Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYELODYSPLASTIC NEOPLASM

Aberrant splicing of CHEK1 is a driver of megakaryocytic dysplasia in U2AF1S34F mutant myelodysplastic neoplasms

Abstract

U2AF1 mutations are common in patients with myelodysplastic neoplasms (MDS), suggesting that aberrant splicing of pre-mRNAs driven by mutant U2AF1 could play a critical role in MDS pathogenesis. Previous studies have demonstrated that U2AF1S34F mutation impairs the differentiation of erythrocytes and granulocytes, but the impact on megakaryocytes (MKs) remains unclear. Here, by integrating data from MDS patients and cell lines with U2AF1 mutations, we determined that U2AF1 mutations are associated with dysmegakaryopoiesis, induce the generation of abnormal MKs, especially micro-MKs, and induce significant thrombocytopenia. We determined that mutant U2AF1-mediated aberrant splicing of DNA biosynthesis-related genes, such as CHEK1, is required for normal MK polyploidization. The mis-splicing of CHEK1, in turn, accounts for the increased number of abnormal MKs in U2AF1-mutant MDS patients. Moreover, U2AF1S34 mutations induce the deficiency of CHK1 and the activation of its phosphorylation, thereby further driving the impairment of MK polyploidization and maturation. Accordingly, treatment with selective CHK1 inhibitor significantly reduces abnormal MK production in vitro. Taken together, these findings demonstrate that U2AF1 mutations induce the generation of abnormal MKs by driving aberrant splicing of the CHEK1 cell cycle-related gene, revealing the molecular basis for dysmegakaryopoiesis in MDS and identifying a new potential target for MDS treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: U2AF1S34 mutations are significantly associated with the generation of micro-megakayrocytes (micro-MKs) in MDS patients.
Fig. 2: The U2AF1S34F mutation impairs the polyploidization of the K562 and HEL cell lines.
Fig. 3: U2AF1 mutation results in abnormal splicing of DNA biosynthesis-related genes.
Fig. 4: Functional effects of CHEK1 knockdown or CHEK1-S expression on MK polyploidization.
Fig. 5: CHK1 inhibition rescues the defects in MK polyploidization observed in MDS U2AF1S34.

Similar content being viewed by others

Data availability

The datasets supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383:1358–74.

    Article  CAS  PubMed  Google Scholar 

  2. Ogawa S. Genetics of MDS. Blood. 2019;133:1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022;606:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Zeventer IA, de Graaf AO, Salzbrunn JB, Nolte IM, Kamphuis P, Dinmohamed A, et al. Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population. Cancer Cell. 2023;41:1017–31.

    Article  PubMed  Google Scholar 

  5. Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu Rev Biochem. 2020;89:359–88.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Wu J, Qin T, Xu Z, Qu S, Pan L, et al. Comparison of the revised 4th (2016) and 5th (2022) editions of the World Health Organization classification of myelodysplastic neoplasms. Leukemia. 2022;36:2875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yip BH, Steeples V, Repapi E, Armstrong RN, Llorian M, Roy S, et al. The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes. J Clin Invest. 2017;127:2206–21.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim SP, Srivatsan SN, Chavez M, Shirai CL, White BS, Ahmed T, et al. Mutant U2AF1-induced alternative splicing of H2afy (macroH2A1) regulates B-lymphopoiesis in mice. Cell Rep. 2021;36:109626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wheeler EC, Vora S, Mayer D, Kotini AG, Olszewska M, Park SS, et al. Integrative RNA-omics discovers GNAS alternative splicing as a phenotypic driver of splicing factor-mutant neoplasms. Cancer Discov. 2022;12:836–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  12. Tolhurst G, Carter RN, Miller N, Mahaut-Smith MP. Purification of native bone marrow megakaryocytes for studies of gene expression. Methods Mol Biol. 2012;788:259–73.

    Article  CAS  PubMed  Google Scholar 

  13. Feng G, Gale RP, Cui W, Cai W, Huang G, Xu Z, et al. A systematic classification of megakaryocytic dysplasia and its impact on prognosis for patients with myelodysplastic syndromes. Exp Hematol Oncol. 2016;5:12.

  14. Tomer A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood. 2004;104:2722–7.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzi S, Lordier L, Debili N, Raslova H, Vainchenker W. Megakaryocyte and polyploidization. Exp Hematol. 2018;57:1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, et al. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood. 2008;112:3164–74.

    Article  CAS  PubMed  Google Scholar 

  17. Gao Y, Smith E, Ker E, Campbell P, Cheng E-c, Zou S, et al. Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes. Dev Cell. 2012;22:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang X, Xu W, Hu Z, Zhang Y, Xu N. Chk1 is required for the metaphase–anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 2014;106:12–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mackay DR, Ullman KS, Solomon MJ. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol Biol Cell. 2015;26:2217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michelena J, Gatti M, Teloni F, Imhof R, Altmeyer M. Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. J Cell Biol. 2019;218:2865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neizer-Ashun F, Bhattacharya R. Reality CHEK: understanding the biology and clinical potential of CHK1. Cancer Lett. 2021;497:202–11.

