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Recurrent mutations in the third base of U1 spliceosomal RNA responsible for marked splicing and expression abnormalities have
been described in chronic lymphocytic leukemia (CLL) and some solid tumors. However, the clinical significance of these mutations
in large and independent CLL cohorts as well as their presence in other B-cell neoplasms is unknown. Here we characterized U1
mutations in 1670 CLL and 363 mature B-cell lymphomas. We confirmed that the g.3A>C U1 mutation is found in 3.5% of CLL,
which conferred rapid disease progression independently of the main biological and clinical prognostic markers of the disease.
Additionally, a recurrent g.9C>T mutation was found in 1.5% of CLL causing downstream splicing alterations and associated with
adverse prognosis. We also identified a g.4C>T mutation in 10% of diffuse large B-cell lymphomas of the germinal center subtype
and a g.7A>G mutation in 30% of EBV-negative Burkitt lymphomas, both of which altered the splicing pattern of multiple genes.
This study reveals novel, recurrent, and tumor-specific U1 mutations in mature B-cell neoplasms with biological and prognostic
implications, thus establishing U1 as a novel pan-B-cell malignancy driver gene.
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INTRODUCTION
The small nuclear RNA U1, which is present in multiple identical
copies in the human genome, is part of the spliceosome complex
where it is involved in 5’ splice site (5’SS) recognition via base-
pairing and has been found to be mutated in cancer [1, 2]. The
third base of the gene is a hotspot site with an A>C mutation
(g.3A>C) detected in 3.8% of chronic lymphocytic leukemia (CLL)
and 5.9% of hepatocarcinoma patients [1]. A distinct g.3A>G
mutation was found in 50% of patients with Sonic Hedgehog
medulloblastoma [2]. In CLL, the g.3A>C mutation induces global
gene splicing and expression changes with more than 1500
differentially spliced introns and 800 differentially expressed
genes between U1 mutated and wild-type tumors [1]. Our initial
study [1] found the g.3A>C mutation exclusively in CLL with
unmutated immunoglobulin heavy variable (IGHV) genes (U-CLL)
[3, 4], and the presence of the mutation was associated with a
short time to first treatment (TTFT) [1]. However, this study
focused on a relatively small cohort of 318 patients [1]. In our CLL

molecular map study of 1148 patients [5], the g.3A>C U1
mutation was found in 3.8% of cases and virtually exclusive of
U-CLL, and associated with a specific CLL expression cluster [5].
The comprehensive nature of this study and the heterogeneous
cohorts analyzed [5] precluded us from performing a detailed
analysis of U1 mutations and their impact on outcome.
Altogether, the clinical implications of this g.3A>C U1 mutation,
its relationship with other driver alterations, its dynamics through
the disease course, and the possible relevance of other (i.e., non-
position 3) U1 mutations remain undisclosed. In addition to the
findings in CLL, our initial analysis of the Pan-Cancer Analysis of
Whole Genomes Consortium (PCAWG) cohort identified a number
of U1 mutations in B-cell non-Hodgkin lymphomas, suggesting
that these mutations may also be relevant in other lymphoid
neoplasms [1]. However, the low number of patients analyzed
and lack of histological characterization prevented us from
reaching any solid conclusions on the significance of this
observation [1].
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In the current study, we aimed to provide a comprehensive
catalog of U1 mutations across a wide spectrum of mature B-cell
neoplasms. First, we performed an unbiased characterization of
the U1 mutational status in 762 B-cell neoplasms analyzed by
whole-genome sequencing (WGS) and complemented with RNA
sequencing (RNA-seq) data. This WGS cohort comprised 399 CLL
and 363 mature B-cell lymphomas, including diffuse large B-cell
lymphomas (DLBCL), Burkitt lymphomas (BL), mantle cell lympho-
mas (MCL), and follicular lymphomas (FL). Second, we expanded
the biologic and clinical characterization of recurrent U1 muta-
tions in immunogenetic- and epigenetic-based subtypes [3, 4, 6, 7]
of CLL by integrating genomic and transcriptomic data of
1,670 patients from two independent cohorts. The results
presented here below uncover specific U1 mutations in distinct
B-cell neoplasms with downstream molecular and clinical
consequences.

