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Polycythemia vera (PV) is a myeloproliferative neoplasm associated with increased thromboembolic (TE) risk and hematologic
complications. Hydroxyurea (HU) serves as the most frequently used first-line cytoreductive therapy worldwide; however, resistance
to HU (HU-RES) develops in a significant subset of patients, leading to increased morbidity and necessitating alternative treatments.
This study, part of the PV-AIM project, employed machine learning techniques on real-world evidence (RWE) from the Optum® EHR
database containing 82.960 PV patients to identify baseline predictors of HU-RES within the first 6–9 months of therapy. Using a
Random Forest model, the study analyzed data from 1850 patients, focusing on laboratory parameters and clinical characteristics.
Key predictive markers included red cell distribution width (RDW) and hemoglobin (HGB), showing the strongest association with
HU-RES. A synergistic interaction between RDW and HGB was identified, enabling TE risk stratification. This study provides a robust
framework for early detection of HU-RES using readily available clinical data, facilitating timely intervention. These findings
underscore the importance of personalized treatment approaches in managing PV and highlight the utility of machine learning in
enhancing predictive accuracy and clinical outcomes. Based on the results of PV-AIM we initiated an open-label, prospective, single-
arm, interventional, phase IV study (HU-F-AIM) evaluating HU-resistance/intolerance. Validation of predictive biomarkers may
facilitate identification of patients at risk of HU resistance who may benefit from alternative treatment options, possibly preventing
ongoing phlebotomy during HU treatment, a frequent therapeutic choice in high-risk PV associated with early disease progression
and increased thromboembolic complications. We propose an updated terminology that differentiates between true molecular
resistance and clinical resistance, that may indicate the requirement for alternative therapeutic strategies.
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INTRODUCTION
Polycythemia vera (PV) is a myeloproliferative neoplasm (MPN)
marked by acquisition of an activating mutation of Janus kinase-2
(JAK2) [1, 2], which leads to erythrocytosis and frequently
leukocytosis and thrombocytosis [3], and is associated with a
high symptom burden [4, 5] and disease progression [6]. One of
the most significant complications associated with PV is the
occurrence of thromboembolic events (TEs) [7]. Risk for TE-
complications is increased by specific factors, including age and a
history of previous thrombosis [7].
The PV-AIM (Polycythemia Vera Advanced Integrated Models)

study utilizes machine learning to analyze real-world evidence,
aiming to identify predictive factors for patients with MPN.

Recently, the PV-AIM study aimed to identify risk markers in
patients with PV undergoing treatment with hydroxyurea (HU) or
HU followed by ruxolitinib (RUX) [8]. Using machine learning and
real-world evidence from the Optum® EHR database [9], in a first
step, the study identified key laboratory markers, including
neutrophil-lymphocyte ratio and red cell distribution width
(RDW), that correlate with TE risk. The findings support the use
of routine laboratory data and decision trees to stratify patient risk,
offering a personalized approach to PV management and
enhancing timely treatment adjustments to reduce TE incidence.
A critical factor in managing the risk of TEs in PV patients is
controlling hematocrit (HCT) levels. Uncontrolled HCT levels >45%
are closely associated with an increased likelihood of
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cardiovascular events. Maintaining HCT levels <45% is, therefore,
essential to reducing this risk [10, 11]. Common first-line
treatments include phlebotomy [12], the use of low-dose aspirin,
and/or hydroxyurea (HU) [13, 14]. However, not all patients
respond sufficiently to HU and may develop resistance or
intolerance to HU [15], rendering the treatment ineffective [16].
HU resistance (HU-RES) increases the risk of disease progression
resulting in higher mortality [14, 17, 18]. Therefore, early
identification of HU-RES will enable patients to be switched to
alternative treatments promptly. One such alternative is RUX, a
potent and selective JAK1/2 inhibitor. RUX has shown the ability to
provide durable responses and effective hematologic control in PV
patients who are resistant to or intolerant to HU [19–21] and
reduces the risk for TE complications and progression.
In this analysis of the PV-AIM study, we utilized machine

learning techniques to analyze real-world evidence (RWE) with the
goal of identifying baseline variables that could predict HU-RES
within 6–9 months of starting HU treatment. We identified
predictive value for commonly available markers RDW and HGB
regarding development of HU-RES. Leveraging these predictive
insights will facilitate earlier intervention, optimizing treatment
strategies and improving the prognosis for patients with PV who
are at risk of HU-RES. We therefore initiated a prospective
interventional phase IV trial (HU-F-AIM; NCT05853458) to validate
these findings in the real-world clinical setting. This study will
evaluate specific HU failure predictors, namely HGB levels of
<15.5 g/dL and RDW of >17%, as identified in the PV-AIM analysis,
further establishing a robust predictive model for guiding PV
management.

