Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell polarity: cell type-specific regulators, common pathways, and polarized vesicle transport

Abstract

Cell polarity, the asymmetric organization of cellular components, is evolutionarily conserved from unicellular and multicellular organisms and is crucial for many biological processes. Polarity is required to maintain cell and tissue integrity by regulating cell division, migration, orientation, cell-cell interactions, and morphogenesis. Impaired polarity leads to dysregulation of cellular functions and is associated with disease. Understanding how polarity is established, maintained, and regulated is thus critical to improving our knowledge of pathologies and devising novel therapies. Here, we explore the various manifestations of cell polarity across different model systems, tissues, and cell types and focus on known polarity mechanisms in hematopoietic stem and progenitor cells. We discuss how cells with vastly different functions utilize conserved molecular complexes to establish cell polarity while adapting polarity proteins to unique cell-type-specific functions. In this discussion, we attempt to extract common themes and concepts to improve our understanding of cell polarity in hematological malignancies and other diseases. Finally, we summarize, compare, and evaluate classical as well as recently developed methods to quantify cell polarity, highlight important advances in imaging and analytical techniques, and suggest critical next steps required to move the field forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key cell polarity mechanisms across different cell types.
Fig. 2: Mechanisms of cell polarity in fission and budding yeast.
Fig. 3: Microtubule and actin-mediated vesicle transport establishes and maintains apical-basal polarity in epithelial cells.
Fig. 4: Polarized vesicular transport sustains polarity and signaling at the Immunological Synapse.
Fig. 5: Loss of CDC42 polarity in aged HSCs correlates with functional decline.
Fig. 6: Asymmetric Cell Division of HSCs is regulated by the asymmetric segregation of endolysosomal vesicles during division.
Fig. 7: Comparison of available methods to quantify cell polarity.

Similar content being viewed by others

References

  1. Goehring NW, Grill SW. Cell polarity: mechanochemical patterning. Trends Cell Biol. 2013;23:72–80.

    Article  CAS  PubMed  Google Scholar 

  2. Nelson WJ. Adaptation of core mechanisms to generate cell polarity. Nature. 2003;422:766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Treuner-Lange A, Søgaard-Andersen L. Regulation of cell polarity in bacteria. J Cell Biol. 2014;206:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol cell Biol. 2014;15:225–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piroli ME, Blanchette JO, Jabbarzadeh E. Polarity as a physiological modulator of cell function. Front Biosci. 2019;24:451.

    Article  Google Scholar 

  6. Raman R, Pinto CS, Sonawane M. Polarized organization of the cytoskeleton: regulation by cell polarity proteins. J Mol Biol. 2018;430:3565–84.

    Article  CAS  PubMed  Google Scholar 

  7. Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc B. 2020;375:20190555.

    Article  Google Scholar 

  8. Llense F, Etienne-Manneville S. Front-to-Rear Polarity in Migrating Cells. In: Ebnet K, editor. Cell Polarity 1: Biological Role and Basic Mechanisms. Cham: Springer International Publishing; 2015. p. 115–46.

  9. Campanale JP, Sun TY, Montell DJ. Development and dynamics of cell polarity at a glance. J Cell Sci. 2017;130:1201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017;18:375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiou J-g, Balasubramanian MK, Lew DJ. Cell polarity in yeast. Annu Rev Cell Dev Biol. 2017;33:77–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buckley CE, St Johnston D. Apical–basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol. 2022;23:559–77.

    Article  CAS  PubMed  Google Scholar 

  13. Mohr J, Dash BP, Schnoeder TM, Wolleschak D, Herzog C, Tubio Santamaria N, et al. The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function. Leukemia. 2018;32:1211–21.

    Article  CAS  PubMed  Google Scholar 

  14. Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10:520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zjablovskaja P, Florian MC. Acute myeloid leukemia: aging and epigenetics. Cancers. 2019;12:103.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carolina Florian M, Geiger H. Concise review: polarity in stem cells, disease, and aging. Stem cells. 2010;28:1623–9.

    Article  Google Scholar 

  17. Mejia-Ramirez E, Geiger H, Florian MC. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum Mol Genet. 2020;29:R248–R54.

