Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL TRANSPLANTATION

Donor selection in T-cell-replete haploidentical donor peripheral blood stem cell transplantation

Abstract

The effects of donor characteristics on outcomes after T-cell-replete (TCR) haploidentical donor peripheral blood stem cell transplantation (PBSCT) with post-transplant cyclophosphamide (PTCy) or low-dose antithymocyte globulin (ATG) remain unclear. We evaluated the impact in 1,677 patients who received a PTCy protocol (PTCy-haplo; n = 1,107) or low-dose ATG protocol (ATG-haplo; n = 570). A low CD34+ cell dose (<4 ×106/kg) was the only donor characteristic associated with worse overall survival (OS) after PTCy-haplo (adjusted hazard ratios [aHR] = 1.49, P = 0.008), whereas increasing donor age by decade (aHR = 1.12, P = 0.008) and human leukocyte antigen 2-3 antigen mismatches (aHR = 1.46, P = 0.010), compared to HLA 0-1 antigen mismatches, were associated with worse OS after ATG-haplo. Increasing donor age was associated with a high risk of grade III–IV acute GVHD both after PTCy-haplo (HR: 1.32, P = 0.009) and ATG-haplo (HR: 1.22, P = 0.006). Offspring donors had better relapse-free survival and GVHD-free relapse-free survival than sibling donors after ATG-haplo. Our data highlights the donor characteristics associated with improved transplant outcomes after TCR haploidentical donor PBSCT with PTCy or low-dose ATG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scatterplot of recipient age and donor age.
Fig. 2: Spline terms in a Cox model for relative death risk.
Fig. 3: Transplant outcomes from FD and NFD donors in a propensity score-matched cohort.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, JK, upon reasonable request.

References

  1. Wang Y, Chang YJ, Xu LP, Liu KY, Liu DH, Zhang XH, et al. Who is the best donor for a related HLA haplotype-mismatched transplant? Blood. 2014;124:843–50.

    Article  CAS  PubMed  Google Scholar 

  2. Chang YJ, Luznik L, Fuchs EJ, Huang XJ. How do we choose the best donor for T-cell- replete, HLA-haploidentical transplantation? J Hematol Oncol. 2016;9:35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Wu DP, Liu QF, Xu LP, Liu KY, Zhang XH, et al. Donor and recipient age, gender and ABO incompatibility regardless of donor source: validated criteria for donor selection for haematopoietic transplants. Leukemia. 2018;32:492–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ciurea SO, Al Malki MM, Kongtim P, Fuchs EJ, Luznik L, Huang XJ, et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transpl. 2020;55:12–24.

    Article  CAS  Google Scholar 

  5. Fuchs EJ. Haploidentical transplantation for hematologic malignancies: where do we stand? Hematol Am Soc Hematol Educ Program. 2012;2012:230–6.

    Article  Google Scholar 

  6. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24.

    Article  CAS  PubMed  Google Scholar 

  7. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA- haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.

    Article  CAS  Google Scholar 

  8. McCurdy SR, Kanakry JA, Showel MM, Tsai HL, Bolanos-Meade J, Rosner GL, et al. Risk- stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bashey A, Zhang MJ, McCurdy SR, St Martin A, Argall T, Anasetti C, et al. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-cell-replete haploidentical donor transplantation using post-transplant Cyclophosphamide. J Clin Oncol. 2017;35:3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sugita J, Kawashima N, Fujisaki T, Kakihana K, Ota S, Matsuo K, et al. HLA-Haploidentical peripheral blood stem cell transplantation with post-transplant Cyclophosphamide after Busulfan-containing reduced-intensity conditioning. Biol Blood Marrow Transpl. 2015;21:1646–52.

    Article  Google Scholar 

  11. Huselton E, Slade M, Trinkaus KM, DiPersio JF, Westervelt P, Romee R. Propensity score analysis of conditioning intensity in peripheral blood haploidentical hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2018;24:2047–55.

    Article  Google Scholar 

  12. Sugita J, Kagaya Y, Miyamoto T, Shibasaki Y, Nagafuji K, Ota S, et al. Myeloablative and reduced-intensity conditioning in HLA-haploidentical peripheral blood stem cell transplantation using post-transplant cyclophosphamide. Bone Marrow Transpl. 2019;54:432–41

    Article  CAS  Google Scholar 

  13. Lee KH, Lee JH, Lee JH, Kim DY, Seol M, Lee YS, et al. Reduced-intensity conditioning therapy with busulfan, fludarabine, and antithymocyte globulin for HLA-haploidentical hematopoietic cell transplantation in acute leukemia and myelodysplastic syndrome. Blood. 2011;118:2609–17.

