Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LYMPHOMA

A highly selective and orally bioavailable casein kinase 1 alpha degrader through p53 signaling pathway targets B-cell lymphoma cells

Abstract

The modest reduction in casein kinase 1 alpha (CK1α) by lenalidomide contributes to its clinical effectiveness in treating del(5q) myelodysplastic syndrome. However, the mechanism by which CK1α impacts lymphoma survival remains inadequately defined. We developed INNO-220, a CRBN-dependent CK1α degrader, by leveraging cytokine expression profiling in T cells. Unlike lenalidomide, INNO-220 is a highly selective and potent degrader of CK1α without affecting IKZF1/3. Screening across lymphoma cell lines revealed that cells harboring wild-type p53 and exhibiting constitutive NF-κB signaling were particularly sensitive to CK1α degradation yet resistant to Bruton tyrosine kinase inhibitors. Moreover, INNO-220 suppresses NF-κB signaling and activates p53 pathway, leading to complete inhibition of lymphoma tumor growth in vivo. Mechanistically, INNO-220 disrupts the assembly and function of the CARD11/BCL10/MALT1 complex, thereby inhibiting NF-κB signaling in stimulated T cells and lymphoma cells that harbor an activating mutation in CARD11. Moreover, we observed that activation of wild-type p53 upon INNO-220 treatment was sufficient to induce potent cancer cell death even in the absence of constitutive NF-κB activity. In summary, our findings introduce a selective CK1α degrader as a novel therapeutic approach for lymphoma, providing both mechanistic insights and a potential patient selection strategy in treating lymphoma and possibly other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and characterization of INNO-220.
Fig. 2: INNO-220 inhibits IL-2 expression by disrupting the CBM complex and inhibiting NF-κB activity.
Fig. 3: INNO-220 impaired cell viability and selectively degraded CK1α in lymphoma cells.
Fig. 4: INNO-220 showed cell-killing activity in lymphoma cells.
Fig. 5: CK1α degradation by INNO-220 leads to activation of p53 and inhibition of CBM/NF-κB signaling.
Fig. 6: INNO-220 inhibits lymphoma progression and degrades CK1α in vivo.
Fig. 7: INNO-220 induces apoptosis in OCI-Ly3 cells through p53 stabilization and inhibition NF-κB activity through disruption of the CBM complex.
Fig. 8: Proposed model illustrating the pivotal role of CK1α in the assembly and constitutive activation of the CARD11 L244P-containing CBM complex—as well as other lymphomas that harbor functionally similar oncogenic GoF CARD11 mutations.

Similar content being viewed by others

Data availability

RNA-seq data are publicly available in Gene Expression Omnibus (GEO) at GSE270521. The data supporting the findings of this study are available from the corresponding author upon reasonable request. All other data are available in the article and its supplementary materials.

References

  1. Silkenstedt E, Salles G, Campo E, Dreyling M. B-cell non-Hodgkin lymphomas. Lancet. 2024;403:1791–807.

    Article  CAS  Google Scholar 

  2. Stephens DM, Byrd JC. Resistance to Bruton tyrosine kinase inhibitors: the Achilles heel of their success story in lymphoid malignancies. Blood. 2021;138:1099–109.

    Article  CAS  Google Scholar 

  3. Zhong G, Kong R, Feng S, Wang C, Hao Q, Xie W, et al. Targeted protein degradation in hematologic malignancies: latest updates from the 2023 ASH annual meeting. J Hematol Oncol. 2024;17:14.

    Article  CAS  Google Scholar 

  4. Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide. Nat Rev Clin Oncol. 2021;18:401–17.

    Article  Google Scholar 

  5. Kozicka Z, Thoma NH. Haven’t got a glue: Protein surface variation for the design of molecular glue degraders. Cell Chem Biol. 2021;28:1032–47.

    Article  CAS  Google Scholar 

  6. Goldhirsh G, Kravtsova-Ivantsiv Y, Satish G, Ziv T, Brik A, Ciechanover A. A short binding site in the KPC1 ubiquitin ligase mediates processing of NF-kappaB1 p105 to p50: a potential for a tumor-suppressive PROTAC. Proc Natl Acad Sci USA. 2021;118:e2117254118.

  7. Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther. 2024;9:308.

    Article  Google Scholar 

  8. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN. Br J Haematol. 2014;164:811–21.

    Article  CAS  Google Scholar 

  9. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5.

    Article  Google Scholar 

  10. Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, et al. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev. 2022;56:100971.

    Article  CAS  Google Scholar 

  11. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21:803–9.

    Article  CAS  Google Scholar 

  12. Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature. 2015;523:183–8.

    Article  CAS  Google Scholar 

  13. Petzold G, Fischer ES, Thoma NH. Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature. 2016;532:127–30.

    Article  CAS  Google Scholar 

  14. Groppe JC. Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opin Drug Discov. 2019;14:1237–53.

    Article  CAS  Google Scholar 

  15. Roskoski R Jr. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res. 2015;100:1–23.

    Article  CAS  Google Scholar 

  16. Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4:314–22.