METHODS
Cohorts studied
A total of 1,670 patients with CLL were included in this study. Patients with
CLL were divided in two independent cohorts: cohort 1 (C1)-CLL comprised
1,120 CLL patients from our International Cancer Genome Consortium
(ICGC) [8], which included 318 patients analyzed previously [1]; and cohort
2 (C2)-CLL comprised 550 patients from three distinct centers [University
Hospital Heidelberg (n= 258), a multi-center WGS cohort coordinated by
Karolinska Institutet on behalf of the European Research Initiative on CLL
(ERIC) (n= 170), and Dana-Farber Cancer Institute (DFCI, n= 122)]
(Supplementary Table 1) [5, 9, 10]. We also studied 363 previously
published B-cell lymphoma patients including 155 DLBCL [11–13], 110 BL
[13, 14], 61 MCL [15], and 37 FL [13] (Supplementary Table 2). The study
was approved by the Ethics Committee of the Hospital Clínic of Barcelona.
Informed consent was obtained from all patients. All methods were
performed in accordance with the relevant guidelines and regulations.

Bioinformatic analyses and functional validations
We developed a novel U1 mutation calling pipeline based on a matched
tumor-normal mixture model to call somatic and germline mutations in
any of the 11 canonical U1 genes found in the human genome (GRCh38/
hg38) from WGS data (Fig. 1a, b, Supplementary Fig. 1, Supplementary
Table 3, Supplementary Methods). Analyses of RNA-seq and gene
expression microarrays, PCR-based genotyping of U1 mutations (rhAMP
assay), and transfection experiments in cell lines were performed as
previously described [1, 8] and are detailed in Supplementary Methods.

RESULTS
U1 mutations in 762 mature B-cell neoplasm whole genomes
We first re-analyzed the WGS data of 762 patients with B-cell
neoplasms, 399 CLL and 163 mature B-cell lymphomas, to
characterize the distribution of mutations along the U1 gene.
We identified 155 U1 mutations in 133/762 (17.5%) samples.
Among them, 150 mutations were somatic and 5 were present in
the germline of the patients and included in downstream analyses
since they affected the 5’SS recognition sequence of U1 (positions
3–10) (Supplementary Table 4). The high purity of the normal DNA
of the 5 patients with U1 germline mutations suggested that these
mutations represented true germline events. Based on the
calculated percentage of cells carrying each mutation, virtually
all U1 mutations occurred in heterozygosis in a single canonical
U1 gene, which could be identified for most somatic and germline
mutations (see Supplementary Table 4 for details on the somatic
origin of the mutations, mutated U1 genes, and corresponding
genomic coordinates).
The incidence of U1 mutations differed between entities: 56

mutations in 51/399 (12.8%) CLL, 59 mutations in 46/155 (29.7%)
DLBCL, 27 in 24/110 (21.8%) BL, 5 in 5/61 (8.2%) MCL, and 8 in 7/37
(18.9%) FL (Fig. 1c). We found mutations in 51 distinct positions of
the 164-bp transcribed portion of the U1 gene, but the majority of

mutations (98/155, 63.2%) were found between positions 3 and 10,
the regions responsible for 5’SS recognition via base-pairing (Fig. 1a).
Of note, 80.4% of the mutations identified in CLL, 54.2% in DLBCL,
and 63% in BL were located within the 5’SS recognition sequence of
U1 (Fig. 1c). In line with this, 42/399 (10.5%) CLL, 27/155 (17.4%)
DLBCL, and 17/110 (15.5%) BL carried mutations in the U1 5’SS
recognition sequence, which contrast with only 2/61 (3.3%) MCL
and 2/37 (5.4%) FL (Fig. 1d). We observed substantial differences in
the mutated sites of CLL, DLBCL, and BL. In CLL, the most frequently
mutated site was position 3 with 29 tumors (7.3% of the whole CLL
WGS cohort) carrying the previously identified g.3A>C mutation [1].
We also identified two additional recurrent mutations in CLL, a C>T
mutation at position 9 (g9.C>T) in 8 (2%) and a T>A mutation at
position 5 (g5.T>A) in 3 (0.75%) (Fig. 1d). DLBCL carried recurrent
mutations in position 3 (g.3A>C, n= 7, 4.5%), position 4 (g.4C>T,
n= 13, 8.4%; g.4C>G, n= 2, 1.3%), position 8 (g.8C>T, n= 3, 1.9%)
and position 9 (g.9C>T, n= 3, 1.9%), while BL in position 4 (g.4C>T,
n= 4, 3.6%) and position 7 (g.7A>G, n= 12, 10.9%) (Fig. 1d).
Overall, the 5’SS recognition sequence of U1 is recurrently

