Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYELODYSPLASTIC NEOPLASM

Whole-genome sequencing of myeloproliferative neoplasms revealed dynamic clonal changes in the fibrotic or leukemic transformation and novel FOXP1 mutations in the fibrotic transformation

Abstract

Myeloproliferative neoplasms (MPNs) are characterized by clonal proliferation of hematopoietic stem cells, which can lead to secondary myelofibrosis or acute myeloid leukemia. We explored the changes in genomic alterations during MPN transformation using whole-genome sequencing of samples from both the chronic and fibrotic or leukemic phases of 20 patients. We identified FOXP1 mutations in 3 of 14 (21.4%) patients with secondary myelofibrosis. This novel mutation was identified in another 5 of the 35 patients (14.3%) in an independent cohort. All these 8 patients with FOXP1 mutations did not experience leukemic transformation after a median follow-up of 5.1 years. The acquisition of non-canonical MPLY591 mutations was detected in the fibrotic or leukemic phase. Clonal expansion, involving both known and unknown driver genes (in 18 and 2 patients, respectively), was observed in all patients. We determined the patterns of clonal evolution based on myeloid driver mutations in 18 patients: linear clonal evolution in 11 patients and branched clonal evolution in 7 patients. Our results suggested that MPN patients carrying FOXP1 mutations are unlikely to have leukemia transformation and emphasized that the acquisition of specific genetic mutations and dynamic changes in clonal architecture underlie the pathogenesis in patients undergoing MPN transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design and the clinical course of the patients.
Fig. 2: Landscape of the candidate driver mutation in the chronic and fibrotic or leukemic phases.
Fig. 3: Evaluation of MPLY591 (n = 24) and FOXP1 (n = 12) analysis using external cohorts.
Fig. 4: Clonal dynamics of mutations in patients with myeloproliferative neoplasms during the fibrotic or leukemic transformation.

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding authors on reasonable request. CNA data are available at the following link: https://github.com/HiroyukiTakamori/WGS_MPN_Progression.

References

  1. Thiele J, Kvasnicka HM, Orazi A, Gianelli U, Gangat N, Vannucchi AM, et al. The international consensus classification of myeloid neoplasms and acute Leukemias: myeloproliferative neoplasms. Am J Hematol. 2023;98:166–79.

    CAS  PubMed  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka H-M, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tefferi A, Alkhateeb H, Gangat N. Blast phase myeloproliferative neoplasm: contemporary review and 2024 treatment algorithm. Blood Cancer J. 2023;13. 108.

    PubMed  PubMed Central  Google Scholar 

  4. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5.e366.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Szuber N, Mudireddy M, Nicolosi M, Penna D, Vallapureddy RR, Lasho TL, et al. 3023 Mayo Clinic Patients With Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival and Outcomes Data Among Disease Subgroups. Mayo Clin Proc. 2019;94:599–610.

    PubMed  Google Scholar 

  6. Tam CS, Kantarjian H, Cortes J, Lynn A, Pierce S, Zhou L, et al. Dynamic model for predicting death within 12 months in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. J Clin Oncol. 2009;27:5587–93.

    PubMed  PubMed Central  Google Scholar 

  7. Mudireddy M, Gangat N, Hanson CA, Ketterling RP, Pardanani A, Tefferi A. Validation of the WHO-defined 20% circulating blasts threshold for diagnosis of leukemic transformation in primary myelofibrosis. Blood Cancer J. 2018;8:57.

    PubMed  PubMed Central  Google Scholar 

  8. Tefferi A, Mudireddy M, Mannelli F, Begna KH, Patnaik MM, Hanson CA, et al. Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia. 2018;32:1200–10.

    PubMed  PubMed Central  Google Scholar 

  9. Kennedy JA, Atenafu EG, Messner HA, Craddock KJ, Brandwein JM, Lipton JH, et al. Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms. Blood. 2013;121:2725–33.

    CAS  PubMed  Google Scholar 

  10. Patel AA, Yoon JJ, Johnston H, Davidson MB, Shallis RM, Chen EC, et al. Treatment approach and outcomes of patients with accelerated/blast-phase myeloproliferative neoplasms in the current era. Blood Adv. 2024. https://doi.org/10.1182/bloodadvances.2024012880.

  11. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379:1416–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–8.