    Article  CAS  PubMed  Google Scholar 

  18. Woods B, Lew DJ. Polarity establishment by Cdc42: Key roles for positive feedback and differential mobility. Small GTPases. 2019;10:130–7.

    Article  CAS  PubMed  Google Scholar 

  19. Goryachev AB, Pokhilko AV. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 2008;582:1437–43.

    Article  CAS  PubMed  Google Scholar 

  20. McCaffrey LM, Macara IG. Signaling pathways in cell polarity. Cold Spring Harb Perspect Biol. 2012;4:a009654.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mei K, Guo W. The exocyst complex. Curr Biol. 2018;28:R922–R5.

    Article  CAS  PubMed  Google Scholar 

  22. Skau CT, Courson DS, Bestul AJ, Winkelman JD, Rock RS, Sirotkin V, et al. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast. J Biol Chem. 2011;286:26964–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bendezu FO, Vincenzetti V, Martin SG. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles. PloS one. 2012;7:e40248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piel M, Tran PT. Cell shape and cell division in fission yeast. Curr Biol. 2009;19:R823–R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. Biochim et Biophys Acta (BBA)-Biomemb. 2020;1862:183398.

    Article  Google Scholar 

  26. Laprise P, Lau KM, Harris KP, Silva-Gagliardi NF, Paul SM, Beronja S, et al. Yurt, Coracle, Neurexin IV and the Na+, K+-ATPase form a novel group of epithelial polarity proteins. Nature. 2009;459:1141–5.

    Article  CAS  PubMed  Google Scholar 

  27. Riga A, Castiglioni VG, Boxem M. New insights into apical-basal polarization in epithelia. Curr Opin Cell Biol. 2020;62:1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Osswald M, Barros-Carvalho A, Carmo AM, Loyer N, Gracio PC, Sunkel CE, et al. aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium. Curr Biol. 2022;32:4411–27.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Apodaca G, Gallo LI, Bryant DM. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat cell Biol. 2012;14:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cowan CR, Hyman AA. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature. 2004;431:92–6.

    Article  CAS  PubMed  Google Scholar 

  31. Munro E, Nance J, Priess JR. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev cell. 2004;7:413–24.

    Article  CAS  PubMed  Google Scholar 

  32. Motegi F, Sugimoto A. Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat Cell Biol. 2006;8:978–85.

    Article  CAS  PubMed  Google Scholar 

  33. Schonegg S, Hyman AA. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development. 2006;133:3507–16.

  34. Wallenfang MR, Seydoux G. Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process. Nature. 2000;408:89–92.

    Article  CAS  PubMed  Google Scholar 

  35. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9.

    Article  CAS  PubMed  Google Scholar 

  36. Polgar N, Fogelgren B. Regulation of cell polarity by exocyst-mediated trafficking. Cold Spring Harb Perspect Biol. 2018;10:a031401.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Paul NR, Jacquemet G, Caswell PT. Endocytic trafficking of integrins in cell migration. Curr Biol. 2015;25:R1092–R105.

    Article  CAS  PubMed  Google Scholar 

  38. Daulat AM, Borg J-P. Wnt/planar cell polarity signaling: new opportunities for cancer treatment. Trends cancer. 2017;3:113–25.

    Article  CAS  PubMed  Google Scholar 

  39. Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell. 2011;21:120–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loeffler D, Wehling A, Schneiter F, Zhang Y, Müller-Bötticher N, Hoppe PS, et al. Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature. 2019;573:426–9.

    Article  CAS  PubMed  Google Scholar 

  41. Loeffler D, Schneiter F, Wang W, Wehling A, Kull T, Lengerke C, et al. Asymmetric organelle inheritance predicts human blood stem cell fate. Blood, J Am Soc Hematol. 2022;139:2011–23.

    CAS  Google Scholar 

  42. Mastrogiovanni M, Di Bartolo V, Alcover A. Cell polarity regulators, multifunctional organizers of lymphocyte activation and function. Biomed J. 2022;45:299–309.

    Article  CAS  PubMed  Google Scholar 

  43. Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol. 2022;13:938004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bashour KT, Tsai J, Shen K, Lee J-H, Sun E, Milone MC, et al. Cross talk between CD3 and CD28 is spatially modulated by protein lateral mobility. Mol Cell Biol. 2014;34:955–64.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Capitani N, Baldari CT. The immunological synapse: an emerging target for immune evasion by bacterial pathogens. Front Immunol. 2022;13:943344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bornens M. The centrosome in cells and organisms. Science. 2012;335:422–6.