MATERIAL AND METHODS
Machine learning study design PV-AIM
The PV-AIM study is an analytical, descriptive, non-interventional, retro-
spective cohort analysis of patients with polycythemia vera (PV), utilizing
data from the Optum® Electronic Health Records (EHR) database [9]. The
Optum® Electronic Health Records (EHR) database is a comprehensive
resource that aggregates anonymized patient-level data from a network of
healthcare providers across the United States. It includes detailed
longitudinal information on demographics, diagnoses, clinical observa-
tions, laboratory results, medications, and procedures, allowing researchers
to study diverse populations and healthcare outcomes.
The Optum® de-identified EHR dataset provides comprehensive

electronic medical records for approximately 105 million patients spanning
the years 2007–2020. This dataset captures a representative distribution of
patients across the main geographical regions of the United States (West,
Midwest, Northeast, and South), with at least ten million patients in each

region and proportions of age, gender, ethnicity, and race closely aligning
with those of the overall U.S. population. Within the database, records from
82,960 patients diagnosed with PV are included, with a median
observation period of 8.4 years. The dataset encompasses detailed
information on diagnoses (including PV, other MPNs and complications
associated data), demographics, treatments (notably HU and RUX),
procedures, laboratory tests, and clinical signs and symptoms. These data
are sourced from diverse healthcare settings, including physician offices,
emergency departments, laboratories, and hospitals, providing insights
into both outpatient and inpatient care.
For this study, data were retrieved from the Optum® EHR database

covering the period 2007–2019. This dataset aggregates de-identified
clinical and medical administrative records from over 65 healthcare
delivery organizations across all 50 U.S. states, encompassing data from
more than 150,000 providers, 7000 clinics, and 2000 hospitals. Contributing
organizations provide information captured by their local EHR systems.
Longitudinal data analysis indicates that the average follow-up duration for
patients ranges from at least one year (~66%) to five years or more (~38%),
facilitating robust temporal analyses. By integrating data from multiple
care settings, this database supports robust epidemiological research,
health economics studies, and the evaluation of real-world treatment
effectiveness and safety.
The extracted patient data included information on demographics,

history of TE events, history of phlebotomy, clinical observations,
laboratory results, and use of anticoagulants (Table 1). Since all patient
data from the Optum® EHR database were de-identified, Institutional
Review Board (IRB) or Ethics Committee approval was not required for this
study.

PV-AIM inclusion criteria
The inclusion criteria for the study required that patients be at least 18
years old, have a PV diagnosis and treated exclusively with HU for a
duration of 9 months. Additionally, patients needed to have a documented
medical history for at least 6 months prior to the index date and a follow-
up period of 12 months post-index. Only patients whose first HU treatment
occurred after their initial PV diagnosis were considered. However, patients
were excluded if they had fewer than two prescriptions for HU or RUX, had
been diagnosed with myelofibrosis (MF) or essential thrombocythemia
(ET), or had received other cytoreductive treatments such as interferon
alpha or busulfan.

PV-AIM model
A Random Forest ensemble machine learning classification model was
developed to predict HU-RES in patients during the 6–9-month post-index
period using pre-index patient data. The model’s prediction of HU-RES was
based on the European LeukemiaNet (ELN) consensus definition for HU-
RES [18], with the ELN criteria adapted to accommodate real-world
evidence. To ensure robustness, the model was trained and validated using
an 80:20 train-to-validation split, with performance evaluated through
5-fold cross-validation. The model’s accuracy was assessed by the area

Table 1. Baseline characteristics of patient cohorts included in model development and analysis.

HU-RES (N= 733) NON-RES (N= 571) Overall (N= 1304)

Gender, n (%)

Female 307 (41.9) 328 (57.4) 635 (48.7)

Male 426 (58.1) 243 (42.6) 669 (51.3)

Age at index (years), mean (SD) 68.4 (11.2) 71.2 (10.8) 69.6 (11.1)

History of TE, n (%)

Yes 107 (14.6) 93 (16.3) 200 (15.3)

No 626 (85.4) 478 (83.7) 1104 (84.7)

Number of phlebotomies (annualized), mean (SD) 0.74 (1.44) 0.28 (0.77) 0.54 (1.22)

ANC (×109/L), mean (SD) 9.58 (6.00) 8.36 (5.58) 9.05 (5.85)

HCT (%), mean (SD) 49.0 (7.40) 47.2 (7.37) 48.2 (7.43)