    Article  CAS  Google Scholar 

  17. Martinez-Valbuena I, Lee S, Santamaria E, Irigoyen JF, Forrest S, Li J, et al. 4R-Tau seeding activity unravels molecular subtypes in patients with progressive supranuclear Palsy. bioRxiv. 2023.

  18. Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, et al. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol. 2020;13:77.

    Article  CAS  Google Scholar 

  19. Chen X, Lu T, Cai Y, Han Y, Ding M, Chu Y, et al. KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo-YAP pathway. Cell Mol Biol Lett. 2023;28:32.

    Article  CAS  Google Scholar 

  20. Huart AS, MacLaine NJ, Meek DW, Hupp TR. CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem. 2009;284:32384–94.

    Article  CAS  Google Scholar 

  21. Chen L, Li C, Pan Y, Chen J. Regulation of p53-MDMX interaction by casein kinase 1 alpha. Mol Cell Biol. 2005;25:6509–20.

    Article  CAS  Google Scholar 

  22. Järås M, Miller PG, Chu LP, Puram RV, Fink EC, Schneider RK, et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014;211:605–12.

    Article  Google Scholar 

  23. Ruefli-Brasse AA, French DM, Dixit VM. Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science. 2003;302:1581–4.

    Article  CAS  Google Scholar 

  24. Schulze-Luehrmann J, Ghosh S. Antigen-receptor signaling to nuclear factor kappa B. Immunity. 2006;25:701–15.

    Article  CAS  Google Scholar 

  25. Bidere N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, et al. Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature. 2009;458:92–96.

    Article  CAS  Google Scholar 

  26. Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006;2006:re13.

    Article  Google Scholar 

  27. Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature. 1998;396:590–4.

    Article  CAS  Google Scholar 

  28. Gehring T, Erdmann T, Rahm M, Grass C, Flatley A, O’Neill TJ, et al. MALT1 phosphorylation controls activation of T lymphocytes and survival of ABC-DLBCL tumor cells. Cell Rep. 2019;29:873–88.e810.

    Article  CAS  Google Scholar 

  29. Carvalho G, Le Guelte A, Demian C, Vazquez A, Gavard J, Bidère N. Interplay between BCL10, MALT1 and IkappaBalpha during T-cell-receptor-mediated NFkappaB activation. J Cell Sci. 2010;123:2375–80.

    Article  CAS  Google Scholar 

  30. Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol. 2010;2:a000109.

    Article  Google Scholar 

  31. Knies N, Alankus B, Weilemann A, Tzankov A, Brunner K, Ruff T, et al. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-kappaB and JNK activation. Proc Natl Acad Sci USA. 2015;112:E7230–38.

    Article  CAS  Google Scholar 

  32. Smith CIE, Burger JA. Resistance mutations to BTK inhibitors originate from the NF-kappaB but not from the PI3K-RAS-MAPK arm of the B cell receptor signaling pathway. Front Immunol. 2021;12:689472.

    Article  CAS  Google Scholar 

  33. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319:1676–9.

    Article  CAS  Google Scholar 

  34. Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol. 2017;10:133.

    Article  Google Scholar 

  35. Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 2010;20:299–309.

    Article  CAS  Google Scholar 

  36. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA. 2003;100:12009–14.

    Article  CAS  Google Scholar 

  37. Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996;15:5349–57.

    Article  CAS  Google Scholar 

  38. Leslie PL, Ke H, Zhang Y. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J Biol Chem. 2015;290:12941–50.

    Article  CAS  Google Scholar 

  39. Wu S, Chen L, Becker A, Schonbrunn E, Chen J. Casein kinase 1alpha regulates an MDMX intramolecular interaction to stimulate p53 binding. Mol Cell Biol. 2012;32:4821–32.

    Article  CAS  Google Scholar 

  40. Ruland J, Hartjes L. CARD-BCL-10-MALT1 signalling in protective and pathological immunity. Nat Rev Immunol. 2019;19:118–34.

    Article  CAS  Google Scholar 

  41. Matsumoto R, Wang D, Blonska M, Li H, Kobayashi M, Pappu B, et al. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity. 2005;23:575–85.

    Article  CAS  Google Scholar 

  42. Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-Garcia ME, Ovechkina YL, et al. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity. 2005;23:561–74.

    Article  CAS  Google Scholar 

  43. Manni S, Fregnani A, Quotti Tubi L, Spinello Z, Carraro M, Scapinello G, et al. Protein Kinase CK1alpha Sustains B-Cell Receptor Signaling in Mantle Cell Lymphoma. Front Oncol. 2021;11:733848.