mutated in CLL, DLBCL and BL, with distinct mutations enriched in
specific entities. Given the reported downstream effects asso-
ciated with mutations in position 3 [1, 2], the novel mutations
identified between positions 4–10 in DLBCL, BL and CLL could also
alter the 5’SS recognition and binding of U1.

Downstream effect of U1 mutations in DLBCL subtypes
Based on the cell of origin [16], our DLBCL cohort of 155 patients
included 53 activated B-cell like (ABC)-DLBCL, 78 germinal center
B-cell like (GCB)-DLBCL, and 11 unclassified tumors, while this
information was not available for the remaining 13 patients
(Supplementary Table 2). U1 mutations found in the 5’SS
recognition sequence (positions 3–10) showed a non-significant
enrichment in GCB-DLBCL (16/78 mutated, 20.5%) compared to
ABC-DLBCL (5/53, 9.4%) (p= 0.14) (Fig. 2a). This trend was
confirmed on the identified hotspot positions 3 and 4 of the U1
gene. Within GCB-DLBCL, g.3A>C and g.4C>T/g.4C>G mutations
accounted for 5/78 (6.4%) and 10/78 (12.8%) of tumors,
respectively, which contrasted with the frequency of the g.3A>C
(0%) and g.4C>T (2/53; 3.8%) in ABC-DLBCL (p= 0.08 and p= 0.12,
respectively) (Fig. 2b). The U1 g.4C>T mutation in GCB-DLBCL co-
occurred significantly with HIST1H1E and TBL1XR1 mutations,
while both g.3A>C and g.4C>T co-occurred with SOCS1 (q < 0.1,
Fig. 2c, Supplementary Fig. 2).
We next conducted differential splicing analyses in the RNA-

seq data of GCB-DLBCL (4g.3A>C, 7g.4C>T, and 44 wild-type).
The analysis for g.3A>C in GCB-DLBCL revealed no significant
difference for the base composition of 5’SS (Supplementary
Fig. 3a, b), whereas the analysis of g.4C>T revealed 1,902 introns
differentially spliced (q < 0.1 and absolute log2 effect size >1)
with a significant enrichment of adenine at position 5 of the 5’SS
in introns with increased excision in g.4C>T GCB-DLBCL
(Fig. 2d, e, Supplementary Table 5). Differential gene expression
analyses in GCB-DLBCL also revealed that the g.3A>C mutation
was not associated with significant expression changes (0 genes
with q < 0.1 and absolute log2 fold-change >1; Supplementary
Fig. 3c), while the g.4C>T mutation was associated with up-
regulation of 47 genes and down-regulation of 634 genes in
mutated tumors under the same threshold (Fig. 2f, Supplemen-
tary Table 6).

Downstream effect of U1 mutations in BL subtypes
BL cohort (n= 110) included 34 patients with Epstein-Barr virus
(EBV)-negative and 71 EBV-positive tumors (EBV status was not
available for 5 patients, Supplementary Table 2) [14]. Focusing on
mutations located at the 5’SS recognition motif of U1, we
observed a significant enrichment of U1 mutations in EBV-
negative (11/34 mutated, 32.4%) compared to EBV-positive BL
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(5/71, 7.0%) (p= 0.002) (Fig. 3a). Specifically, the g.7A>G mutation
was detected in 10/34 (29.5%) EBV-negative compared to only 1/
71 (1.4%) EBV-positive BL (p < 0.001). Contrarily, all four g.4C>T
mutations were present in EBV-positive BL (5.6% of tumors)
(Fig. 3b). We observed that EBV-negative BL carrying U1 mutations
usually harbored mutations in genes of the BCR/PI3K signaling
pathway, while EBV-positive BL harboring U1 mutations seemed
to lack mutations in epigenetic regulator genes (Fig. 3c, Supple-
mentary Fig. 4).
In EBV-negative BL, a differential splicing analysis identified