HGB (g/dl), mean (SD) 15.6 (2.61) 15.4 (2.49) 15.5 (2.56)

NLR, mean (SD) 6.72 (6.37) 6.06 (5.83) 6.43 (6.15)

RDW (%), mean (SD) 18.1 (3.22) 17.1 (3.05) 177 (3.18)

WBC (×109/L), mean (SD) 13.1 (9.02) 11.1 (6.36) 12.3 (8.03)
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under the receiver operating characteristic curve (ROC-AUC). Additionally,
a feature importance metric was used to identify and rank the ten most
influential variables impacting HU-RES prediction. Further analysis involved
examining all pairwise combinations of these top ten variables across
different thresholds to determine their association with HU-RES. A synergy
scoring metric to rank variable in terms of synergy (S): Sab= (Pa * Pb)/Pab
where, for a given patient cohort, Pa and Pb are the maximum possible
(logrank derived) p-values for variable a and variable b and Pab is the
maximum p-value possible from the combination of variables a and b. Pairs
of variables that demonstrated a higher-than-expected synergistic effect in
predicting HU-RES were analyzed in more detail, and optimal thresholds
were identified for each variable in these pairs. This comprehensive
approach aimed to enhance the model’s predictive capability and provide
valuable insights into the factors contributing to HU-RES.

PV-AIM statistical analysis
Data for analysis, including absolute values, binary (yes/no), and median
data, were extracted from the Optum® EHR database. In this study,
Kaplan–Meier analyses and log-rank tests were utilized specifically to
assess and validate the clinical significance of thresholds derived from the
random forest model. In contrast, the random forest model itself was
employed exclusively for variable selection and to predict HU-RES
outcomes. Clearly distinguishing these analytical roles underscores the
complementary nature of these statistical approaches. Kaplan–Meier
survival curves and log-rank tests were used to compare time-to-event
probability distributions, with interactions between variables also eval-
uated using log-rank tests (significance set at p < 0.05 for all analyses).
Although random forest models inherently consider variable interactions,

we explicitly performed pairwise interaction analyses to identify clinically
meaningful thresholds. This approach was chosen to enhance interpret-
ability and provide clinicians with clearly defined thresholds for decision-
making. Explicitly defining these interactions ensures practical utility in
clinical settings, allowing for precise stratification of patients based on
readily measurable clinical parameters.
Statistical analyses were conducted using the ranger package (version

0.13.1; available at https://cran.r-project.org/web/packages/ranger/
index.html, accessed 21 June 2023) and R software (version 4.0.2; R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-
project.org/, accessed 21 June 2023).

HU-F-AIM study design
HU-F-AIM is an open-label, prospective, single-arm, interventional, phase IV
study evaluating HU resistance or intolerance in patients with PV who
meet predictive parameters identified in the machine learning–based PV-
AIM study [22]. The study consists of three phases: screening period
(14 days), treatment period (observation for HU resistance/intolerance, up
to 15 months) and follow-up (FU; includes a 30-day safety visit after the last
dose, and a 3-month visit for those who show HU resistance or tolerance
during the treatment period). Eligible patients will enter the treatment
period and will receive de novo HU. To assess HU resistance/intolerance, it
is necessary for each patient to reach their personal MTD (dosing regimen
detailed in the protocol) or a dose of ≥2 g/day within the first 3 months of
HU treatment. Patient eligibility will be determined by the investigator
based on the patient’s medical needs, and standard prescribing guidelines
will be followed for HU administration. The starting dose should range
between 0.5 and 1.5 g/day of HU on day 1 and will be based on the
investigator’s discretion. If a patient shows HU resistance/intolerance

Fig. 1 Patient cohorts and analysis. 626 patients with no laboratory values (pre-index 6 months) were not included in this cohort (fewer
thromboembolic events (TEs) and phlebotomy than patients included in the final 1304 cohort).

Fig. 2 Study design. a First hydroxyurea (HU) treatment; b Hematocrit, other laboratory assessments, and phlebotomy measured ±14 days in
the 6–9 month-post-index window; c Observations included: respiratory, heart, pulse, weight, height, body mass index, systolic blood
pressure, diastolic blood pressure and demographics (gender, race, ethnicity, region, division, and age at index); d Adapted for real world
evidence (RWE) with no hydroxyurea dosage applied.
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during the treatment period and requires a switch to second-line therapy
or discontinues the treatment for any reason, an end of treatment (EOT)
visit will be performed, and the patient will enter the FU period. If no HU
resistance/intolerance is observed during the treatment period, then the
patient will complete the EOT visit after 15 months, followed by a 30-day
safety FU visit (end of study [EOS]). A schedule of assessments is shown
Supplementary Table S1.
Monitoring of HU resistance/intolerance is performed every 6 weeks

