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Predicting therapeutic failure in patients with chronic phase-chronic myeloid leukemia (CP-CML) treated with tyrosine kinase inhibitors (TKI)
remains a major challenge for personalized care management. The Sokal and EUTOS long-term survival scores were designed to predict
CML-related mortality, but are also used to guide therapeutic choices, despite their poor performance for this purpose. A recent study
proposed a refined predictive model of therapy failure specifically tailored for patients treated with imatinib and second-generation TKIs
that showed promising results in a Chinese cohort. The present study evaluated the performance and applicability of this predictive model
in a real-world, multicenter cohort from the French CML Observatory. The key differences identified between the Chinese and French
cohorts (age, baseline hemoglobin levels, and treatment regimens) likely influenced the model performance. Specifically, the new model
did not allow for discriminating risk groups effectively in the French cohort. However, the model reconstruction using this cohort identified
other predictive variables (sex, leukocytosis, comorbidities, high-risk additional chromosomal abnormalities) that better stratified patients at
risk of therapy failure. Our findings highlight the influence of demographic and clinical differences on predictive models and emphasize the
need for local or population-specific tools to optimize risk stratification and therapeutic decision-making in CP-CML.
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INTRODUCTION
Tyrosine kinase inhibitors (TKI) are an unprecedented breakthrough for
chronic phase-chronic myeloid leukemia (CP-CML) management, but
the proportion of patients with insufficient therapeutic response,
according to the European LeukemiaNet (ELN) recommendations [1],
is still high. The early identification of at-risk patients is critical for
therapeutic decision-making optimization.
Prognostic scores originally designed to predict CML-related

mortality risk, such as the Sokal score [2] in the pre-TKI era and the
EUTOS long-term survival (ELTS) score [3] in the TKI era, are also
used to predict resistance to therapy [4, 5]. However, their
performance in predicting the optimal response is low [6].

Recently, Zhang et al. developed a refined predictive model of
TKI failure using classical demographic and clinical variables at
diagnosis. This model, initially developed using data of imatinib-
treated patients [7], was then adapted to a cohort of patients
treated with second-generation TKIs (2G-TKIs) and showed a
promising performance [8]. Nevertheless, this score was established
in an ethnically homogeneous Chinese cohort. Therefore, as
stressed by the authors in their conclusion and recently by Lauseker
et al. [9], its performance needs to be evaluated in non-Asian
cohorts. Here, we assessed the performance and applicability of this
predictive model in a real-world French cohort of patients with
CP-CML. We then reconstructed the model using our data and the
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same procedure as Zhang et al. to identify key variables that could
improve the precision of therapy failure prediction.

MATERIALS/SUBJECTS AND METHODS
Data source and patient enrollment
We selected patients who received a diagnosis of CP-CML from
the French CML Observatory (NCT05963061), a multicenter
database launched in 2013 to collect real-world data (Supple-
mentary Information). This secure platform is hosted by MIPIH and
authorized by the French data protection authority (CNIL, no.
914456). Patients are included after informed consent, and
pseudonymized data are collected retrospectively and prospec-
tively. The CML Observatory is promoted by Clermont-Ferrand
University Hospital. As standardized quantification of the BCR::ABL
transcript only became available in 2010, we included patients
with a diagnosis obtained between 2010 and 2024. A potential
center effect, resulting from the discretion granted to investigators
in selecting patient records, was mitigated by the participation of
16 centers; this effect was further addressed in the statistical
analysis.
Like in the study by Zhang et al. [8], we excluded patients with

more than 6 months between diagnosis and TKI initiation,
advanced-phase-CML diagnosis, missing key covariates, irregular
response monitoring, lost to follow-up, or with non-e14a2 and/or
e13a2 transcripts. For the present study, we closed the database
on January 8, 2025.
As in Zhang et al., we defined the molecular responses (MMR,

MR4, MR4.5), complete cytogenetic response, and complete
hematological response according to the ELN recommendations
[1], and TKI failures according to the “failure” milestones in the
2020 ELN recommendations (Supplementary Information). We
calculated failure-free survival from the date of TKI therapy start to
the date of the first therapy failure or censored patients at the
transplant, death, or last follow-up date. We excluded patients
with several observed TKI failures from further analysis after the
first therapy failure.

