Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

Heat stress targets and degrades BCR::ABL1 oncoproteins to overcome drug-resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia

Abstract

BCR::ABL1 oncofusion protein drives Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL), making it a critical therapeutic target. Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have revolutionized the treatment of Ph+ ALL patients. However, mutations in the kinase domain of BCR::ABL1 commonly impair the sensitivity to TKIs, resulting in drug resistance and poor prognosis in Ph+ ALL. Here we report that heat stress selectively destabilizes BCR::ABL1 and its common drug-resistant mutants without affecting the native BCR and ABL proteins through inducing liquid-to-solid phase transition. Mechanistic studies revealed that heat stress facilitated recruitment of BCR::ABL1 signaling components (e.g., SHIP2, Sts1, PI3K-p85α and Shc) in a kinase activity dependent manner and stimulated BCR::ABL1 oligomerization through its coiled-coil domain, resulting in formation of a large, thermally unstable signaling complex. This process triggers non-canonical K27-linked ubiquitination mediated by c-Cbl E3 ubiquitin ligase, ultimately leading to BCR::ABL1 degradation via the ubiquitin-proteasome pathway. Functionally, heat stress effectively suppressed proliferation of BCR::ABL1-driven leukemia cells, including drug resistant mutants in vitro and decreased tumor burden in vivo. Our findings established that thermal-based therapy as a novel strategy to selectively target and degrade both unmutated and drug-resistant BCR::ABL1 oncoproteins, offering a promising adjuvant approach to overcome TKI resistance in Ph+ ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heat stress reduces BCR::ABL1 solubility and leads to protein aggregation.
Fig. 2: Heat stress facilitates recruitment of signaling components to BCR::ABL1.
Fig. 3: Heat stress induced oligomerization of BCR::ABL1 leads to formation of high molecular weight complex.
Fig. 4: Heat stress degrades BCR::ABL1 through the proteasome pathway via c-Cbl mediated K27 ubiquitination.
Fig. 5: Continuous heat stress inhibits Ph + ALL cell proliferation in vitro and modulates leukemia progression in vivo.
Fig. 6: Continuous heat treatment overcomes Ph + ALL in TKI-resistant in vivo model.

Similar content being viewed by others

Data availability

The raw sequence data have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2024), China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: HRA011771) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human. All other data reported in this paper will be shared by the lead contact upon request.

References

  1. Foà R, Chiaretti S. Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2022;386:2399–411.

    Article  PubMed  Google Scholar 

  2. Mancini M, Scappaticci D, Cimino G, Nanni M, Derme V, Elia L, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood. 2005;105:3434–41.

    Article  CAS  PubMed  Google Scholar 

  3. Burmeister T, Schwartz S, Bartram CR, Gökbuget N, Hoelzer D, Thiel E, et al. Patients’ age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008;112:918–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101:2788–801.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas X, Boiron JM, Huguet F, Dombret H, Bradstock K, Vey N, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22:4075–86.

    Article  CAS  PubMed  Google Scholar 

  6. Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. Goldstone, ECOG, MRC/NCRI Adult Leukemia Working Party. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106:3760–7.

    Article  CAS  PubMed  Google Scholar 

  7. Park HS. Current treatment strategies for Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Blood Res. 2020;55:S32–S36.

    Article  PubMed  Google Scholar 

  8. Mathisen MS, O’Brien S, Thomas D, Cortes J, Kantarjian H, Ravandi F. Role of tyrosine kinase inhibitors in the management of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2011;6:187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chiaretti S, Ansuinelli M, Vitale A, Elia L, Matarazzo M, Piciocchi A, et al. A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients: final results of the GIMEMA LAL1509 protocol. Haematologica. 2021;106:1828–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2:117–25.

    Article  CAS  PubMed  Google Scholar 

  11. Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110:727–34.

    Article  CAS  PubMed  Google Scholar 

  12. Huang H, Weng H, Dong B, Zhao P, Zhou H, Qu L. Oridonin triggers chaperon-mediated proteasomal degradation of BCR-ABL in leukemia. Sci Rep. 2017;7:41525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu Z, Jin Y, Qiu L, Lai Y, Pan J. Celastrol, a novel HSP90 inhibitor, depletes Bcr-Abl and induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation. Cancer Lett. 2010;290:182–91.

    Article  CAS  PubMed  Google Scholar 

  14. Shibata N, Ohoka N, Tsuji G, Demizu Y, Miyawaza K, Ui-Tei K, et al. Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene. 2020;39:3867–78.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang S, Wang X, He Y, Huang H, Cao B, Zhang Z, et al. Suppression of USP7 induces BCR-ABL degradation and chronic myelogenous leukemia cell apoptosis. Cell Death Dis. 2021;12:456.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Gao H, Sun X, Sun Y, Qiu Y, Weng Q, et al. Global PROTAC toolbox for degrading BCR-ABL overcomes drug-resistant mutants and adverse effects. J Med Chem. 2020;63:8567–83.

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Ding X, Liu L, Mi Q, Zhao Q, Shao Y, et al. Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation. Eur J Med Chem. 2021;223:113645.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Wang Y, Yang F, Luo Q, Hou Z, Xing Y, et al. A novel lysosome targeting chimera for targeted protein degradation via split-and-mix strategy. ACS Chem Biol. 2024;19:1161–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Ma C, Yu Y, Liu C, Fang L, Rao H. Single amino acid-based PROTACs trigger degradation of the oncogenic kinase BCR-ABL in chronic myeloid leukemia (CML). J Biol Chem. 2023;299:104994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma B, Feng H, Feng C, Liu Y, Zhang H, Wang J, et al. Kill two birds with one stone: a multifunctional dual-targeting protein drug to overcome imatinib resistance in Philadelphia chromosome-positive leukemia. Adv Sci. 2022;9:e2104850.