    Article  CAS  Google Scholar 

  44. Cheng J, Hamilton KS, Kane LP. Phosphorylation of Carma1, but not Bcl10, by Akt regulates TCR/CD28-mediated NF-kappaB induction and cytokine production. Mol Immunol. 2014;59:110–6.

    Article  CAS  Google Scholar 

  45. Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer. 2014;13:231.

    Article  Google Scholar 

  46. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  Google Scholar 

  47. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96.

    Article  CAS  Google Scholar 

  48. Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. Annu Rev Pathol. 2016;11:617–44.

    Article  CAS  Google Scholar 

  49. Fang Y, Zhang MC, He Y, Li C, Fang H, Xu PP, et al. Human endogenous retroviruses as epigenetic therapeutic targets in TP53-mutated diffuse large B-cell lymphoma. Signal Transduct Target Ther. 2023;8:381.

    Article  CAS  Google Scholar 

  50. Lew TE, Minson A, Dickinson M, Handunnetti SM, Blombery P, Khot A, et al. Treatment approaches for patients with TP53-mutated mantle cell lymphoma. Lancet Haematol. 2023;10:e142–e154.

    Article  CAS  Google Scholar 

  51. Minzel W, Venkatachalam A, Fink A, Hung E, Brachya G, Burstain I, et al. Small molecules co-targeting CKIalpha and the transcriptional kinases CDK7/9 control AML in preclinical models. Cell. 2018;175:171–85.e125.

    Article  CAS  Google Scholar 

  52. Nishiguchi G, Mascibroda LG, Young SM, Caine EA, Abdelhamed S, Kooijman JJ, et al. Selective CK1alpha degraders exert antiproliferative activity against a broad range of human cancer cell lines. Nat Commun. 2024;15:482.

    Article  CAS  Google Scholar 

  53. Park SM, Miyamoto DK, Han GYQ, Chan M, Curnutt NM, Tran NL, et al. Dual IKZF2 and CK1alpha degrader targets acute myeloid leukemia cells. Cancer Cell. 2023;41:726–39.e711.

    Article  CAS  Google Scholar 

  54. Kanaoka D, Yamada M, Yokoyama H, Nishino S, Kunimura N, Satoyoshi H, et al. FPFT-2216, a novel anti-lymphoma compound, induces simultaneous degradation of IKZF1/3 and CK1alpha to activate p53 and inhibit NFkappaB signaling. Cancer Res Commun. 2024;4:312–27.

    Article  CAS  Google Scholar 

  55. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    Article  CAS  Google Scholar 

  56. Phelan JD, Young RM, Webster DE, Roulland S, Wright GW, Kasbekar M, et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature. 2018;560:387–91.

    Article  CAS  Google Scholar 

  57. Young RM, Shaffer AL 3rd, Phelan JD, Staudt LM. B-cell receptor signaling in diffuse large B-cell lymphoma. Semin Hematol. 2015;52:77–85.

    Article  CAS  Google Scholar 

  58. Nalawansha DA, Crews CM. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem Biol. 2020;27:998–1014.

    Article  CAS  Google Scholar 

  59. Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev. 2022;51:5214–36.

    Article  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation (No. 82170189). Taishan Scholars Program of Shandong Province. Shandong Provincial Natural Science Foundation (ZR2021YQ51). Technology Development Project of Jinan City (No. 202134034).

Author information

Authors and Affiliations

Authors

Contributions

W.X. and X.Z. designed research; S.F., R.K., C.W., Q.H., X.X., Y.Z., J.E., D.M., M.H., V.P.K., P.P. and F.M. performed research; X.Z., W.X., S.F. analyzed data; J.H. and P.K. contributed new reagents/analytic tools; and S.F., R.K., C.W., Q.H., F.M., W.X. and X.Z. wrote the paper. S.F., R.K., Q.H. and C.W. contributed equally to this work.

Corresponding authors

Correspondence to Weilin Xie or Xiangxiang Zhou.

Ethics declarations

Competing interests

W.X., J.E., D.M., M.H., P.K., V.P.K., P.P., and F.M. are currently employed by Innovo Therapeutics and currently hold stock options in a privately held company. This study did not receive funding from Innovo Therapeutics, and we declare that these relationships do not influence the study design, data analysis, or interpretation of results. The remaining authors declare that they have no competing interests.

Ethics approval

This study was approved by the Medical Ethical Committee of Shandong Provincial Hospital. All samples were obtained with informed consent in accordance with the Declaration of Helsinki. All animal experimental procedures were performed in accordance with the protocols approved by the Institutional Animal Care and Research Advisory Committee of Shandong Provincial Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Kong, R., Wang, C. et al. A highly selective and orally bioavailable casein kinase 1 alpha degrader through p53 signaling pathway targets B-cell lymphoma cells. Leukemia 39, 1972–1986 (2025). https://doi.org/10.1038/s41375-025-02647-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02647-x

Search

Quick links