Experimental strategy
To evaluate the performance of the score by Zhang et al. in this
European-type population, we defined a three-step strategy: (1)
External validation: We first applied the original predictive model
developed by Zhang et al. [8]. (Model 1) to our cohort from the
French CML Observatory. Given the differences in patient
characteristics, particularly regarding ethnicity, age, and genetic
factors, between our cohort and the original Chinese cohort, we
anticipated potential discrepancies in the model performance. We
hypothesized that the influence of individual variables might
differ, and added two new steps: (2) Score recalibration: Using the
same six key variables identified by Zhang et al. [8], we
recalculated the weights of the Fine-Gray model [10] based on
our French cohort to create a redefined model (Model 2); and (3)
Model optimization: We explored the twelve candidate variables
initially considered by Zhang et al. and selected the most relevant
ones for predicting therapy failure to build an optimized Fine-Gray
model (Model 3).

Statistical analyses
The analysis pipeline follows the one by Zhang et al. We used
descriptive statistics to summarize baseline covariates (Supple-
mentary Information). We calculated the cumulative incidences of
therapy failure using the Fine-Gray model and compared them
with the Gray test [11]. Due to the low number of patients who
died (n= 31; 5%) and the fact that therapy failures and deaths
occurred at different timescales (25% of deaths and therapy
failures, quartile 1, occurred within 26 months and within
3 months, respectively; 75% of deaths and therapy failures,
quartile 3, occurred within 84 months and 27 months,

respectively), we did not treat deaths as a competing risk in the
main analysis. We also performed a sensitivity analysis, taking into
account death as a competing risk (Supplementary information).
After applying the predictive score developed by Zhang et al.

(Model 1), we developed Model 2 by replicating Zhang et al.’s
methodology using the same six covariates [sex, age, hemoglobin
level, percentage of blood blasts, spleen size below the costal
margin, and presence of high-risk additional chromosomal
abnormalities (ACAs)] to build a new Fine-Gray model based on
data of our French cohort. Then, we built Model 3 using the twelve
candidate variables initially considered by Zhang et al.: the six
previous ones, and also white blood cell count, platelet count,
basophils, eosinophils, presence of comorbidities, and first-line TKI.
We selected four relevant variables (sex and high-risk ACAs, like in
the original study, as well as white blood cell count and presence
of comorbidities) for the global Fine-Gray model based on the
Akaike Information Criterion (AIC) to build a robust predictive
model. We carried out sensitivity analyses, taking the competing
risk (death) into account or not, which influences the selection of
comorbidities in the choice of final model. We chose to retain
them in Model 3 due to their clinical relevance. For Models 2 and
3, we chose the cutoffs to determine risk groups by bootstrapping
(Supplementary Information).
We assessed the predictive performance of the three models by

comparing the hazard ratios between the risk groups and on the
basis of the receiver-operating characteristic (ROC) curves after 1,
3, and 5 years of TKI therapy. We compared the areas under the
ROC curves (AUC) using the DeLong method [12].
We used propensity score matching with replacement to

compare failure-free survival in the first-line imatinib and first-
line 2G-TKI groups (Supplementary Information).
We used R version 4.4.1 (R Core Team, Vienna, Austria) for the

statistical analyses and graph generation.

RESULTS
Characteristics of the French cohort
Using the inclusion/exclusion criteria by Zhang et al. [8] and after
excluding patients with a diagnosis before 2010 (due to the lack of
inter-laboratory standardization of BCR::ABL1 transcript quantifica-
tion before that date) and also patients with missing data and
those who received non-TKI treatments, we identified 601 patients
from 16 centers in the CML Observatory (Fig. 1) treated with:
imatinib (n= 397), nilotinib (n= 143), bosutinib (n= 48), and
dasatinib (n= 13). Among these 601 patients, 188 (31.3%)
experienced treatment failure.
The main differences between our cohort and the Chinese

training cohort were (Table 1): older median age (58 [47, 70] vs. 40
[30–52] years), lower percentage of men (54% vs. 61%), more
patients with intermediate-risk Sokal (46% vs. 28%) and high-risk
ELTS (14% vs. 9%) scores, lower initial white blood cell count (64
[30, 139] vs. 122 [47, 235] × 10⁹/L) and higher hemoglobin
concentration (126 [111, 139] vs. 115 [97, 132] g/L). More patients
received 2G-TKIs in our cohort (34% vs. 21%). Bosutinib-treated
patients were present only in our cohort (8%), but no patient
received flumatinib (vs. 3%). Moreover, in our cohort, 30% of
patients had comorbidities (vs. 36%), and 5% had high-risk ACAs
(vs. 2%). Treatment failure was reported for 188 patients (31% vs.
25%).