    Article  CAS  PubMed  Google Scholar 

  14. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transpl. 2006;38:291–7.

    Article  Google Scholar 

  15. Lu DP, Dong L, Wu T, Huang XJ, Zhang MJ, Han W, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA- identical sibling transplantation. Blood. 2006;107:3065–73.

    Article  CAS  PubMed  Google Scholar 

  16. Huang XJ, Chang YJ. Unmanipulated HLA-mismatched/haploidentical blood and marrow hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2011;17:197–204.

    Article  CAS  Google Scholar 

  17. Nagler A, Kanate AS, Labopin M, Ciceri F, Angelucci E, Koc Y, et al. Post-transplant cyclophosphamide versus anti-thymocyte globulin for graft-versus-host disease prevention in haploidentical transplantation for adult acute lymphoblastic leukemia. Haematologica 2020;30.

  18. Ruggeri A, Sun Y, Labopin M, Bacigalupo A, Lorentino F, Arcese W, et al. Post-transplant cyclophosphamide versus anti-thymocyte globulin as graft- versus-host disease prophylaxis in haploidentical transplant. Haematologica. 2017;102:401–10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kako S, Akahoshi Y, Harada N, Nakano H, Kameda K, Ugai T, et al. HLA-mismatched haploidentical transplantation using low-dose anti-thymocyte globulin (ATG: thymoglobulin). Hematology. 2017;22:129–35.

    Article  CAS  PubMed  Google Scholar 

  20. Cho BS, Yoon JH, Shin SH, Yahng SA, Lee SE, Eom KS, et al. Comparison of allogeneic stem cell transplantation from familial-mismatched/haploidentical donors and from unrelated donors in adults with high-risk acute myelogenous leukemia. Biol Blood Marrow Transpl. 2012;18:1552–63.

    Article  Google Scholar 

  21. Ikegame K, Yoshida T, Yoshihara S, Daimon T, Shimizu H, Maeda Y, et al. Unmanipulated Haploidentical reduced-intensity stem cell transplantation using Fludarabine, Busulfan, low-dose Antithymocyte Globulin, and steroids for patients in non-complete remission or at high risk of relapse: a prospective multicenter Phase I/II Study in Japan. Biol Blood Marrow Transpl. 2015;21:1495–505.

    Article  CAS  Google Scholar 

  22. Ogawa H, Ikegame K, Yoshihara S, Kawakami M, Fujioka T, Masuda T, et al. Unmanipulated HLA 2-3 antigen-mismatched (haploidentical) stem cell transplantation using nonmyeloablative conditioning. Biol Blood Marrow Transpl. 2006;12:1073–84.

    Article  Google Scholar 

  23. Ikegame K, Kaida K, Fukunaga K, Osugi Y, Yoshihara K, Yoshihara S, et al. Allogeneic hematopoietic stem cell transplantation from a 2-HLA-haplotype-mismatched family donor for posttransplant relapse: a prospective phase I/II study. Bone Marrow Transpl. 2021;56:70–83.

    Article  CAS  Google Scholar 

  24. Wada F, Watanabe M, Konuma T, Okabe M, Kobayashi S, Uchida N, et al. HLA 1-3 antigen-mismatched related peripheral blood stem cells transplantation using low-dose antithymocyte globulin versus unrelated cord blood transplantation. Am J Hematol. 2022;97:311–21.

    Article  CAS  PubMed  Google Scholar 

  25. Kanda J, Ando T, Kimura SI, Fujiwara SI, Imada K, Fujisawa S, et al. Hematopoietic stem cell transplantation from a related donor with human leukocyte Antigen 1-antigen mismatch in the graft-versus-host direction using low-dose anti-thymocyte globulin. Cell Transpl. 2020;29:963689720976567.

    Article  Google Scholar 

  26. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced- intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transpl. 2009;15:367–9.

    Article  Google Scholar 

  27. Kanda J, Morishima Y, Terakura S, Wake A, Uchida N, Takahashi S, et al. Impact of graft- versus-host disease on outcomes after unrelated cord blood transplantation. Leukemia. 2017;31:663–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wada F, Kanda J, Watanabe M, Arai Y, Hishizawa M, Kondo T, et al. Favorable outcomes after single cord blood transplantation for patients with high-risk hematologic diseases: a single-institute retrospective analysis. Transpl Cell Ther. 2021;27:495.e1-495.e9.