according to the modified ELN criteria [23] (at the earliest after 3 months
for patients who started individual maximum tolerated dose (MTD) or
≥2 g/day at baseline, i.e., starting from Visit 7 to EOT; Supplementary
Table S1). Study visits are scheduled to occur at screening, day 1, every
2 weeks until week 12 and then every 6 weeks from weeks 18–60, that is,
at week 18, week 24, week 30, week 36, week 42, week 48, week 54, week
60 (EOT), 30 days after the last treatment (safety FU) and 3 months after
the last treatment (FU visit; only for patients who show HU resistance/
intolerance during the treatment period). These short-visit intervals were
implemented to identify HU resistance or intolerance, which would allow
for a timely switch to the second-line therapy of choice. The decision to
set the study duration to 15 months was based on the findings of the PV-
AIM project, which established that the minimum period required to
observe HU resistance after the index date was 12 months. A single-arm
and open-label design was chosen due to the primary endpoint not
requiring a comparator arm and HU being the only study treatment for all
patients.

HU-F-AIM inclusion and exclusion criteria
The trial will include patients ≥18 years with a confirmed PV, who have
not received any prior pharmacological cytoreductive therapy and who
have provided written informed consent. The trial will exclude patients
with post-PV MF or accelerated/blast phase MPN (AP/BP-MPN), a
contraindication to HU, with a past medical history of rare hereditary
galactose intolerance, total lactase deficiency or glucose-galactose
malabsorption, or those with active uncontrolled infections and some
active malignancies. Full inclusion and exclusion criteria are detailed in
Supplementary Table S2.

HU-F-AIM assessments & endpoints
The endpoints of this study are listed in Supplementary Table S3. The
primary endpoint is the proportion of patients with HU resistance/
intolerance within 6–9 months after de novo HU treatment initiation in the
presence of the PV-AIM HU-RES predictors at the start of HU treatment.
Presence of the PV-AIM HU-resistance predictors is defined as having both
HGB < 15.5 g/dL (9.62 mmol/L) and RDW ≥ 17%, measured on day 1.
Definition of HU-resistance and -intolerance is based on the modified
ELN criteria (Supplementary Table S4) [23]. Secondary endpoints include
analyses of the proportion of patients with PV who meet the criteria (PV-
AIM HU-RES predictors) before the start of HU treatment, the proportion of
patients developing HU-RES/intolerance at any time within the treatment
period of 15 months in the presence or absence of the PV-AIM HU-RES
predictors at the start of HU treatment, and according to the modified ELN
criteria [23], criteria used for the PV-AIM project, and the therapies given
after confirmation of HU-RES/intolerance. Particularly, for all patients who
develop HU-RES/intolerance according to the modified ELN criteria [23] at
any time during the treatment period, the following secondary endpoints
will be assessed: the proportion of ‘non-switchers’ (i.e. patients remaining
on HU despite meeting the HU-RES/intolerance criteria) compared to
‘switchers’, timepoint of therapy switch (after confirmation of HU-RES/
intolerance); reasons for therapy switch/non-switch and therapies applied
during the FU period. Key exploratory endpoints will include the
proportion of patients with PV and HU-RES/intolerance at any time within
the treatment period in the presence or absence of HU-RES/intolerance
predictors other than HGB and RDW (RBC, HCT, age at index date, APC,
ANC, WBC, weight and time between diagnosis and treatment); and
change in MPN Symptom Assessment Form Total Symptom Score (MPN-
SAF TSS) from baseline to each visit in patients with HU resistance/
intolerance compared with patients without HU resistance/intolerance
during the treatment period. Safety will be monitored by assessing
physical examinations, vital signs, laboratory assessments including
hematology, biochemistry and coagulation and by collecting information
on adverse events (AEs) (if any) at every visit.

HU-F-AIM analyses
The analysis of the proportion of PV patients with HU-RES/intolerance, i.e.
the primary endpoint will be evaluated by calculating the rate and the
respective 95% confidence interval (CI). Where information on resistance
predictors is not available on day 1, data from screening or visit 2 (i.e., −1
to −14 days or up to +2 weeks) will be used to analyze the primary
endpoint. Where no data are available on HU-RES/intolerance for a specific
patient at the EOT, the respective patient will be excluded from the
primary analysis. No formal statistical testing will be applied. For patient-
reported outcomes, MPN-SAF TSS results will be compared between
patients with or without HU-RES/intolerance within the treatment period.
Descriptive statistics (e.g., mean, median) will be used to summarize results
at each scheduled assessment time point by patient subgroup (with or
without HU-RES/intolerance). Additionally, change from baseline for MPN-
SAF TSS at the time of each assessment will be summarized. Patients with
an evaluable score before the start of HU treatment and at least one
additional evaluable score during the treatment period and/or EOT will be
included in these analyses. No formal interim analysis is planned for this
trial. A full final analysis will be performed after all patients have completed
their EOS visit or prematurely terminated.