Application of the score formula developed by Zhang et al.
(Model 1)
First, we applied the predictive formula validated by Zhang et al.
(Model 1). This classified patients into low (n= 204/601, 33.9%),
intermediate (n= 346/601, 57.6%), and high risk (51/601, 8.5%)
(Supplementary Tables 1 and 2). Unlike in the original Chinese
cohort, the predictive model could efficiently discriminate only the
low- and high-risk groups (Fig. 2A) in our overall cohort
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(p= 0.003), as well as in the first-line imatinib and 2G-TKI groups
(Fig. 2B, C) (Supplementary Tables 1 and 2). Despite this significant
result, the hazard ratios obtained using the low-risk group as
reference were low compared with those reported by Zhang et al.:
1.2 (95% CI: 0.9–1.7, p= 0.2) vs. 5.4 (95% CI: 4.1–7.2, p < 0.001) for
the intermediate-risk group and 2.0 (95% CI: 1.2–3.2, p= 0.006) vs.
12.1 (95% CI: 8.8–16.6, p < 0.001) for the high-risk group. This
suggests a low predictive performance of these risk groups in our
French cohort (Supplementary Fig. 1).

Recalibration of the score using the French cohort and the
same six variables (Model 2)
Given the divergence in predictive performance between the French
and Chinese cohorts, we recalculated the weights in the score formula
using the same six baseline variables as Zhang et al. but using data from
our French cohort (Model 2) (Fig. 2D–F, Table 2). This classified patients
into low (n= 234/601, 39%), intermediate (n= 142/601; 24%) and high
risk (225/601; 37%) (Supplementary Tables 1 and 2, Supplementary
Fig. 2). Model 2 provided amore consistent stratification, with significant
discrimination between the low- and intermediate-risk groups
(p= 0.01) and the low- and high-risk groups (p < 10−⁵), regardless of
the first-line TKI. However, the overall predictive performance remained
inferior to that reported for the original Chinese cohort. Indeed, the
hazard ratios for the intermediate-risk and high-risk groups remained
lower than those reported by Zhang et al.: 1.5 (95% CI: 1.0–2.2,
p= 0.039) vs. 5.4 for the intermediate-risk group and 2.1 (95% CI:
1.5–3.0, p < 0.001) vs. 12.1 for the high-risk group (Supplementary Fig. 1).

Using the twelve initial variables to recalculate the predictive
score (Model 3)
These results prompted us to analyze the 12 covariates initially
used by Zhang et al., based on the hypothesis that some
covariates might carry a different weight in our cohort (Model 3)
(Table 2). The results of the univariate analyses are provided in
Supplementary Table 3. Using a stepwise variable selection for the
Fine-Gray regression model, we identified four variables indepen-
dently associated with the risk of therapeutic failure: sex and high-
risk ACAs (like in the original study), as well as leukocytosis and
presence of comorbidities, two additional factors not retained in
the initial model by Zhang et al.
Model 3 produced a risk stratification similar to Model 2: 54% of

patients were classified as low risk, 24% as intermediate risk, and
21% as high risk (Supplementary Tables 1 and 2, Supplementary
Fig. 3). The model showed significant discrimination between the
low- and intermediate-risk groups (p= 0.01) and between the
low- and high-risk groups (p < 10−⁵) (Fig. 2G). However, the hazard
ratios for the intermediate-risk and high-risk groups remained
lower than those determined by Zhang et al.: 1.7 (95% CI: 1.2–2.5,
p= 0.003) vs. 5.4 for the intermediate-risk group and 2.1 (95% CI:
1.5–3.0, p < 0.001) vs. 12.1 for the high-risk group (Supplementary
Fig. 1).
Moreover, after propensity score matching, the risk group

discrimination differed between patients treated with imatinib
and with 2G-TKIs due to the lower therapy failure rate in the 2G-
TKI group (Supplementary Fig. 4 and Supplementary Table 4). The

