Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

TLE4 is a repressor of the oncogenic activity of TLX3 in T-cell acute lymphoblastic leukemia

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease originating from the malignant transformation of T-cell progenitors, caused by the accumulation of genetic aberrations. One-fifth of T-ALL patients are characterized by ectopic expression of the homeobox transcription factor TLX3. However, the role of TLX3 in T-ALL remains elusive, partly due to the lack of suitable study models. Strikingly, this TLX3-positive subgroup has a high frequency of FLT3 mutations, predominantly FLT3-ITD, in pediatric cases. To investigate this, we generated ex vivo cultured pro-T cells driven by the co-expression of TLX3 and FLT3-ITD, which conferred IL7 independent growth. This model allowed us to confirm that TLX3 expression and FLT3 signaling cooperate to transform T-cells and induce an oncogenic context. Data from this cell model, combined with gene expression data from TLX3 positive T-ALL cases, revealed a strong downregulation of the transcriptional repressor TLE4. Furthermore, TLE4 showed to have a repressive effect on ex vivo TLX3 T-ALL cell growth, likely caused by a partial reversal of the TLX3 transcriptional profile. In conclusion, we developed a TLX3+FLT3-ITD pro-T cell model and used it to illustrate that TLX3 directly represses TLE4 expression, which is beneficial for the oncogenic function of TLX3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FLT3-ITD and TLX3 cooperative ex vivo model represents early stage TLX3 positive phenotype.
Fig. 2: Downregulation of the co-repressor TLE4 is favorable for TLX3 oncogenic activity.
Fig. 3: TLX3 oncogenic function is repressed by TLE4 through its interaction with the EH1 domain of TLX3.
Fig. 4: TLE4 overexpression partially inverts transcriptomic changes induced by TLX3.

Similar content being viewed by others

Data availability

Raw RNA-seq and ChIP-seq data performed during this study can be obtained from GSE241640.

References

  1. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129:1113–23. Mar 2

    Article  CAS  PubMed  Google Scholar 

  2. MacLeod RAF, Nagel S, Kaufmann M, Janssen JWG, Drexler HG. Activation of HOX11L2 by juxtaposition with 3’-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). Genes Chromosomes Cancer. 2003;37:84–91. May 1

    Article  CAS  PubMed  Google Scholar 

  3. Cheng L, Samad OA, Xu Y, Mizuguchi R, Luo P, Shirasawa S, et al. Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nat Neurosci. 2005;8:1510–5. Nov

    Article  CAS  PubMed  Google Scholar 

  4. Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, et al. Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep. 2023;42:112373.

  5. Botten GA, Zhang Y, Dudnyk K, Kim YJ, Liu X, Sanders JT, et al. Structural variation cooperates with permissive chromatin to control enhancer hijacking-mediated oncogenic transcription. Blood. 2023;142:336–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Göös H, Kinnunen M, Salokas K, Tan Z, Liu X, Yadav L, et al. Human transcription factor protein interaction networks. Nat Commun. 2022;13:766.

  7. Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J, et al. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. Cancer Cell. 2012;21:563–76.

    Article  CAS  PubMed  Google Scholar 

  8. Shimomura A, Patel D, Wilson SM, Koehler KR, Khanna R, Hashino E. Tlx3 promotes glutamatergic neuronal subtype specification through direct interactions with the chromatin modifier CBP. PLoS ONE. 2015;10:10.

    Article  Google Scholar 

  9. Renou L, Boelle P, Deswarte C, Spicuglia S, Benyoucef A, Calvo J, et al. Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia. Blood Adv. 2017;1:733–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jennings BH, Ish-Horowicz D. The Groucho/TLE/Grg family of transcriptional co-repressors. Genome Biol. 2008;9:205.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Palaparti A, Baratz A, Stifani S. The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem. 1997;272:26604–10.

    Article  CAS  PubMed  Google Scholar 

  12. Chen G, Fernandez J, Mische S, Courey AJ. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev. 1999;13:2218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu X, Li P, Roeder RG, Wang Z. Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol Cell Biol. 2001;21:4614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daniels DL, Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12:364–71.