    Article  CAS  PubMed  Google Scholar 

  47. Huse M, Le Floc’h A, Liu X. From lipid second messengers to molecular motors: microtubule‐organizing center reorientation in T cells. Immunol Rev. 2013;256:95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chauveau A, Le Floc’h A, Bantilan NS, Koretzky GA, Huse M. Diacylglycerol kinase α establishes T cell polarity by shaping diacylglycerol accumulation at the immunological synapse. Sci Signal. 2014;7:ra82–ra.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Borsa M, Barnstorf I, Baumann NS, Pallmer K, Yermanos A, Gräbnitz F, et al. Modulation of asymmetric cell division as a mechanism to boost CD8+ T cell memory. Sci Immunol. 2019;4:eaav1730.

    Article  CAS  PubMed  Google Scholar 

  50. Bessy T, Candelas A, Souquet B, Saadallah K, Schaeffer A, Vianay B, et al. Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. J Cell Biol. 2021;220.

  51. Wehling A, Loeffler D, Zhang Y, Kull T, Donato C, Szczerba B, et al. Combining single-cell tracking and omics improves blood stem cell fate regulator identification. Blood J Am Soc Hematol. 2022;140:1482–95.

    CAS  Google Scholar 

  52. Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012;150:351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hernández-Malmierca P, Vonficht D, Schnell A, Uckelmann HJ, Bollhagen A, Mahmoud MA, et al. Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell. 2022;29:760–75.e10.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Loeffler D, Schroeder T. Symmetric and asymmetric activation of hematopoietic stem cells. Curr Opin Hematol. 2021;28:262–8.

    Article  CAS  PubMed  Google Scholar 

  55. de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood J Am Soc Hematol. 2018;131:479–87.

    Google Scholar 

  56. Umbayev B, Safarova Y, Yermekova A, Nessipbekova A, Syzdykova A, Askarova S. Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology. 2023;24:27–46.

    Article  CAS  PubMed  Google Scholar 

  57. Florian MC, Nattamai KJ, Dörr K, Marka G, Überle B, Vas V, et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature. 2013;503:392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amoah A, Keller A, Emini R, Hoenicka M, Liebold A, Vollmer A, et al. Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. Haematologica. 2022;107:393.

    Article  CAS  PubMed  Google Scholar 

  59. Liu W, Du W, Shang X, Wang L, Evelyn C, Florian MC, et al. Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization. Leukemia. 2019;33:749–61.

    Article  CAS  PubMed  Google Scholar 

  60. Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci. 2019;132:jcs217869.

    Article  CAS  PubMed  Google Scholar 

  61. Mei Y, Han X, Liu Y, Yang J, Sumagin R, Ji P. Diaphanous-related formin mDia2 regulates beta2 integrins to control hematopoietic stem and progenitor cell engraftment. Nat Commun. 2020;11:3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kandi R, Senger K, Grigoryan A, Soller K, Sakk V, Schuster T, et al. Cdc42‐Borg4‐Septin7 axis regulates HSC polarity and function. EMBO Rep. 2021;22:e52931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mejia-Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica. 2020;105:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 2018;19:1–21.

    Article  Google Scholar 

  65. Heidel FH, Bullinger L, Arreba-Tutusaus P, Wang Z, Gaebel J, Hirt C, et al. The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML. J Exp Med. 2013;210:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Althoff MJ, Nayak RC, Hegde S, Wellendorf AM, Bohan B, Filippi M-D, et al. Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood, J Am Soc Hematol. 2020;136:1824–36.

    Google Scholar 

  67. Humbert PO, Dow LE, Russell SM. The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol. 2006;16:622–30.

    Article  CAS  PubMed  Google Scholar 

  68. Heinonen KM, Vanegas JR, Lew D, Krosl J, Perreault C. Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PloS One. 2011;6:e19279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sengupta A, Duran A, Ishikawa E, Florian MC, Dunn SK, Ficker AM, et al. Atypical protein kinase C (aPKCζ and aPKCλ) is dispensable for mammalian hematopoietic stem cell activity and blood formation. Proc Natl Acad Sci. 2011;108:9957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loeffler D, Schroeder T. Understanding cell fate control by continuous single-cell quantification. Blood J Am Soc Hematol. 2019;133:1406–14.