Table 2. Top ten pre-index variables associated with HU-RES.

Rank Variable name Rank score

1 RBC 1.0

2 HCT 2.2

3 RDW 4.8

4 Age at index 5.4

5 HGB 6.6

6 Annualized phlebotomy count 7.2

7 ANC 7.2

8 WBC 7.6

9 Weight 7.6

10 Time between diagnosis and treatment 7.8

Table 3. Significant associations between the top ten pre-index variables.

Variable 1 Variable 2 Association significance (p-value)

HCT Annualized phlebotomy count 1.74 × 10−22

RBC Annualized phlebotomy count 4.26 × 10−22

Annualized phlebotomy count ANC 4.24 × 10−19

Annualized phlebotomy count WBC 5.47 × 10−19

HCT RDW 9.75 × 10−19

RBC Time between diagnosis and treatment 1.59 × 10−18

RDW Annualized phlebotomy count 5.37 × 10−18

HCT Time between diagnosis and treatment 5.60 × 10−17

RBC ANC 6.95 × 10−17

Annualized phlebotomy count Weight 7.17 × 10−17
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Sample size calculation HU-F-AIM
A sample size of 300 patients will allow for a precision in terms of the width
of the respective 95% CI of ±0.072 and is based on the following
assumptions: (1) Cytoreductive-/HU-naïve patients with PV: Based on
German health insurance data (data not shown), approximately 150
hematologists care for approximately 1200 patients with PV per year, of
whom 60% are assumed to be HU eligible (this would result in nearly 700
HU-eligible patients in Germany per year; (2) Target population eligible for
the analysis of the primary endpoint: Approximately 40% of all HU-naïve
patients with PV are estimated to meet the PV-AIM criteria for HU failure at
the start of their de novo HU treatment; and (3) approximately 80% of
target patients are expected to show HU failure within 3–6 months after
starting their de novo HU treatment.

HU-F-AIM ethics approval and consent to participate
This clinical trial was designed, and will be implemented, executed and
reported in accordance with the International Council for Harmonization
Tripartite Guidelines for Good Clinical Practices, with applicable local
regulations (including European Directive 2001/20/EC or European Clinical
Trial Regulation 536/2014 US CFR 21), and with the ethical principles laid
down in the Declaration of Helsinki. Written consent will be obtained from
all patients.

RESULTS
PV-AIM: machine learning analysis of hydroxyurea resistance
in real-world data sets of polycythemia vera patients
A comprehensive analysis of PV patients was conducted using the
Optum® EHR database. Within the database, records from 82,960
patients diagnosed with PV were included. These included 10,141
patients with HU prescription record; 2453 out of those fulfilled
the inclusion criteria as outlined above and 1850 had one or more
laboratory results or observation within 6 months pre-index
(Fig. 1). Out of 1304 that were included in the model development
process 733 were included in the HU-RES and 571 in the non-
resistant (NON-RES) groups (according to ELN-criteria, Fig. 2,
Table 1). This approach not only offers valuable insights into
resistance patterns but also supports the application of machine
learning tools to predict outcomes and improve patient care in PV
management.
The machine learning model developed to predict hydroxyurea

resistance (HU-RES) in PV patients demonstrated a composite area
under the receiver operating characteristic curve (ROC-AUC) score
of 0.71 (Fig. 3). This score reflects a moderate level of accuracy in
predicting HU-RES in patients within 6–9 months of starting HU
treatment (Fig. 2). While this score indicates that the model is a
valuable predictive tool, also suggests improvements can be made
to refine the predictive accuracy.