Fig. 1 Study flowchart of patient selection from the French CML Observatory database. Among the 1747 patients initially registered, 1463
were retained after excluding those with missing data (either at diagnosis or during follow-up, n= 241) or lost to follow-up (n= 43).
Subsequent exclusions included patients younger than 18 years (n= 10), with a diagnosis of CP-CML before 2010 (n= 371), or in the
accelerated phase at diagnosis (n= 29), resulting in 1053 patients. Moreover, 151 patients were excluded because they received non-standard
treatments: no TKI treatment (n= 22), first-line ponatinib (n= 53), asciminib (n= 8), ARA-C or interferon (IFN) (n= 15), PEG-IFN outside a
pregnancy project (n= 51), transplant (n= 2). Lastly, 23 patients were excluded due to transcript type, 6 due to treatment initiation >6 months
after diagnosis, and 272 because they missed covariates analyzed in Zhang et al. The analyzed cohort included 601 patients treated with first-
line imatinib (n= 397), nilotinib (n= 143), bosutinib (n= 48), or dasatinib (n= 13).
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predictive performance of the Models remained similar after
propensity score matching.

Comparison of the performance of the three models and the
Sokal and ELTS prognostic scores
We used alluvial plots (Fig. 3) to illustrate the patient flow between
the Sokal, ELTS, and Models 1, 2, and 3 risk groups. Model 1 gave
results relatively close to those of the Sokal and ELTS scores; for
example, the high-risk group in Model 1 was small (8%) and
largely corresponded to patients classified as high risk by the
traditional scores. For Models 2 and 3, the relationships were more
complex, and notable proportions of patients shifted between
groups in both directions. Some patients were classified as high
risk by the models developed in this study, but as low risk by the

traditional scores (up to 60 patients between the Model 2 high-risk
group and the ELTS low-risk group, Fig. 3). Model 2 identified the
largest high-risk group (37%), and Model 3 defined an
intermediate-size high-risk group (21%) that better matched the
percentage of patients with therapy failure (31%) in our cohort,
unlike the high-risk score by Zhang et al. and the ELTS score (8%
and 14%, respectively) [3, 8] (Fig. 3).
To compare the predictive performance of the ELTS and Models

1, 2, and 3 scores, we calculated their AUC values, which were all
<0.68 (Fig. 4A–C), regardless of the first-line TKI (Fig. 4D–I). Model 3
tended to be slightly more effective, but the difference was not
significant. Results were similar to the ELTS score performance
(Figs. 2J–L and 4), including the relationship with the cumulative
incidence of molecular responses (Supplementary Fig. 5), con-
firming previously published results in this cohort [6].

DISCUSSION
Developing predictive scores for the therapeutic response or
failure based on parameters collected during the early phase of
the disease remains challenging, although they would help to
predict TKI efficacy and to personalize the management of
patients with CP-CML. In clinical practice, the Sokal score and,
more recently, the ELTS score are often taken into account when
choosing the first-line TKI. However, these scores were developed
to assess the CML-related risk of mortality, and their performance
in predicting the response to TKIs is poor, as we demonstrated
using data from the French CML Observatory [6]. Consequently,
the approach taken by Zhang et al. to define a score more suitable
to predict the therapeutic response is very relevant. In the Chinese
cohort, the new score defined by this group appears particularly
effective. However, in our study, this score did not give the same
results and did not clearly distinguish between risk groups, as
indicated by the modest hazard ratios compared with those
obtained by Zhang et al. This underlines the need to verify the
performance of a score in different populations, as suggested by
Zhang et al. [8] and recently recommended [9].
This difference may be partly explained by the two cohorts’

characteristics. For example, Asian patients treated with TKIs
harbor a higher proportion of BCR::ABL mutations associated with
resistance to imatinib [13]. Moreover, the lower hemoglobin
concentration in the Chinese cohort is in line with the lower
reference values in Asian populations [14], but could also be
associated with the likelihood of achieving optimal responses [15].
This observation could be related to underlying conditions, such
as thalassemia, the prevalence of which is approximately 50 times
higher in Southeast Asian populations. However, Zhang et al. did
not provide information on the influence of a thalassemia trait on
TKI tolerance. Another difference was the median age at disease
onset, likely due to unknown genetic characteristics. Lastly,
potential pharmacokinetic differences cannot be ruled out
because the same recommended dose has been used for Western
and Asian patients despite their lower individual body weight [13].
This observation highlights the need to assess this type of score in
patient populations with different ethnic backgrounds, as
emphasized by Zhang and coworkers in their conclusion.
Therefore, we hypothesized that the various, fairly standard

variables used to calculate the score might influence the risk of
therapy failure differently in different populations, and we re-
evaluated the score using the six variables selected by Zhang et al.
(Model 2). However, the performance of this score remained poor
in our cohort. The relative importance of variables differed
between Model 1 (mainly age and high-risk ACAs, all variables
were significantly associated with the therapy failure risk) and
Model 2 (mainly sex and high-risk ACAs, only sex was significantly
associated with the therapy failure risk) (Table 2). On the basis of
these results, we used the original twelve variables to calculate the
score (Model 3). This final score performed slightly better but was

Table 1. Patients’ characteristics in the French multicenter cohort and
the training cohort in the study by Zhang et al.