    Article  CAS  PubMed  Google Scholar 

  22. Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018;132:1225–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee SC-W, North K, Kim E, Jang E, Obeng E, Lu SX, et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer cell. 2018;34:225–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moura PL, Mortera-Blanco T, Hofman IJ, Todisco G, Kretzschmar WW, Björklund A-C, et al. Erythroid differentiation enhances RNA mis-splicing in SF3B1-mutant myelodysplastic syndromes with ring sideroblasts. Cancer Res. 2024;84:211–25.

    Article  CAS  PubMed  Google Scholar 

  26. Hasserjian RP, Germing U, Malcovati L. Diagnosis and classification of myelodysplastic syndromes. Blood. 2023;142:2247–57.

    Article  CAS  PubMed  Google Scholar 

  27. Clough CA, Pangallo J, Sarchi M, Ilagan JO, North K, Bergantinos R, et al. Coordinated missplicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1-mutant myelodysplastic syndrome. Blood. 2022;139:2038–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim E, Ilagan Janine O, Liang Y, Daubner Gerrit M, Lee Stanley CW, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer cell. 2015;27:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dalton WB, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, et al. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest. 2019;129:4708–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lappin KM, Barros EM, Jhujh SS, Irwin GW, McMillan H, Liberante FG, et al. Cancer-associated SF3B1 mutations confer a BRCA-like cellular phenotype and synthetic lethality to PARP inhibitors. Cancer Res. 2022;82:819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu ZS, Sinha S, Bannister M, Song A, Arriaga-Gomez E, McKeeken AJ, et al. R-loop accumulation in spliceosome mutant leukemias confers sensitivity to PARP1 inhibition by triggering transcription-replication conflicts. Cancer Res. 2024;84:577–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benbarche S, Pineda JMB, Galvis LB, Biswas J, Liu B, Wang E, et al. GPATCH8 modulates mutant SF3B1 mis-splicing and pathogenicity in hematologic malignancies. Mol Cell. 2024;84:1886–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016;30:2322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Ali AM, Lieu YK, Liu Z, Gao J, Rabadan R, et al. Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol Cell. 2019;76:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Z, Zhang J, Sun Y, Perea-Chamblee TE, Manley JL, Rabadan R. Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation. Proc Natl Acad Sci USA. 2020;117:10305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mian SA, Philippe C, Maniati E, Protopapa P, Bergot T, Piganeau M, et al. Vitamin B5 and succinyl-CoA improve ineffective erythropoiesis in SF3B1-mutated myelodysplasia. Sci Transl Med. 2023;15:eabn5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia-Ruiz C, Martínez-Valiente C, Cordón L, Liquori A, Fernández-González R, Pericuesta E, et al. Concurrent Zrsr2 mutation and Tet2 loss promote myelodysplastic neoplasm in mice. Leukemia. 2022;36:2509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park SM, Ou J, Chamberlain L, Simone TM, Yang H, Virbasius CM, et al. U2AF35(S34F) promotes transformation by directing aberrant ATG7 pre-mRNA 3’ end formation. Mol Cell. 2016;62:479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trakala M, Rodriguez-Acebes S, Maroto M, Symonds CE, Santamaria D, Ortega S, et al. Functional reprogramming of polyploidization in megakaryocytes. Dev Cell. 2015;32:155–67.

    Article  CAS  PubMed  Google Scholar 

  40. Sarchi M, Clough CA, Crosse EI, Kim J, Baquero Galvis LD, Aydinyan N, et al. Mis-splicing of mitotic regulators sensitizes SF3B1-mutated human HSCs to CHK1 inhibition. Blood Cancer Discov. 2024;5:353–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Machlus KR, Italiano JE Jr. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201:785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to Professors Omar Abdel-Wahab and Kevin Rouault-Pierre for their invaluable guidance and support throughout this research. Their expertise and constructive feedback have been instrumental in the development of this study.

Funding

This study is supported in part by National Natural Science Funds (Nos. 82170139, 81530008 and 82070134), CAMS Initiative Fund for Medical Sciences (Nos. 2023-I2M-2-007, 2022-I2M-1-022,), Clinical research fund from National Clinical Research Centre for Blood Diseases (Nos. 2023NCRCA0117 and 2023NCRCA0103), Medical and Healthy Science Innovative Program of Chinese Academy of Medical Science (2022-I2M-C&T-B-093).

Author information

Authors and Affiliations

Authors

Contributions

ZJX and BL initiated the concept for the study. ZJX and BL designed the study. WJZ performed the research, collected data, write and revised manuscript, JQL, BL, LY and YRY performed the research. TJQ, ZFX, QS, YJJ and HJW recruited patients and collected data. GH, LHS, HTW and JXZ provided support for the experiments. WJZ, BL and ZJX prepared the typescript. All authors read, approved the final manuscript, and agreed to submit for publication.

Corresponding authors

Correspondence to Bing Li or Zhijian Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed consent

The patient gave written informed consent compliant with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, B., Liu, J. et al. Aberrant splicing of CHEK1 is a driver of megakaryocytic dysplasia in U2AF1S34F mutant myelodysplastic neoplasms. Leukemia 39, 2246–2255 (2025). https://doi.org/10.1038/s41375-025-02684-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02684-6

Search

Quick links