6,970 introns differentially spliced between U1 g.7A>G mutated
and wild-type tumors. The differentially spliced introns had a

significant enrichment of cytosine at position 2 of the 5’SS, which
belongs to the highly conserved GT dinucleotide motif (Fig. 3d, e,
Supplementary Table 7). In addition, we found 65 genes
significantly differentially expressed between g.7A>G mutated
and wild-type EBV-negative BL, although only 10 were protein-
coding genes (Fig. 3f, Supplementary Table 8). Intriguingly, the
g.4C>T mutation had no significant impact on the distribution of
5’SS in EBV-positive BL (Supplementary Fig. 5a, b). A gene
expression analysis in EBV-positive BL revealed 79 genes to be
significantly differentially expressed between g.4C>T mutated and
wild-type tumors, with only 14/79 protein-coding genes (Supple-
mentary Fig. 5c).
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Biologic and clinical features associated with g.3A>C U1
mutations in CLL
We analyzed the clinico-biological characteristics of CLL patients
carrying the g.3A>C U1 mutation using two independent cohorts,
C1-CLL and C2-CLL with 1120 and 550 patients respectively (1670
total). Note that C1-CLL is a representative population-based
cohort while C2-CLL is biased towards specific aggressive CLL
subgroups (i.e., higher percentage of U-CLL and B-cell receptor
stereotypy as well as advanced clinical stages; Supplementary
Table 1).
Among C1-CLL, we identified the g.3A>C mutation in 30/1120

(2.7%) tumors using a previously validated rhAMP assay (Supple-
mentary Table 9) [1]. The frequency of this mutation was similar in
unmatched samples analyzed before and after therapy [27/1,023
(2.6%) vs 3/97 (3.1%), p= 0.74, respectively] (Fig. 4a). In line with
this, the analysis of sequential pair samples of 33 patients (4
mutated, 29 wildtype) analyzed before therapy and at relapse
showed that the g.3A>C mutational status did not change after
chemoimmunotherapy. Among patients analyzed prior to any
therapy, the g.3A>C U1 mutation showed a trend for enrichment
in patients diagnosed with CLL compared to monoclonal B-cell
lymphocytosis (MBL) (26/850 (3.1%) vs 1/173 (0.6%), p= 0.069). U1
mutations were equally distributed among Binet stages (p= 0.56).
All mutated tumors but one were U-CLL (p < 0.001) and highly
enriched within the naïve-like epigenetic subgroup (n-CLL,
p < 0.001) (Fig. 4b). Of note, g.3A>C U1 mutated CLL accounted
for 6.4% and 7.2% of U-CLL and n-CLL subtypes, respectively. The

sole M-CLL C1-CLL carrying the g.3A>C mutation was classified as
an epigenetically intermediate-CLL subtype, belonged to B-cell
receptor stereotyped subset #2, and expressed the IGLV3-21 gene
with the R110 mutation (IGLV3-21R110), which is known for its
aggressive behavior independently of their IGHV gene somatic
hypermutation (SHM) status [17–21]. With respect to B-cell
receptor stereotyped subsets, the U1 mutated CLL had a trend
to a higher frequency of stereotypy than U1 wild-type tumors
(p= 0.096) (Fig. 4c). To study the potential co-occurrence or
mutual exclusivity of U1 mutations with known CLL driver
alterations, we integrated the g.3A>C U1 with the mutational
status of 28 gene and 21 copy number alterations from 693 C1-
CLL patients (600 CLL and 93 MBL) [8, 22]. None of the U1 mutated
tumors carried mutations in SF3B1 or BIRC3, only one carried
concomitant NOTCH1 and ATM mutations, and two carried TP53
mutations. In contrast, U1 mutations were statistically more likely
to co-occur with NFKBIE, as previously described [1], and POT1
mutations (q < 0.1) (Fig. 4d). Of note, 4 CLL with the g.3A>C U1
mutation harbored del(13q) as a sole driver alteration, and one
tumor lacked all CLL drivers analyzed. Altogether, g.3A>C U1
mutant CLL harbored a similar number of driver alterations as U1
wild-type U-CLL (Fig. 4e).
We validated these results in the C2-CLL cohort. We identified