    Article  Google Scholar 

  21. Cole WH, Everson TC. Spontaneous regression of cancer: preliminary report. Ann Surg. 1956;144:366–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daccache A, Kizhakekuttu T, Siebert J, Veeder M. Hematologic and cytogenetic spontaneous remission in acute monocytic leukemia (FAB M5b) with trisomy 8. J Clin Oncol. 2007;25:344–6.

    Article  PubMed  Google Scholar 

  23. Hobohm U. Fever therapy revisited. Brit J Cancer. 2005;92:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karbach J, Neumann A, Brand K, Wahle C, Siegel E, Maeurer M, et al. Phase I clinical trial of mixed bacterial vaccine (Coley’s toxins) in patients with NY-ESO-1 expressing cancers: immunological effects and clinical activity. Clin Cancer Res. 2012;18:5449–59.

    Article  CAS  PubMed  Google Scholar 

  25. Maimaitiyiming Y, Wang QQ, Yang C, Ogra Y, Lou Y, Smith CA, et al. Hyperthermia selectively destabilizes oncogenic fusion proteins. Blood Cancer Discov. 2021;2:388–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang QQ, Hussain L, Yu PH, Yang C, Zhu CY, Ma YF, et al. Hyperthermia promotes degradation of the acute promyelocytic leukemia driver oncoprotein ZBTB16/RARα. Acta Pharm Sin. 2023;44:822–31.

    Article  CAS  Google Scholar 

  27. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353:aac4354.

    Article  PubMed  Google Scholar 

  28. Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5:33–44.

    Article  CAS  PubMed  Google Scholar 

  29. Wu J, Meng F, Lu H, Kong L, Bornmann W, Peng Z, et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood. 2008;111:3821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Köcher T, et al. Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci USA. 2009;106:7414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gregor T, Bosakova MK, Nita A, Abraham SP, Fafilek B, Cernohorsky NH, et al. Elucidation of protein interactions necessary for the maintenance of the BCR-ABL signaling complex. Cell Mol Life Sci. 2020;77:3885–903.

    Article  CAS  PubMed  Google Scholar 

  32. Amarante-Mendes GP, Rana A, Datoguia TS, Hamerschlak N, Brumatti G. BCR-ABL1 tyrosine kinase complex signaling transduction: challenges to overcome resistance in chronic myeloid leukemia. Pharmaceutics. 2022;14:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dixon AS, Pendley SS, Bruno BJ, Woessner DW, Shimpi AA, Cheatham TE, et al. Disruption of Bcr-Abl coiled coil oligomerization by design. J Biol Chem. 2011;286:27751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burslem GM. The chemical biology of ubiquitin. Biochim Biophys Acta Gen Subj. 2022;1866:130079.

    Article  CAS  PubMed  Google Scholar 

  35. Damgaard RB. The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28:423–6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kong L, Sui C, Chen T, Zhang L, Zhao W, Zheng Y, et al. The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the Golgi apparatus. Cell Rep. 2023;42:112306.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. Mol Biomed. 2021;2:23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang D, Zhang Y, Xu X, Wu J, Peng Y, Li J, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021;12:2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shearer RF, Typas D, Coscia F, Schovsbo S, Kruse T, Mund A, et al. K27-linked ubiquitylation promotes p97 substrate processing and is essential for cell proliferation. EMBO J. 2022;41:e110145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018;1:100.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 2018;28:779–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, et al. The landscape of novel strategies for acute myeloid leukemia treatment: therapeutic trends, challenges, and future directions. Toxicol Appl Pharm. 2023;473:116585.

    Article  CAS  Google Scholar 

  43. Sun X, Rao Y. PROTACs as potential therapeutic agents for cancer drug resistance. Biochemistry. 2020;59:240–9.

    Article  CAS  PubMed  Google Scholar 

  44. Pan YL, Zeng SX, Hao RR, Liang MH, Shen ZR, Huang WH. The progress of small-molecules and degraders against BCR-ABL for the treatment of CML. Eur J Med Chem. 2022;238:114442.

    Article  CAS  PubMed  Google Scholar 

  45. Miettinen TP, Peltier J, Härtlova A, Gierliński M, Jansen VM, Trost M. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J. 2018;37:e98359.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346:1255784.

    Article  PubMed  Google Scholar 

  47. Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol. 2015;15:335–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript was funded by National Natural Science Foundation of China (No. 82170143, 82370191, 82200160; 31970706).

Author information

Authors and Affiliations

Authors

Contributions

Conception: CY, MB, HN; Data curation: CY, YYK, CYZ, YQL, ZYZ; Methodology: CY, YYK, CYZ, YFM, PHY, YO, NS; Resources: CY, YFM, YO, NS, HN; Investigation: CY, YYK, CYZ, PHY, TY, MB, HN; Visualization: YYK, CYZ, TY, YQL, ZYZ; Funding acquisition: CY, MB, HN; Project administration: CY, MB, HN; Supervision: MB, HN; Writing–original draft: CY, YYK, CYZ, MB, HN; Writing–review and editing: CY, YYK, CYZ, YO, NS, MB, HN.

Corresponding authors

Correspondence to Mikael Björklund or Hua Naranmandura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Kang, YY., Zhu, CY. et al. Heat stress targets and degrades BCR::ABL1 oncoproteins to overcome drug-resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 39, 2140–2151 (2025). https://doi.org/10.1038/s41375-025-02709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-025-02709-0

Search

Quick links