  29. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transpl. 1995;15:825–8.

    CAS  Google Scholar 

  30. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol. 1991;28:250–9.

    CAS  PubMed  Google Scholar 

  31. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  32. Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, et al. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70.

    Article  PubMed  Google Scholar 

  33. Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med. 2013;32:2837–49.

    Article  PubMed  Google Scholar 

  34. McCurdy SR, Zhang MJ, St Martin A, Al Malki MM, Bashey A, Gaballa S, et al. Effect of donor characteristics on haploidentical transplantation with posttransplantation cyclophosphamide. Blood Adv. 2018;2:299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Solomon SR, Aubrey MT, Zhang X, Piluso A, Freed BM, Brown S, et al. Selecting the best donor for haploidentical transplant: Impact of HLA, killer cell immunoglobulin-like receptor genotyping, and other clinical variables. Biol Blood Marrow Transpl. 2018;24:789–98.

    Article  CAS  Google Scholar 

  36. Mariotti J, Raiola AM, Evangelista A, Carella AM, Martino M, Patriarca F, et al. Impact of donor age and kinship on clinical outcomes after T-cell-replete haploidentical transplantation with PT-Cy. Blood Adv. 2020;4:3900–12.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kollman C, Howe CWS, Anasetti C, Antin JH, Davies SM, Filipovich AH, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98:2043–51.

    Article  CAS  PubMed  Google Scholar 

  38. Kollman C, Spellman SR, Zhang MJ, Hassebroek A, Anasetti C, Antin JH, et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy. Blood. 2016;127:260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maffini E, Labopin M, Blaise D, Ciceri F, Gulbas Z, Deconinck E, et al. CD34+ cell dose effects on clinical outcomes after T-cell replete haploidentical allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia using peripheral blood stem cells. A study from the acute leukemia working Party of the European Society for blood and marrow transplantation (EBMT). Am J Hematol. 2020;95:892–9.

    Article  CAS  PubMed  Google Scholar 

  40. Elmariah H, Naqvi SMH, Kim J, Nishihori T, Mishra A, Perez L, et al. Impact of infused CD34+ stem cell dosing for allogeneic peripheral blood stem cell transplantation with post-transplant cyclophosphamide. Bone Marrow Transpl. 2021;56:1683–90.

    Article  CAS  Google Scholar 

  41. Pedraza A, Salas MQ, Rodriguez-Lobato LG, Charry P, Suarez-Lledo M, Martinez-Cibrian N, et al. Effect of CD34(+) cell dose on the outcomes of allogeneic stem cell transplantation with post-transplantation Cyclophosphamide. Transpl Cell Ther. 2023;29:181.e1-181.e10.

  42. Styczynski J. WhO is the patient at risk of CMV recurrence: a review of the current scientific evidence with a focus on hematopoietic cell transplantation. Infect Dis Ther. 2018;7:1–16.

    Article  PubMed  Google Scholar 

  43. Ljungman P, de la Camara R, Robin C, Crocchiolo R, Einsele H, Hill JA, et al. Guidelines for the management of cytomegalovirus infection in patients with haematological malignancies and after stem cell transplantation from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis. 2019;19:e260–e272.

    Article  PubMed  Google Scholar 

  44. Schmidt-Hieber M, Labopin M, Beelen D, Volin L, Ehninger G, Finke J, et al. CMV serostatus still has an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the Acute Leukemia Working Party of EBMT. Blood. 2013;122:3359–64.

    Article  CAS  PubMed  Google Scholar 

  45. Ljungman P, Brand R, Einsele H, Frassoni F, Niederwieser D, Cordonnier C. Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood. 2003;102:4255–60.

    Article  CAS  PubMed  Google Scholar 

  46. van Rood JJ, Loberiza FR Jr, Zhang MJ, Oudshoorn M, Claas F, Cairo MS, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood. 2002;99:1572–7.

    Article  PubMed  Google Scholar 

  47. Ichinohe T, Uchiyama T, Shimazaki C, Matsuo K, Tamaki S, Hino M, et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation between noninherited maternal antigen (NIMA)-mismatched family members linked with long-term fetomaternal microchimerism. Blood. 2004;104:3821–8.