Analysis of pre-index variables identifies hemoglobin and red
cell distribution width as predictors of hydroxyurea-resistance
The model identified ten key pre-index variables that were most
predictive of HU-RES (Table 2). These variables were as follows: red
blood cell count (RBC), hematocrit (HCT), red cell distribution
width (RDW), age at index, hemoglobin (HGB), annualized
phlebotomy count, absolute neutrophil count (ANC), WBC, patient
weight, and the time between PV diagnosis and initiation of
treatment.
Notably, for all of these variables, except “age at index”, higher

values were observed in patients who developed resistance to HU
compared to those who did not. Interestingly, younger patients
(i.e., those with a lower “age at index”) were more likely to develop
HU-RES than their older counterparts. This finding highlights that
age plays a distinct role in the development of resistance, offering
valuable insights into patient risk stratification.
Further analysis revealed that HCT and annualized phlebotomy

count had the strongest associations with HU-RES (Table 3).
Specifically, a HCT level of ≥44% and an annualized phlebotomy
count of ≥0.76 were identified as threshold values most stronglyTa
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predictive of HU-RES. These values were considered the “best-
split” thresholds, providing clinicians with tangible reference
points for early identification of patients who are likely to develop
HU-RES.
By focusing on these pre-index variables, the machine learning

model offers a valuable framework for predicting HU-RES, allowing
for earlier intervention and potential adjustments to treatment
plans, such as switching to second-line therapies, to mitigate the
risks associated with HU-RES in PV patients. Together, the
predictive insights generated by this model could significantly
improve patient outcomes by preventing disease progression and
optimizing long-term treatment effectiveness in patients who do
not respond to HU.
In analyzing the interactions between key pre-index variables

for predicting HU-RES, the study identified four variable combina-
tions that exhibited significant synergy, meaning their combined
predictive power was greater than the sum of their individual
effects (Table 4). This synergistic interaction between variables
enhances the model’s ability to accurately identify patients at risk
of developing HU-RES, which is a crucial step in optimizing
treatment for PV. The most notable and impactful of these
interactions was between RDW and HGB. This RDW-HGB
combination achieved the highest synergy score of 4001,
indicating a particularly strong association with HU-RES. The
optimal threshold values identified for predicting resistance were
an RDW of 17% and an HGB level of 15.5 g/dL, with a highly
significant p-value of 4.67 × 10−15 (Table 4). This statistical
significance underscores the reliability of this combination as a
predictor of HU-RES in the patient population.

Red cell distribution width and hemoglobin allow for clinical
risk-stratification of polycythemia vera patients
To better understand and visualize this synergy, patients were
categorized into four quadrants based on their RDW and HGB
values (Fig. 4). These quadrants allowed for stratification according
to the likelihood of developing HU-RES, with those falling within
the high-risk thresholds (RDW ≥ 17% and HGB ≤ 15.5 g/dL) show-
ing the greatest susceptibility to resistance. This approach not
only highlights the importance of these individual variables but
also demonstrates how their interaction can more precisely
predict treatment outcomes.
A scatterplot analysis of HU-RES and NON-RES patients

according to their RDW and HGB values provides clear insights
into the distribution patterns of resistance and non-resistance
across different quadrants (Fig. 4). This visualization allows for a

more nuanced understanding of how these two variables interact
to influence treatment outcomes. Patients were grouped into four
quadrants based on their RDW and HGB levels: (i) Quadrant 1 (Q1):
RDW ≥ 17% and HGB < 15.5 g/dL. This quadrant represents the
highest concentration of patients who developed HU-RES. The
combination of elevated RDW (indicative of significant variability
in red blood cell size) and lower HGB (reflecting reduced oxygen-
carrying capacity) was a strong marker for HU-RES. These patients
were shown to be at the highest risk of developing resistance,
emphasizing the critical importance of monitoring both RDW and
HGB in clinical practice for early detection of potential HU
treatment failure. (ii) Quadrant 3 (Q3): RDW < 17% and HGB < 15.5
g/dL. Conversely, the scatterplot revealed that patients with
values in this quadrant, where both RDW and HGB levels are
lower, represented the highest concentration of NON-RES
patients. In this group, the absence of elevated RDW and low
HGB indicated a lower likelihood of developing resistance to HU,
suggesting that these patients respond more favorably to HU
treatment. Overall, this scatterplot analysis underscores the
importance of these two biomarkers in the management of PV.
The analysis of the relationship between RDW and HGB offers