the g.3A>C mutation in 30/550 (5.5%) tumors by rhAMP assay,
WGS, and/or RNA-seq. As observed in C1-CLL, this mutation was
similarly found in pre- and post-treatment samples [20/412
(4.9%) and 7/89 (7.9%), respectively; p= 0.3]. Among
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pretreatment samples, g.3A>C U1 mutations were significantly
enriched in U-CLL [17/181 (9.4%) U-CLL; 3/219 (1.4%) M-CLL;
p < 0.001] and in the naïve-like CLL subgroup [5/54, (9.3%) naïve-
like; 1/24 (4.2%) intermediate; 1/91 memory-like (1.1%); p= 0.04]
(Supplementary Fig. 6a). Of note, 2/3 M-IGHV carrying the
g.3A>C U1 mutation belonged to subset #2, while the remaining
non-stereotyped CLL carried the IGLV3-21R110 mutation. Despite
the higher incidence of stereotyped tumors in C2-CLL (68%),
g.3A>C U1 mutated CLL also showed a higher frequency of
stereotypy than U1 wild-type tumors (93% vs 61%, p= 0.02,
Supplementary Fig. 6b). Similar to the results in C1-CLL, we
found an association between U1 mutations and the presence of
NFKBIE mutations (q < 0.1) and none of the patients analyzed
before therapy carried concomitant SF3B1 and U1 mutations
(Supplementary Fig. 6c). Intriguingly, among C2-CLL samples
analyzed at relapse post-treatment or at an unknown treatment
stage, we observed 3 CLL carrying concomitant SF3B1 and U1
mutations (Supplementary Fig. 6d). However, we could not
confirm that both mutations co-occurred in the same CLL cells
based on their clonality. Overall, similar clinical and genetic
associations were observed when both cohorts were analyzed
together (Supplementary Table 10).
Using the two cohorts, we validated the previously identified

effect on expression and mis-splicing caused by the g3.A>C U1
mutation [1] in 468 C1-CLL patients analyzed by microarray-based
gene expression profiling [8] and 75 C2-CLL cases by RNA-seq
(Supplementary Results, Supplementary Figs. 7, 8, Supplementary
Tables 11–14).

g.9C>T U1 mutations in CLL
We found a recurrent g.9C>T mutation in the WGS of 7 CLL
(Fig. 1d). To further characterize this mutation, we first genotyped
it using a custom rhAMP assay in 1,051 C1-CLL tumors (note that
they included the 152 C1-CLL studied by WGS as controls; 3g.9C>T
mutated) (Supplementary Table 9). Altogether, we identified 14/
1,051 (1.4%) CLL carrying the g.9C>T mutation. In contrast to the
g.3A>C mutation, the g.9C>T was enriched in M-CLL [12/615 (2%)
M-CLL vs 2/417 (0.5%) U-CLL, p= 0.055]. A similar trend was
observed regarding the epigenetic subtypes [7/432 (1.6%)
memory-like, 1/119 (0.84%) intermediate, and 3/300 (1%) naïve-
like CLL]. Once integrated with the driver genomic landscape of
CLL (Fig. 4d), the g.9C>T mutation did not significantly co-occur
nor was mutually exclusive with any of the studied CLL driver
alterations. Only one tumor carried both g.3A>C and g.9C>T U1
mutations, and none of the g.9C>T CLL carried SF3B1 mutations
(Fig. 4d). Of note, two CLL carried the g.9C>T mutation as the sole
putative driver alteration, while in two additional tumors, g.9C>T
was accompanied by a single TRAF3 or KLHL6 mutation,
respectively (Fig. 4d).
We next performed a differential splicing analysis and identified