    Article  CAS  PubMed  Google Scholar 

  48. Stern M, Ruggeri L, Mancusi A, Bernardo ME, de Angelis C, Bucher C, et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112:2990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elmariah H, Kasamon YL, Zahurak M, Macfarlane KW, Tucker N, Rosner GL, et al. Haploidentical bone marrow transplantation with post-transplant cyclophosphamide using non-first-degree related donors. Biol Blood Marrow Transpl. 2018;24:1099–102.

    Article  Google Scholar 

  50. Ye Y, Wang M, Malard F, Shi J, Lu Y, Ouyang G, et al. Comparison of non-first-degree related donors and first-degree related donors in haploidentical HSCT: a multi-centre retrospective analysis. Bone Marrow Transpl. 2021;56:2567–74.

    Article  Google Scholar 

  51. Luo Y, Xiao H, Lai X, Shi J, Tan Y, He J, et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood. 2014;124:2735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye Y, Labopin M, Chen J, Gulbas Z, Zhang X, Koc Y, et al. Similar outcomes following non-first-degree and first-degree related donor haploidentical hematopoietic cell transplantation for acute leukemia patients in complete remission: a study from the Global Committee and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. J Hematol Oncol. 2023;16:25.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fuchs EJ, McCurdy SR, Solomon SR, Wang T, Herr MM, Modi D, et al. HLA informs risk predictions after haploidentical stem cell transplantation with posttransplantation cyclophosphamide. Blood. 2022;139:1452–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lorentino F, Labopin M, Fleischhauer K, Ciceri F, Mueller CR, Ruggeri A, et al. The impact of HLA matching on outcomes of unmanipulated haploidentical HSCT is modulated by GVHD prophylaxis. Blood Adv. 2017;1:669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morishima Y, Morishita Y, Tanimoto M, Ohno R, Saito H, Horibe K, et al. Low incidence of acute graft-versus-host disease by the administration of methotrexate and cyclosporine in Japanese leukemia patients after bone marrow transplantation from human leukocyte antigen compatible siblings; possible role of genetic homogeneity. The Nagoya Bone Marrow Transplantation Group. Blood. 1989;74:2252–6.

    Article  CAS  PubMed  Google Scholar 

  56. Morishima S, Ogawa S, Matsubara A, Kawase T, Nannya Y, Kashiwase K, et al. Impact of highly conserved HLA haplotype on acute graft-versus-host disease. Blood. 2010;115:4664–70.

    Article  CAS  PubMed  Google Scholar 

  57. Inamoto Y, White J, Ito R, Martin PJ, Fatobene G, Ito A, et al. Comparison of characteristics and outcomes of late acute and NIH chronic GVHD between Japanese and white patients. Blood Adv. 2019;3:2764–77.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ciurea SO, Cao K, Fernandez-Vina M, Kongtim P, Malki MA, Fuchs E, et al. The European Society for Blood and Marrow Transplantation (EBMT) Consensus Guidelines for the Detection and Treatment of Donor-specific Anti-HLA Antibodies (DSA) in Haploidentical Hematopoietic Cell Transplantation. Bone Marrow Transpl. 2018;53:521–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the physicians and data managers at the centers who contributed to the collection of data on transplantation for the Japanese Society for Transplantation and Cellular Therapy (JSTCT) and the Transplant Registry Unified Management Program (TRUMP) 2. We also thank the members of the Data Management Committees of the JSTCT and TRUMP for their assistance.

Funding

This work was supported in part by the Takeda Science Foundation (JK) and JSPS KAKENHI Grant number 24K11515 (JK).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and J.K. designed the study, reviewed and analyzed data, and wrote the first draft of the manuscript. M.I., M.H., K.K. (Koji Kawamura), and H.N. interpreted data and revised the manuscript; and K.K. (Katsuji Kaida), N.D., H.N., Y.H., T.F., T.E., N.H., Y.M., K.N., S.O., J.I., T.A., T.I., and Y.A. contributed to data collection. All authors approved the final version.

Corresponding author

Correspondence to Junya Kanda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was approved by the Data Management Committee of the Japanese Data Center for Hematopoietic Cell Transplantation (JDCHCT) and the Ethics Committee of Kyoto University (approval number: R1437).

Patient consent

Informed consent was obtained from all patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, F., Iwasaki, M., Hirayama, M. et al. Donor selection in T-cell-replete haploidentical donor peripheral blood stem cell transplantation. Leukemia 39, 951–961 (2025). https://doi.org/10.1038/s41375-025-02538-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02538-1

Search

Quick links