critical insights into the prediction of HU-RES in patients with PV.
The significance of the RDW-HGB interaction is depicted across a
range of values, highlighting the threshold of 17% RDW as a key
point for distinguishing between ‘low RDW’ and ‘high RDW’
populations (Fig. 5). This threshold has a substantial impact on the
categorization of patient groups and their respective risk of
developing HU-RES. Patients with an RDW of 17% or greater were
classified as the ‘high RDW’ group, while those with an RDW< 17%
were classified as the ‘low RDW’ group. In particular, the high RDW
group was characterized by: (i) Elevated levels of WBC
(p= 5.66 × 10−50), RBC (p= 2.84 × 10−49), ANC (p= 3.99 × 10−48),
neutrophils (p= 2.05 × 10−25) and platelets (PLT) (p= 2.49 × 10−9).
These elevated values in the high RDW group suggest an overall
increase in cellular activity, which may be indicative of heightened
disease activity or a more aggressive disease state, both of which
could contribute to HU-RES. (ii) Lower levels of: Lymphocytes
(p= 5.07 × 10−36) and HGB (p= 2.72 × 10−9). The lower lympho-
cyte and HGB levels further highlight the distinct hematologic
profile of patients with high RDW, which may reflect a
compromised immune response and reduced oxygen-carrying
capacity. These factors can have a direct impact on disease
progression and response.
The proportion of HU-RES patients in the ‘high RDW’ group was

found to be significantly higher, 1.36 times greater, than in the

Fig. 4 Scatterplot of hydroxyurea resistance (HU-RES) and NON-RES patients according to red cell distribution width (RDW) and
hemoglobin (HGB) values. Lines represent the threshold values of 17% for RDW and 15.5 g/dL for HGB dividing the patients into four
quadrants (Q).
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‘low RDW’ group (p= 2.74 × 10−9), emphasizing the importance of
elevated RDW as a marker for predicting treatment resistance. This
significant finding supports the use of RDW as a key indicator in
identifying patients at higher risk of HU-RES early in their
treatment journey. Further analysis of common pre-index
laboratory variables between the two groups (high RDW ≥ 17%,
n= 559; low RDW < 17%, n= 745) revealed notable differences,
particularly in neutrophil-to-lymphocyte ratio (NLR) (Fig. 6). NLR
was significantly elevated in the high RDW group
(p= 2.75 × 10−37), indicating a strong association between ele-
vated RDW and systemic inflammatory markers, as reflected by
NLR. This relationship underscores the potential role of inflamma-
tion in HU-RES and may point to the underlying biological
processes driving the difference in patient outcomes. Additional
significant differences between the RDW groups were observed
for several other laboratory variables, including WBC, RBC, ANC,
PLT, lymphocyte count, and HGB.

Prospective validation of hydroxyurea-resistance predictors
hemoglobin and red cell distribution width in a clinical phase
IV trial
The results of this machine learning study are currently validated
in a prospective Phase IV trial: The HU-F-AIM trial is an open-label,
single-arm Phase IV study designed to assess hydroxyurea (HU)
resistance or intolerance in PV patients, using predictive
parameters identified in prior machine learning research. The
study consists of a 14-day screening, up to 15-month treatment
with HU, and follow-up for patients showing intolerance or
resistance (Fig. 7). Patients receive HU at personalized tolerable
doses or ≥2 g/day within 3 months, adjusted biweekly based on
blood parameters. Resistance/intolerance is monitored every

6 weeks via modified ELN criteria. Primary and secondary
endpoints include rates of HU-RES/intolerance at different time
points, effects on symptom scores, and response metrics across
subgroups. Safety monitoring and adverse events are tracked at
each visit. The sample size of 300 is based on estimated
prevalence and HU eligibility among PV patients, aiming to
achieve precision with a 95% confidence interval for primary
endpoint analysis.

DISCUSSION
A recent analysis of real-world evidence (PV-AIM study) using
machine learning techniques has identified crucial clinical and
laboratory variables that can predict HU-RES in patients within the
first 6–9 months of starting treatment. Among the key factors
influencing HU-RES were pre-treatment HCT levels and the annual
frequency of phlebotomies, both of which showed strong
associations with the likelihood of developing resistance.
Additionally, a significant synergistic relationship between

pre-treatment red cell distribution width (RDW) and hemoglobin
(HGB) levels was uncovered. Specific thresholds for these
markers, RDW at 17% and HGB at 15.5 g/dL, proved to be highly
predictive of HU-RES. The study found that patients with RDW
values greater than or equal to 17% and HGB levels below
15.5 g/dL were the most likely to become resistant to HU
treatment. Importantly, these variables, RDW and HGB, can be
measured easily using standard laboratory tests, making them
accessible tools for physicians. By identifying this key combina-
tion and its synergistic effect, clinicians can utilize these
thresholds as critical markers during routine monitoring of PV
patients undergoing HU therapy. Adopting predictive thresholds
of RDW ≥ 17% and HGB ≤ 15.5 g/dL could substantially enhance
clinical decision-making by identifying patients at risk of
developing hydroxyurea resistance earlier in their treatment
course. This early stratification would enable clinicians to
proactively consider alternative therapeutic strategies, such as
transitioning patients to second-line treatments like ruxolitinib,
thereby potentially reducing morbidity associated with delayed
intervention and improving patient outcomes.
The identified clinical and laboratory parameters, RDW and HGB

thresholds, may complement existing molecular markers and
other established predictors of hydroxyurea resistance (HU-RES).
Molecular mutations, particularly those in DNA repair genes such
as TP53 and PPM1D, have been associated with clonal evolution
and chemotherapy resistance. These mutations can promote the
survival and expansion of therapy-resistant clones, rendering HU
treatment less effective over time. Integrating these genetic