505 differentially spliced introns between g.9C>T (n= 4) vs wild-
type (n= 288) U1 CLL (Fig. 5a, b, Supplementary Table 15). Despite
the small sample size, we observed, as expected, significant
differences in the -1 position of the 5’SS in which introns with
increased excision in g.9C>T U1 mutated CLL were enriched for
adenine (Fig. 5a), specifically enriched in cryptic 5’SS and
annotated junctions (Fig. 5b). To confirm the impact of g.9C>T
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on splicing, we introduced exogenous U1 genes with or without
the g.9C>T in three CLL cell lines (JVM3, HG3, and MEC1).
Although we did not observe differences in proliferation, viability,
or apoptosis in g.9C>T vs wild-type cell lines, the same
transcriptome analysis using cell-line RNA-seq data confirmed
the downstream effect of the g.9C>T mutation observed in
primary tumors (462 differentially spliced introns; Fig. 5c, d,
Supplementary Table 16). We also found more than the expected
number of overlaps between differentially spliced introns in
primary CLL samples and cell lines (hypergeometric test p= 9.58e
−09; Fig. 5e), despite the fact that different sequencing
technologies were used for the two transcriptome experiments
(poly-A and total RNA-seq, respectively). In contrast with the
g.3A>C mutation, which results in the differential expression of
several hundred genes in primary CLL and cell lines, differential

gene expression analyses in g.9C>T CLL revealed that this
mutation had a smaller impact on gene expression since only
45 and 199 genes were significantly differentially expressed in
primary CLL and cell lines, respectively, with only one gene in
common (Fig. 5f, Supplementary Tables 17, 18).

Clinical impact of U1 mutations in CLL
In the C1-CLL, the g.3A>C U1 mutation was associated with a
shorter TTFT in univariate analysis across the entire CLL cohort as
well as in an analysis restricted to early stage (Binet A) patients
(p= 0.008 and p= 0.003, respectively) (Supplementary Fig. 9a, b).
Despite this, the g.3A>C U1 mutation was not associated with a
shortened overall survival (OS) (p= 0.59) (Supplementary Fig. 9c).
We next stratified patients according to their g.3A>C status, IGHV
gene SHM status, and presence of TP53, SF3B1, NOTCH1, and/or
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ATM alterations. Patients carrying the g.3A>C mutation had a
similar TTFT to those carrying TP53, SF3B1, NOTCH1, and/or ATM
alterations (Fig. 6a). A multivariable model including these
variables together with IGHV gene SHM status and disease stage
showed that the g.3A>C U1 mutation was independently
associated with a shorter TTFT (p= 0.005, Fig. 6b). We also
observed a significant prognostic impact of the g.3A>C U1
mutation independently of the number of driver alterations
(p= 0.02), a surrogate of the genomic complexity of the tumors
(Fig. 6c).
In the more aggressive C2-CLL, the g.3A>C U1 mutation showed

a trend for association with a shorter TTFT in a univariate analysis
(p= 0.057, 389 treatment-naïve patients at time of sampling and
with available clinical data included in the analysis) (Supplemen-
tary Fig. 10a). However, this mutation did not retain independent
prognostic value in a multivariate model including the IGHV gene
SHM status, Binet stage, and main driver alterations (TP53, SF3B1,

NOTCH1, and ATM). Note that only TP53 alterations, but not SF3B1,
NOTCH1, nor ATM aberrations had independent prognostic value
in this cohort (Supplementary Fig. 10b, c).
Regarding the g.9C>T mutation, we observed a shorter TTFT in

the C1-CLL cohort that was independent of the IGHV gene SHM
status and Binet stage (p= 0.027, Fig. 6d, e, Supplementary
Fig. 11a, b). Nonetheless, its independent prognostic value was
not confirmed when considering other driver alterations (TP53,
SF3B1, NOTCH1, ATM, g.3A>C U1), which is probably due to the
small number of patients carrying this g.9C>T U1 mutation
(Supplementary Fig. 11c).

DISCUSSION
We previously identified a novel noncoding recurrent A>C
mutation affecting the third base of the U1 spliceosomal RNA
(g.3A>C) in distinct cancer types including CLL, in which the
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mutation was observed in 3.8% patients and caused specific
downstream transcriptomic changes [1, 2]. Here we provided a
comprehensive characterization of U1 mutations in 1670 patients
with CLL to better understand their biological and clinical
consequences. Furthermore, we investigated the presence and
effect of U1 mutations in other mature B-cell neoplasms by
studying 363 tumor whole genomes.
Reanalysis of the whole genome of 399 CLL led to the

identification of a new recurrent mutation in position 9 of the
U1 gene (g.9C>T), which caused significant downstream splicing,
but not expression, changes in primary samples and transduced
CLL cell lines. Although the incidence of the g.9C>T U1 mutation