French cohort
(N= 601)

Chinese training
cohort (N= 1955)

Age, years, median (IQR) 58 (47–70) 40 (30–52)

Male sex, n (%) 323 (54) 1195 (61)

Spleen size, cm below
costal margin, median
(IQR)

0 (0–3) 3 (0–10)

White blood cells,
×10E+ 9/L, median
(IQR)

64 (30–139) 122 (47–235)

Hemoglobin, ×10E+ 9/L,
median (IQR)

126 (111–139) 115 (97–132)

Platelets, ×10E+ 9/L,
median (IQR)

389 (248–600) 410 (270–635)

Blood blasts, %, median
(IQR)

0 (0–1.7) 1 (0–3)

Blood basophils, %,
median (IQR)

3 (2–5) 5 (2–8)

Blood eosinophils, %,
median (IQR)

2 (1–3) 2 (1–4)

Sokal risk, n (%)

Low 206 (34) 819 (42)

Intermediate 278 (46) 555 (28)

High 113 (19) 394 (20)

Unknown 4 (0.7) 187 (10)

ELTS risk, n (%)

Low 321 (53) 1115 (57)

Intermediate 192 (32) 471 (24)

High 83 (14) 182 (9)

Unknown 5 (0.8) 187 (10)

Ph+ ACAs, n (%) 70 (12) 68 (3)

High-risk ACAs, n (%) 32 (5) 41 (2)

Comorbidity(ies), n
(%)

180 (30) 700 (36)

Initial TKI, n (%)

Imatinib 397 (66) 1539 (79)

2 G TKI 204 (34) 416 (21)

Nilotinib 143 (24) 280 (14)

Bosutinib 48 (8) 0 (0)

Dasatinib 13 (2) 72 (4)

Flumatinib 0 (0) 64 (3)

Follow-up, months,
median (IQR)

47 (19–89) 56 (30–91)
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not clearly superior to the traditional one, and its performance was
nowhere near that of the score used in the Chinese cohort.
Nevertheless, our latest approach allowed us to identify some
variables of interest. Indeed, the Fine-Gray regression analysis
(Model 3) identified four variables associated with the risk of
therapeutic failure: sex and high-risk ACAs (like in the Chinese
study), and also leukocytosis and comorbidities. This demonstrates
that the weights of the variables in the statistical analysis differ
depending on the patient cohort, according to their ethnic,
environmental, or societal background, because the variables used
here are parameters commonly considered in CML cohorts
worldwide. Sex was the most discriminative factor, consistent
with the higher likelihood of achieving a deep response in women

[13, 16, 17]. The reason is unclear, but it could be related to
differences in the biological aging of the hematopoietic tissue
[18]. The adverse prognostic impact of high-risk ACAs is well-
established in blast phase-CML, and their emergence in the
chronic phase constitutes a warning criterion according to the
2020 ELN recommendations [1]. Nevertheless, their influence on
the TKI response prediction remains a matter of debate in CP-CML
[19–21]. Here, despite the inherent limitations of real-world
observational data collection, the percentage of patients harbor-
ing high-risk ACAs was higher in our cohort (5%) than in the
Chinese cohort (2%) (Zhang 2024), and in an Italian cohort (2%)
[22], used to evaluate the performance of the imatinib therapy
failure score developed for imatinib-treated patients with CP-CML