    CAS  PubMed  Google Scholar 

  13. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.

    CAS  PubMed  Google Scholar 

  14. Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tefferi A, Vannucchi AM. Genetic Risk Assessment in Myeloproliferative Neoplasms. Mayo Clin Proc. 2017;92:1283–90.

    CAS  PubMed  Google Scholar 

  16. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nangalia J, Campbell PJ. Genome Sequencing during a Patient’s Journey through Cancer. N Engl J Med. 2019;381:2145–56.

    CAS  PubMed  Google Scholar 

  18. Duncavage EJ, Schroeder MC, O’Laughlin M, Wilson R, MacMillan S, Bohannon A, et al. Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. N Engl J Med. 2021;384:924–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Engle EK, Fisher DAC, Miller CA, McLellan MD, Fulton RS, Moore DM, et al. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia. 2015;29:869–76.

    CAS  PubMed  Google Scholar 

  20. Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022;602:162–8.

    CAS  PubMed  Google Scholar 

  21. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19.

    PubMed  PubMed Central  Google Scholar 

  22. Maslah N, Benajiba L, Giraudier S, Kiladjian J-J, Cassinat B. Clonal architecture evolution in Myeloproliferative Neoplasms: from a driver mutation to a complex heterogeneous mutational and phenotypic landscape. Leukemia. 2023;37:957–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guess T, Potts CR, Bhat P, Cartailler JA, Brooks A, Holt C, et al. Distinct Patterns of Clonal Evolution Drive Myelodysplastic Syndrome Progression to Secondary Acute Myeloid Leukemia. Blood Cancer Discov. 2022;3:316–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell J, Milite S, Bartram J, Walker S, Volkova N, Yavorska O, et al. Clinical application of tumour-in-normal contamination assessment from whole genome sequencing. Nat Commun. 2024;15:323.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tenedini E, Bernardis I, Artusi V, Artuso L, Roncaglia E, Guglielmelli P, et al. Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia. 2014;28:1052–9.

    CAS  PubMed  Google Scholar 

  26. Mylonas E, Yoshida K, Frick M, Hoyer K, Christen F, Kaeda J, et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun. 2020;11:73.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcault C, Zhao L-P, Maslah N, Verger E, Daltro de Oliveira R, Soret-Dulphy J, et al. Impact of NFE2 mutations on AML transformation and overall survival in patients with myeloproliferative neoplasms. Blood. 2021;138:2142–8.

    CAS  PubMed  Google Scholar 

  28. Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA. Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation. J Biol Chem. 2001;276:10715–21.

    CAS  PubMed  Google Scholar 

  29. Jutzi JS, Bogeska R, Nikoloski G, Schmid CA, Seeger TS, Stegelmann F, et al. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J Exp Med. 2013;210:1003–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127:333–42.

    CAS  PubMed  Google Scholar 

  31. Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu H, Wang B, Borde M, Nardone J, Maika S, Allred L, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7:819–26.

    CAS  PubMed  Google Scholar 

  33. Shi C, Sakuma M, Mooroka T, Liscoe A, Gao H, Croce KJ, et al. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood. 2008;112:4699–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Li S, Yuan L, Tian Y, Weidenfeld J, Yang J, et al. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev. 2010;24:1746–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development. 2012;139:2500–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown PJ, Wong KK, Felce SL, Lyne L, Spearman H, Soilleux EJ, et al. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia. 2016;30:605–16.

    CAS  PubMed  Google Scholar 

  37. Ackermann S, Kocak H, Hero B, Ehemann V, Kahlert Y, Oberthuer A, et al. FOXP1inhibits cell growth and attenuates tumorigenicity of neuroblastoma. BMC Cancer. 2014;14:840.

    PubMed  PubMed Central  Google Scholar 

  38. Takayama K-I, Suzuki T, Tsutsumi S, Fujimura T, Takahashi S, Homma Y, et al. Integrative analysis of FOXP1 function reveals a tumor-suppressive effect in prostate cancer. Mol Endocrinol. 2014;28:2012–24.

    PubMed  PubMed Central  Google Scholar 

  39. Klampfl T, Harutyunyan A, Berg T, Gisslinger B, Schalling M, Bagienski K, et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood. 2011;118:167–76.

