementary Fig. 4B) provided similar
results than the supervised hierarchical clustering analysis. The
pathway enrichment analyses that were significantly enriched in
these ten pathological entities are shown in Supplementary
Fig. 4C, mainly involved in T-cell receptor signaling, phosphoryla-
tion signaling regulation and transcription regulation. Most
important, we translated these in vitro findings of CpG sites that
are able to distinguish across different hematological malignan-
cies to the primary setting (Supplementary Methods), using the
same DNA methylation microarray platform. Using the above
identified CpG sites (Supplementary Dataset S4), the primary
cases of AML, B-ALL, T-ALL and DLBCL were clustered almost
perfectly in the supervised hierarchical clustering analysis
(Fig. 2B) (EGA repository: EGAS50000000627; https://ega-
archive.org/studies/EGAS50000000627). Interestingly, unsuper-
vised clustering analysis showed that cell lines and primary
samples intermingled in many occasions, suggesting DNA
methylation resemblance (Supplementary Fig. S5). Those CpG
sites with distinct methylation content in vitro vs in vivo are
available at Supplementary Dataset S5.

Finally, since expression profiles and IC50 values against
hundreds of drugs are available for human hematological cell
lines [3, 4, 6], we were able to perform an initial pharmacoepi-
genetics exploratory analysis. DNA methylation status of particular
genes, such as the case of the DNA repair gene MGMT in gliomas,
is currently used in precision cancer medicine [11]; and the
epigenetic database for hematological malignancies, herein
reported, could exhibit translational value. Using the experimental
and bioinformatic pipeline described in Supplementary Methods
for drugs that are used for hematological malignancies, we were
able to identify CpG sites which methylation status and associated
expression levels were linked to drug sensitivity (Supplementary
Dataset S6). The example of enhanced response to the nucleoside
analogs cytarabine, fludarabine and nelarabine [12] and to
azacitidine according to the methylation levels sites is illustrated
in Fig. 2C and Supplementary Fig. S6, respectively. The DNA
methylation patterns of the CpG sites associated with the
nucleoside analogs enabled a classification of hematological cell
lines as sensitive or resistant through a hierarchical clustering
analysis, as it is also shown in the IC50s boxplots in Fig. 2D. For
azacitidine, a hypermethylated CpG site within the tumor necrosis
factor-alpha-induced protein 3 gene (TNFAIP3) gene was asso-
ciated with RNA downregulation and enhanced sensitivity
(Supplementary Fig. S6). This CpG site was not present in the
DNA methylation signature associated with sensitivity to nucleo-
side analogs, including cytarabine.
Overall, we have demonstrated how human and mouse cell

lines derived from hematological malignancies exhibit unique
DNA methylation profiles. These epigenetic fingerprints are so
characteristic that allowed the obtention of a DNA methylation
classifier for ten pathological categories. Most importantly, these
data, now freely available to all researchers as a resource, can be
further mined for various applications. This is illustrated by our
preliminary results, which suggest a potential pharmacoepige-
netic use that could pave the way for translation into clinical
studies.

Fig. 1 DNA methylation landscape of human and mouse hematological cell lines. A Schematic representation of hierarchical subdivision of
human (top) and mouse (bottom) cell line cohorts based on hematological malignancies. B Heatmap resulting from the unsupervised analysis
of the human (left) and mouse (right) hematological cell lines. Dendogram clustering was performed using all methylation values, an 1% of
randomly selected CpG probes were used for heatmap visualization. C Phylogenetic analysis of the different hematological subtypes and
species. Each leaf represents the 1% most variable CpG sites within each hematologic subtype and specie. The inner circle colors represent if
the leaf corresponds to leukemia, lymphoma, multiple myeloma or transformed cell lines, while the outer circle corresponds to the refined
classification for human hematological cell lines. D Heatmap resulting from the differential methylation analysis within leukemia, lymphoma
and multiple myeloma in human (left) and mouse (right) hematological cell lines. The bottom annotation indicates hematological disease, as
described in the heatmap legend. Methylation β-values range from 0 (green) to 1 (red).
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Fig. 2 The DNA methylome of human hematological cell lines can differentiate different hematological malignancies and is associated
with drug sensitivity. A Heatmap resulting from the CpG sites differentially methylated within hematological diseases in human hematological
cell lines. The bottom annotation indicates hematological disease, as described in the heatmap legend. Methylation β-values range from 0 (green)
to 1 (red). BHeatmap resulting from the CpG sites differentiallymethylated within hematological diseases in human primary samples. The bottom
annotation indicates hematological disease, as described in the heatmap legend. Methylation β-values range from 0 (green) to 1 (red). C Heatmap
resulting from the common CpG sites associated with cytarabine, fludarabine and nelarabine drug sensitivity. Top annotation indicates whether
the cells are in the sensitive cluster or resistant cluster. The bottom annotation indicates hematological disease and cytarabine, fludarabine and
nelarabine sensitivity as described in the heatmap legend. Methylation β-values range from 0 (green) to 1 (red).D Boxplot representing cytarabine
(top), fludarabine (middle) and nelarabine (bottom) IC50s of human hematological cell lines grouped according to whether they clustered in
sensitive or resistant cluster. Two-sided Mann–Whitney–Wilcoxon test was performed.
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