was relatively low (1.4%), this mutation defined a subgroup (2%)
of M-CLL with a short TTFT, thus indicating the heterogeneity of
this subgroup of patients while also highlighting the need to
further dissect its biological background. This WGS-based analysis
also confirmed that g.3A>C is the most frequent U1 mutation in
CLL [1]. After studying 1670 CLL from two independent cohorts,
the g.3A>C mutation was detected in 60 (3.6%) CLL confirming its
significant enrichment within the U-CLL (7.4%) and naïve-like
epigenetic (n-CLL, 10.9%) subtypes, and not significantly co-
occurring with several CLL driver alterations of prognostic
relevance. We did, however, confirm a significant association of
these mutations with alterations in the less-common driver gene
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NFKBIE [1] in both cohorts analyzed and found, for the first time, a
significant association with POT1. Although enriched in U-CLL/n-
CLL, four g.3A>C mutated tumors were classified as M-CLL. All four
of these CLL belonged to stereotyped subset #2 and/or expressed
IGLV3-21R110, known markers of aggressive disease independent
of their IGHV gene SHM status [19–21, 23–25]. Hence, all g.3A>C
U1 mutations were identified in aggressive forms of CLL. The
presence of the g.3A>C mutation did not impact the OS but was
associated with shorter TTFT independently of the disease stage,
IGHV gene SHM status, and presence of previously recognized
driver alterations in the C1-CLL. The occurrence of the g.3A>C and
g.9C>T mutations in treatment-naïve patients and its association
with an earlier need for therapy supports the driver role of U1
mutations in CLL. This finding expands the central role of RNA
metabolism in CLL [26].
WGS analyses of patients with DLBCL, BL, MCL, and FL

revealed that 5’SS U1 mutations are common in DLBCL and BL
but seem uncommon in MCL and FL. Striking differences were
observed regarding the mutations found in each entity and their
effect on splicing. The g.3A>C mutation and a novel g.4C>T
mutation were identified in 4.5% and 8.4% of patients with
DLBCL, respectively, with a trend towards a higher incidence in
GCB-DLBCL (6.4% and 10.3%, respectively) compared to ABC-
DLBCL (0% and 3.8%, respectively). In contrast to CLL, the
g.3A>C was not associated with alterations in the distribution of
5’SS in GCB-DLBCL tumors. A different picture emerged for the
g.4C>T mutation where we observed significant splicing and
expression changes associated with this mutation. In BL, the
g.4C>T mutation was also observed in 3.6% of the patients.
However, the most frequent recurrent mutation was a novel
g.7A>G mutation found in 10.9% BL. All g.4C>T mutations were
found in EBV-positive BL (5.6%), whereas g.7A>G mutations
were virtually exclusive of EBV-negative BL and accounted for
29.5% of the patients. The g.7A>G mutation was associated with
significant changes in the splicing pattern of BL. This mutation
seems very specific to BL because it was not seen in any other
type of cancer in the PCAWG cohort [1]. Overall, these results
uncover novel U1 mutations in mature B-cell lymphomas of
germinal center origin revealing entity- and sub-entity-specific
patterns of mutations and downstream changes in splicing and
expression of specific genes. These differences could be
attributed to the distinct sets of genes expressed in each entity
or sub-entity, which serve as substrate upon which U1 mutations
influence their splicing and expression. Therefore, similar to
SF3B1 mutations [27], one could speculate that the same U1
mutation could be associated with different biological and
clinical features in different diseases. The high frequency of U1
mutations in the different subsets of tumors suggest that U1
mutations may play a driving role in DLBCL and BL [14, 28–30].
Nonetheless, further analyses with larger series are needed
to completely characterize their biological and clinical
consequences.
In summary, this study expands our understanding of the

biological and clinical consequences of U1 mutations in CLL and
reveals novel U1 mutations in DLBCL and BL. U1 mutations
and their downstream effects were specific to different entities
and subtypes with distinct mutations enriched in CLL (g.3A>C and
g.9C>T), DLBCL (g.4C>T), and BL (g.7A>G). Based on its down-
stream effects, mutation prevalence among distinct B-cell
neoplasms, and prognostic value in CLL, U1 represents a new
pan-B-cell malignancy driver gene.
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