    Article  CAS  PubMed  Google Scholar 

  15. Cai Y, Brophy PD, Levitan I, Stifani S, Dressler GR. Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J. 2003;22:5522–9. Oct 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riz I, Lee HJ, Baxter KK, Behnam R, Hawley TS, Hawley RG. Transcriptional activation by TLX1/HOX11 involves Gro/TLE corepressors. Biochem Biophys Res Commun. 2009;380:361. Mar 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med. 2021;13:eabc4834.

  19. Bornschein S, Demeyer S, Stirparo R, Gielen O, Vicente C, Geerdens E, et al. Defining the molecular basis of oncogenic cooperation between TAL1 expression and Pten deletion in T-ALL using a novel pro-T-cell model system. Leukemia. 2018;32:941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palomero T, Wei KL, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103:18261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonnet M, Loosveld M, Montpellier B, Navarro JM, Quilichini B, Picard C, et al. Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood. 2011;117:6650–9.

    Article  CAS  PubMed  Google Scholar 

  22. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Staal FJT, Weerkamp F, Langerak AW, Hendriks RW, Clevers HC. Transcriptional control of t lymphocyte differentiation. Stem Cells. 2001;19:165–79.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Qian JJ, Zhou YL, Huang X, Li JH, Li XY, et al. Comparison of early T-cell precursor and non-ETP subtypes among 122 Chinese adults with acute lymphoblastic leukemia. Front Oncol. 2020;10:1423.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Van Thillo Q, De Bie J, Seneviratne JA, Demeyer S, Omari S, Balachandran A, et al. Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nat Commun. 2021;12:4164.

  26. Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet. 2022;54:1376–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Bock CE, Demeyer S, Degryse S, Verbeke D, Sweron B, Gielen O, et al. HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development. Cancer Discov. 2018;8:616–31.

    Article  PubMed  Google Scholar 

  28. Thielemans N, Demeyer S, Mentens N, Gielen O, Provost S, Cools J. TAL1 cooperates with PI3K/AKT pathway activation in T-cell acute lymphoblastic leukemia. Haematologica. 2022;107:2304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170:564–576.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Copley RR. The EH1 motif in metazoan transcription factors. BMC Genom. 2005;6:169.

    Article  Google Scholar 

  32. Shimeld SM. A transcriptional modification motif encoded by homeobox and fork head genes. FEBS Lett. 1997;410:124–5.

    Article  CAS  PubMed  Google Scholar 

  33. Gehre N, Nusser A, von Muenchow L, Tussiwand R, Engdahl C, Capoferri G, et al. A stromal cell free culture system generates mouse pro-T cells that can reconstitute T-cell compartments in vivo. Eur J Immunol. 2015;45:932–42.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidl C, Rendeiro AF, Sheffield NC, Bock C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods. 2015;12:963–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Thomas Müller from the Max-Delbrück-Centrum of Molecular Medicine (MDC) in Berlin for kindly providing us with the custom made TLX3 antibody. We thank the VIB flow cytometry core and KU Leuven genomics core for the support in processing the data obtained during this study. The graphical abstract was created using BioRender.com. This work was supported by a FWO fellowship to QVT, a postdoctoral fellowship to SD by the Foundation against Cancer, a postdoctoral FWO fellowship to AV, and a research grant by FWO to JC.

Author information

Authors and Affiliations

Authors

Contributions

LL and QVT designed and performed experiments, analyzed and interpreted data; NM, SP, OG, LB, and KJ performed experiments; SD performed bioinformatics analyses; AV and JC jointly coordinated the study; CDB involved in scientific discussions and review of the manuscript; GA and VA provided T-ALL adult patient data from GRAALL03/05 and were involved in scientific discussions; LL, QVT, and AV wrote the manuscript. All authors critically read and contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Jan Cools or Alexandra Veloso.

Ethics declarations

Competing interests

This work was supported by a FWO fellowship to QVT, a postdoctoral fellowship to SD by the Foundation against Cancer, a postdoctoral fellowship to AV by the FWO, and a research grant by FWO to JC.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauwereins, L., Van Thillo, Q., Demeyer, S. et al. TLE4 is a repressor of the oncogenic activity of TLX3 in T-cell acute lymphoblastic leukemia. Leukemia 39, 568–576 (2025). https://doi.org/10.1038/s41375-025-02513-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02513-w

Search

Quick links