    CAS  PubMed  Google Scholar 

  40. Shao X, Wei X. FOXP1 enhances fibrosis via activating Wnt/β-catenin signaling pathway in endometriosis. Am J Transl Res. 2018;10:3610–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Zhuang T, Pi J, Chen X, Zhang Q, Li Y, et al. Endothelial Forkhead Box Transcription Factor P1 Regulates Pathological Cardiac Remodeling Through Transforming Growth Factor-β1-Endothelin-1 Signal Pathway. Circulation. 2019;140:665–80.

    CAS  PubMed  Google Scholar 

  42. Beer PA, Delhommeau F, LeCouédic J-P, Dawson MA, Chen E, Bareford D, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–2900.

    CAS  PubMed  Google Scholar 

  43. Knudsen TA, Skov V, Stevenson K, Werner L, Duke W, Laurore C, et al. Genomic profiling of a randomized trial of interferon-α vs hydroxyurea in MPN reveals mutation-specific responses. Blood Adv. 2022;6:2107–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pérez C, Pascual M, Martín-Subero JI, Bellosillo B, Segura V, Delabesse E, et al. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica. 2013;98:1414–20.

    PubMed  PubMed Central  Google Scholar 

  45. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. P53 lesions in leukemic transformation. N Engl J Med. 2011;364:488–90.

    CAS  PubMed  Google Scholar 

  46. Zhang S-J, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119:4480–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto J-C, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4:4887–97.

    PubMed  PubMed Central  Google Scholar 

  48. Venton G, Courtier F, Charbonnier A, D’incan E, Saillard C, Mohty B, et al. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms. Am J Hematol. 2018;93:330–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the patients who participated in the study and their families. The authors thank the clinical research staff and caregivers at all the participating sites. Supercomputing resources were provided by the Human Genome Center, the Institute of Medical Science, the University of Tokyo, Japan.

Funding

This work was supported by grants from the National Science and Technology Council, Taiwan (L-YS: MOST110-2314-B-182-018, MOST111-2314-B-182-043, and NSTC 112-2314-B-182-055), the Ministry of Health and Welfare, Taiwan (L-YS: DOH102-TD-C-111-006), Grant-in-Aid for JSPS KAKENHI (SO: JP19H05656), and the Japan Agency for Medical Research and Development, AMED (YN: 23ama221506h0002).

Author information

Authors and Affiliations

Authors

Contributions

L-YS and YN designed and supervised the study. L-YS and Y-JH provided whole- genome sequencing raw data and targeted next generation sequencing data, L-YS and M-CK treated the patients and provided the samples, L-YS, M-CK, and T-YH collected and organized all clinical data. HT, HF, KY, SO, and YN analyzed WGS data. HT, YN, Y-JH and L-YS wrote the manuscript.

Corresponding authors

Correspondence to Yasuhito Nannya or Lee-Yung Shih.

Ethics declarations

Competing interests

SO reports a leadership position and advisory role with Eisai Co., Ltd and Chordia Therapeutics, Inc. SO is also a stockholder in Asahi Genomics Co., Ltd., and has received honoraria from The Mitsubishi Foundation and the Nakatani Foundation. Additionally, SO reports receiving grant/research funding from Chordia Therapeutics, Inc., Otsuka Pharmaceutical Co., Ltd., Eisai Co., Ltd, and Nippon Shinyaku Co., Ltd. YN has received grant/research funding from Daiichi Sankyo Co., Ltd., ThinkCyte Co., Ltd., and Otsuka Pharmaceutical Co., Ltd. YN has also received honoraria from Bristol Myers Squibb Co., Ltd., Takeda Pharmaceutical Co., Ltd., Daiichi Sankyo Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Novartis Pharma Co., Ltd., Pfizer Japan Co., Ltd., Nippon Shinyaku Co., Ltd., Otsuka Pharmaceutical Co., Ltd., and AstraZeneca Co., Ltd. The remaining authors declare no competing financial interests related to this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takamori, H., Huang, YJ., Fukushima, H. et al. Whole-genome sequencing of myeloproliferative neoplasms revealed dynamic clonal changes in the fibrotic or leukemic transformation and novel FOXP1 mutations in the fibrotic transformation. Leukemia 39, 1218–1227 (2025). https://doi.org/10.1038/s41375-025-02576-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02576-9

Search

Quick links