Fig. 5 Decision tree. Clinical decision tree based on pre-index red cell distribution width (RDW) and hemoglobin (HGB) values that could help
identify patients most likely to become resistant to hydroxyurea (HU) within 6–9 months of starting HU treatment.

Fig. 6 Association with risk factors. Association of neutrophil-
lymphocyte-ratio (NLR) with high and low red cell distribution width
(RDW) groups.
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insights with routinely measured parameters like RDW and HGB
offers a more comprehensive risk stratification approach. For
instance, while genetic testing can identify patients predisposed
to clonal resistance, the identified hematological markers provide
dynamic, real-time indicators of emerging resistance during
treatment. Additional biomarkers, such as elevated neutrophil-
to-lymphocyte ratio (NLR), increased inflammatory cytokines, and
aberrant erythropoiesis markers, also play a role in predicting
resistance. In particular, elevated HCT levels and frequent
phlebotomy requirements reflect ineffective cytoreduction and
impending HU-RES, while higher WBC and PLT counts may signify
disease progression. Together, these biomarkers highlight both
static genetic risks and dynamic hematologic or inflammatory
changes. By combining molecular diagnostics with accessible
laboratory markers, clinicians can create multi-dimensional pre-
dictive models, enhancing early detection and enabling tailored
interventions that mitigate the risks of HU-RES and improve
outcomes in PV patients.
The retrospective nature of this analysis and the use of real-

world data can present some limitations to this analysis. Although
data for a large number of patients with PV was available within
the Optum® EHR database, strict inclusion and exclusion criteria
were applied to obtain a focused cohort of patients for this
analysis. Therefore, this analysis population may have excluded
some patients of interest that may have predicted HU-RES, such
as those who stopped treatment prior to 9 months due to HU-RES.
Collection of clinical data for the Optum® EHR database takes
place from a wide range of sources, there could be a possibility
of missing, invalid or unrecorded data, inaccuracies, and/or
technical errors. Recording input codes were also determined
using subjective medical judgement. Despite these potential
limitations, the outcomes from this analysis will be validated
externally through the prospective, single-arm, open-label HU-F-
AIM study.
The analysis underscores the value of patient history as an

essential resource for clinicians. By proactively scheduling
laboratory tests before initiating HU treatment, physicians can
better identify patients at higher risk of developing HU-RES. Early
identification of at-risk individuals allows for closer monitoring
throughout treatment. This, in turn, enables timely and informed
clinical decisions, including the potential for an earlier switch to
second-line therapies like RUX, should HU-RES develop. Proactive
management of these patients can help optimize treatment

outcomes and mitigate the risks associated with HU-RES. Given
that HU is the most widely used cytoreductive therapy worldwide,
these findings have broad clinical relevance. In many regions,
including some European countries and non-EU nations, alter-
native first-line options such as interferons are either not available
or not approved, making HU the primary treatment choice.
Consequently, the risk scores established in this study, based on
widely accessible laboratory standard parameters, will be applic-
able and useful on a broad scale.
In this study, we propose a refined perspective on the concept

of HU-RES in PV. Traditionally, HU-RES has been attributed to
intrinsic molecular or immunological mechanisms that directly
limit the drug’s efficacy. However, we argue that in PV, resistance
should be considered in the context of the disease itself rather
than solely as a failure of the molecular inhibition of DNA
synthesis. The currently used term “HU resistance” implies a
mechanistic failure at the cellular or molecular level, whereas in
PV, the persistence of elevated HCT and ongoing need for
phlebotomy despite HU therapy may primarily reflect the
progressive nature of the disease rather than a molecularly driven
loss of drug efficacy. Given this distinction, we propose an
updated terminology that differentiates between true molecular
resistance, where intrinsic biological mechanisms directly impair
HU function, and clinical resistance, where the disease’s trajectory
necessitates alternative therapeutic strategies. This nuanced
approach aligns better with the heterogeneous response patterns
observed in PV and provides a clearer rationale for treatment
decisions.
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