Fig. 2 Cumulative incidence of therapy failure for the three risk models and ELTS score. The cumulative incidence of treatment failure was
calculated using the predictive score developed by Zhang et al. (Model 1). Model 1 was applied to the group of 601 patients selected from the
CML Observatory using the selection criteria described by Zhang et al. (A) and also to the same patients after their classification into two
groups: first-line (1 L) imatinib (B) and first-line 2G-TKI (C). Then, the model was reconstructed using the procedure detailed by Zhang et al.
(Supplementary Information) using the six key variables identified in their study (hemoglobin, blasts, age, sex, high-risk ACAs, spleen size)
(Model 2). This new model was used to calculate the risk of failure in the whole cohort (D), and in the first-line imatinib (E) and first-line 2G-TKI
groups (F). In Model 3, from the initial twelve candidate variables used by Zhang et al., four variables (sex, high-risk, leukocytosis, and
comorbidities) were selected to optimize the model fit. This revised model was applied to the whole cohort (G), and to the first-line imatinib
(H) and first-line 2G-TKI groups (I). In parallel, the ELTS score was calculated in the whole cohort (J), first-line imatinib group (K), and first-line
2G-TKI group (L). P-values were computed with the omnibus Gray test.
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in 2022 [7]. This higher proportion may have facilitated the
identification of the association between ACAs and the risk of
treatment failure observed in our study, and in line with some
findings [20]. The identification of peripheral leukocytosis might
seem surprising, but the analysis focused specifically on TKI failure

in patients with CP-CML in whom leukocytosis has been
associated with the response to imatinib [23], transcript type
[24], and CD26+ cell [25] percentage, which are not available in our
database. Comorbidities, which are not included in any CML
prognostic score to date, improved the score performance.

Fig. 3 Alluvial plots showing the patient distribution across the risk categories defined by the Sokal, ELTS, and three new predictive
models (Model 1, 2, and 3). Each panel illustrates the concordance and discrepancies in patient risk classification between the Sokal score,
ELTS score, and one of the three models (from left to right: Model 1, Model 2, Model 3). Patients are grouped into three risk categories
according to each scoring system: low (green), intermediate (blue), and high (red). The flow of patients between categories is depicted by the
width of the connecting bands, indicating the proportion of patients reclassified into different risk groups by the different scoring systems.

Table 2. Multivariate analysis of covariates associated with therapy failure (Fine-Gray regression).

Model 1 (reported in Zhang et al., training cohort)

Covariate Regression coefficient Hazard ratio (95% CI) p-value

Male sex (binary) 0.1919 1.2 (1.0–1.5) 0.01

Age/100, years (continuous) 1.6160 5.0 (2.5–10.3) <0.001

(Hemoglobin/100)–2, g/L (continuous) 0.3105 1.4 (1.2–1.5) <0.001

Blood blasts, % (continuous) 0.1087 1.1 (1.1–1.2) <0.001

Spleen size below the costal margin, cm(continuous) 0.0671 1.1 (1.0–1.1) <0.001

High-risk ACAs (binary) 0.5461 1.7 (1.1–2.8) 0.02

Model 2 (French cohort)

Covariate Regression coefficient Hazard ratio (95% CI) p-value

Male sex (binary) 0.5042 1.66 (1.18–2.32) 0.0032

Age/100, years (continuous) 0.3609 1.43 (0.442–4.66) 0.55

(Hemoglobin/100)−2, g/L (continuous) 0.0450 1.05 (0.629–1.74) 0.86

Blood blasts, % (continuous) 0.0381 1.04 (0.968–1.11) 0.29

Spleen size below the costal margin, cm (continuous) 0.0107 1.01 (0.972–1.05) 0.59

High-risk ACAs (binary) 0.4360 1.55 (0.933–2.56) 0.091

Model 3 (French cohort)

Covariate Regression coefficient Hazard ratio (95% CI) p-value

Male sex (binary) 0.4817 1.62 (1.16–2.26) 0.0045

High-risk ACAs (binary) 0.4252 1.53 (0.947–2.47) 0.082

White blood cells, ×10E+ 9/L (continuous) 0.0015 1.00 (1.00–1.00) 0.034

Comorbidities (binary) 0.2609 1.32 (0.968–1.74) 0.081

Model 1 considers the six variables selected by Zhang et al. in the Fine-Gray regression. The indicated values are the ones reported in the original study (their
Table 2). Model 2 considers the same six variables, but the Fine-Gray regression coefficients were recalculated using data from our French cohort. Model 3 is
the result of variable selection on a full Fine-Gray regression considering the twelve candidate variables in Zhang et al., computed using data from the French
cohort.
ACAs additional chromosomal abnormalities.
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Comorbidities should be taken into account when choosing a TKI
[26] and are associated with an increased risk of mortality [27];
however, their impact on therapeutic efficacy/resistance through
changes in patient adherence [28], drug interactions, or side
effects [29] remains poorly understood. Age was a non-significant
covariate, in line with the reduced influence of age [30] since TKI
advent, justifying efforts to develop a new age-independent score.
The earlier onset of CML may explain the identification of age in
the Chinese cohort.
These results suggest that the conventional parameters