    CAS  Google Scholar 

  71. Suda T, Suda J, Ogawa M. Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci. 1984;81:2520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takano T, Xu C, Funahashi Y, Namba T, Kaibuchi K. Neuronal polarization. Development. 2015;142:2088–93.

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154:1112–26.

    Article  CAS  PubMed  Google Scholar 

  74. Florian MC, Klose M, Sacma M, Jablanovic J, Knudson L, Nattamai KJ, et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 2018;16:e2003389.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pham K, Sacirbegovic F, Russell SM. Polarized cells, polarized views: asymmetric cell division in hematopoietic cells. Front Immunol. 2014;5:26.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Larsson J. Do HSCs divide asymmetrically? Blood J Am Soc Hematol. 2012;119:2431–2.

    CAS  Google Scholar 

  77. Loeffler D, Schneiter F, Schroeder T. Pitfalls and requirements in quantifying asymmetric mitotic segregation. Ann N. Y Acad Sci. 2020;1466:73–82.

    Article  PubMed  Google Scholar 

  78. Hoppe PS, Schwarzfischer M, Loeffler D, Kokkaliaris KD, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU. 1 to GATA1 protein ratios. Nature. 2016;535:299–302.

    Article  CAS  PubMed  Google Scholar 

  79. Loeffler D, Wang W, Hopf A, Hilsenbeck O, Bourgine PE, Rudolf F, et al. Mouse and human HSPC immobilization in liquid culture by CD43-or CD44-antibody coating. Blood J Am Soc Hematol. 2018;131:1425–9.

    CAS  Google Scholar 

  80. Hilsenbeck O, Schwarzfischer M, Loeffler D, Dimopoulos S, Hastreiter S, Marr C, et al. fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics. 2017;33:2020–8.

    Article  CAS  PubMed  Google Scholar 

  81. Peng T, Thorn K, Schroeder T, Wang L, Theis FJ, Marr C, et al. A BaSiC tool for background and shading correction of optical microscopy images. Nat Commun. 2017;8:14836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dong S, Wang Q, Kao Y-R, Diaz A, Tasset I, Kaushik S, et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature. 2021;591:117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. García-Prat L, Kaufmann KB, Schneiter F, Voisin V, Murison A, Chen J, et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell. 2021;28:1838–50.e10.

    Article  PubMed  Google Scholar 

  84. Nunes J, Loeffler D. Asymmetric cell division of hematopoietic stem cells: recent advances, emerging concepts, and future perspectives. Front Hematol. 2024;3:1373554.

    Article  Google Scholar 

  85. Ting SB, Deneault E, Hope K, Cellot S, Chagraoui J, Mayotte N, et al. Asymmetric segregation and self-renewal of hematopoietic stem and progenitor cells with endocytic Ap2a2. Blood J Am Soc Hematol. 2012;119:2510–22.

    CAS  Google Scholar 

  86. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sunchu B, Cabernard C. Principles and mechanisms of asymmetric cell division. Development. 2020;147:dev167650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hinge A, He J, Bartram J, Javier J, Xu J, Fjellman E, et al. Asymmetrically segregated mitochondria provide cellular memory of hematopoietic stem cell replicative history and drive HSC attrition. Cell Stem Cell. 2020;26:420–30.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vannini N, Campos V, Girotra M, Trachsel V, Rojas-Sutterlin S, Tratwal J, et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell. 2019;24:405–18.e7.

    Article  CAS  PubMed  Google Scholar 

  90. Görgens A, Ludwig A-K, Möllmann M, Krawczyk A, Dürig J, Hanenberg H, et al. Multipotent hematopoietic progenitors divide asymmetrically to create progenitors of the lymphomyeloid and erythromyeloid lineages. Stem Cell Rep. 2014;3:1058–72.

    Article  Google Scholar 

  91. Loeffler D, Wehling A, Schneiter F, Zhang Y, Müller-Bötticher N, Hoppe PS, et al. Publisher Correction: Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature. 2019;573:E5–E.

    Article  CAS  PubMed  Google Scholar 

  92. Ugale A, Shunmugam D, Pimpale LG, Rebhan E, Baccarini M Signaling proteins in HSC fate determination are unequally segregated during asymmetric cell division. J Cell Biol. 2024;223.

  93. Zhou H, Li I, Bramlett CS, Wang B, Hao J, Yen DP, et al. Label-free metabolic optical biomarkers track stem cell fate transition in real time. Sci Adv. 2024;10:eadi6770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Girotra M, Trachsel V, Roch A, Lutolf MP. In vivo pre-instructed HSCs robustly execute asymmetric cell divisions in vitro. Int J Mol Sci. 2020;21:8225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ito K, Turcotte R, Cui J, Zimmerman SE, Pinho S, Mizoguchi T, et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science. 2016;354:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ellenbroek SI, Iden S, Collard JG, editors. Cell polarity proteins and cancer. Seminars in cancer biology; Elsevier (2012).

  97. Bajaj J, Zimdahl B, Reya T. Fearful symmetry: subversion of asymmetric division in cancer development and progression. Cancer Res. 2015;75:792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, et al. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature. 2010;466:765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell. 2007;1:541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mizukawa B, O’Brien E, Moreira DC, Wunderlich M, Hochstetler CL, Duan X, et al. The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation. Blood J Am Soc Hematol. 2017;130:1336–46.

    CAS  Google Scholar 

  101. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–68.

    Article  CAS  PubMed  Google Scholar 

  102. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eifert T, Hsu C-J, Becker AL, Graessle S, Horne A, Bemmann F, et al. Cell fate determinant Llgl1 is required for propagation of acute myeloid leukemia. Leukemia. 2023;37:2027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Prebet T, Lhoumeau A-C, Arnoulet C, Aulas A, Marchetto S, Audebert S, et al. The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood J Am Soc Hematol. 2010;116:2315–23.

    CAS  Google Scholar 

  105. Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, et al. PRICKLE1, a Wnt/PCP signaling component, is overexpressed and associated with inferior prognosis in acute myeloid leukemia. J Transl Med. 2021;19:211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zimdahl B, Ito T, Blevins A, Bajaj J, Konuma T, Weeks J, et al. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nat Genet. 2014;46:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rhyu MS, Jan LY, Jan YN. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell. 1994;76:477–91.

    Article  CAS  PubMed  Google Scholar 

  108. Gur-Cohen S, Itkin T, Chakrabarty S, Graf C, Kollet O, Ludin A, et al. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med. 2015;21:1307–17.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schuster T, Amoah A, Vollmer A, Marka G, Niemann J, Saçma M, et al. Quantitative determination of the spatial distribution of components in single cells with CellDetail. Nat Commun. 2024;15:10250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gong Y, Varnau R, Wallner ES, Acharya R, Bergmann DC, Cheung LS. Quantitative and dynamic cell polarity tracking in plant cells. N. Phytol. 2021;230:867–77.

    Article  CAS  Google Scholar 

  111. Kaucká M, Plevová K, Pavlová Š, Janovská P, Mishra A, Verner J, et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 2013;73:1491–501.

    Article  PubMed  Google Scholar 

  112. Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, et al. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. npj Regen Med. 2022;7:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–22.

    Article  CAS  PubMed  Google Scholar 

  114. Peglion F, Etienne-Manneville S. Cell polarity changes in cancer initiation and progression. J Cell Biol. 2023;223:e202308069.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development. 2017;144:3405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Heart, Lung, And Blood Institute (NHLBI) of the National Institutes of Health (NIH) under Award Number R01HL174644. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funding was received from Alex’s Lemonade Stand Foundation and RUNX1 Research Program (Grant # 22-27080) and St. Jude Comprehensive Cancer Center Developmental Funds Grant (#PROJ-0003066 720202211).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and S.B. wrote, edited, and reviewed the manuscript.

Corresponding author

Correspondence to Dirk Loeffler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S., Loeffler, D. Cell polarity: cell type-specific regulators, common pathways, and polarized vesicle transport. Leukemia 39, 1558–1570 (2025). https://doi.org/10.1038/s41375-025-02601-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02601-x

This article is cited by

Search

Quick links