available at diagnosis are insufficient to predict the risk of TKI
failure in a European-type cohort and that other important factors
also play a role. Some of these may be identifiable at diagnosis,
such as additional genetic abnormalities [31, 32], and might
influence the risk of TKI failure and consequently the predictive
score [33, 34]. However, the difficulty of constructing a predictive
score for the response to or failure of targeted therapies in CML
might also be explained by the considerable influence of the initial
treatment efficacy and tolerance on the patient trajectory and
long-term therapeutic outcomes. Real-world data highlight the
complexity of care pathways, and to date, there is no diagnostic
criterion that allows the individual prediction of the clinical course.
More specifically, intolerances, often unpredictable, can affect
both dose and adherence, thereby reducing the likelihood of
achieving the expected therapeutic response. In addition, complex
therapeutic sequences may adversely influence the chances of

attaining an optimal outcome [35]. Thus, a major challenge in
developing predictive scores of the therapeutic response lies in
integrating diagnostic parameters and early follow-up data into a
dynamic predictive algorithm. Moreover, this approach requires
the precise and systematic collection of data throughout the
patient follow-up [9]. Our findings show that, unlike in our cohort,
the initial diagnostic parameters were of paramount importance in
the Chinese cohort. Therefore, it would be of great interest to
compare the therapeutic sequences and patient trajectories in
different cohorts because these may vary significantly among
countries.
Our study has several limitations. Like the study by Zhang et al.,

it was a retrospective analysis. The cohort size was smaller, but it is
a multicentric cohort and representative of French real-world CML
management. In addition, the group of patients analyzed in this
study has characteristics comparable to the French cohort, and the
number of patients analyzed was sufficient to assess the
performance of this new score. Indeed, among the 601 patients
considered, 188 (31%) experienced treatment failure. This number
of events is sufficient to establish a robust survival model with ≤12
predictors, guaranteeing a minimum of 15 events per variable, as
recommended by various studies [36, 37]. Furthermore, given the
overlapping confidence intervals of the hazard ratios for the three
risk groups, the differences between groups should not become
substantially more pronounced, even with a larger cohort, as seen
in Zhang et al. (Supplementary Fig. 1). Also, it should be noted that

Fig. 4 Predictive performance of the three models and ELTS score. Receiver-operating characteristic (ROC) curves to compare the predictive
performance of the three models and ELTS score in the whole cohort and in the first-line imatinib and first-line 2G-TKI groups. Time-
dependent AUC values for therapy failure at 1 (A, D, G), 3 (B, E, H), and 5 years (C, F, I) using data from the French CML Observatory. No
significant difference was detected with the omnibus Gray test (p is indicated in each graph).
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Models 2 and 3 were calibrated with the same dataset used for the
ROC comparisons. This introduces a risk of optimism bias due to
overfitting because these scores were evaluated using data that
may have implicitly influenced their construction. Conversely, the
ELTS and Zhang scores were developed independently using
external cohorts. Although it is unlikely that the observed score
performances will become close to those of the Chinese cohort,
ideally, all models should be compared using a fully independent
validation cohort to avoid this bias. To clarify these aspects, meta-
analysis approaches involving cohorts of different origins could be
interesting, as well as strengthening international collaboration, as
done by German and Italian groups before the TKI era [38].
In conclusion, our study demonstrates the limitations of directly

transposing predictive models developed in ethnically or clinically
distinct populations and also offers new insights that could
advance personalized treatment strategies in CP-CML. By recon-
structing the predictive model in a European real-world cohort, we
identified distinct and clinically relevant variables (sex, leukocy-
tosis, comorbidities, and high-risk ACAs) that may better reflect
the therapeutic dynamics in this setting. These findings support
the notion that resistance to TKIs results from multifactorial and
context-dependent mechanisms that are only partially captured
by diagnostic parameters alone. Our results are further arguments
in favor of the need to develop dynamic, population-specific
scoring tools that also integrate the early therapeutic responses
and patient-specific trajectories. Ultimately, these tools could
enable a more precise risk stratification and could contribute to
improving the long-term outcomes through better-adapted TKI
choices and monitoring strategies.
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