Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Retinoic acid disrupts an NPM1c/ROS/SENP3/ARF oncogenic axis in acute myeloid leukemia

Abstract

Nucleophosmin-1 (NPM1) is a nucleolar chaperone protein frequently mutated in acute myeloid leukemia (AML). ARF and Sentrin/SUMO Specific Peptidase 3 (SENP3) control NPM1 functions through dynamic SUMOylation/de-SUMOylation. Mutated NPM1 is an oncoprotein that exhibits an aberrant cytoplasmic localization (NPM1c) and disrupts PML/P53 signaling. Studies reported increased survival of patients with NPM1c AML when retinoic acid (RA) was added to chemotherapy or hypomethylating agents. Ex vivo, RA initiates NPM1c degradation, P53 activation and cell death. Yet, the molecular mechanisms involved remain elusive. Here we show that in NPM1c AML cell lines or patients’ blasts, NPM1c-triggered mitochondrial dysfunction and oxidative stress drive NPM1c stabilization through SENP3 upregulation. RA decreases mitochondrial ROS production, driving degradation of SENP3, ARF stabilization, PML-dependent NPM1c hyperSUMOylation followed by RNF4-dependent ubiquitination and degradation. Thus, the feedback loop stabilizing NPM1c protein can be interrupted by RA-triggered enhanced mitochondrial fitness, mechanistically explaining the benefit of RA in chemotherapy or hypomethylating agents-treated AMLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RA induces PML-dependent NPM1 SUMOylation followed by RNF-4-dependent ubiquitination and proteasomal degradation.
Fig. 2: RA downregulates SENP3 resulting in NPM1c SUMOylation and Ubiquitination.
Fig. 3: SENP3 stabilizes NPM1c through deSUMOylation.
Fig. 4: RA initiates a rapid decrease of ROS in NPM1c-AML cells.
Fig. 5: RA rapidly corrects mitochondrial defects in NPM1c-AML cells.
Fig. 6: Eight-week-old NSG mice were intravenously injected with 2 × 106 OCI-AML3 or 1 × 106 primary blasts from one NPM1c AML patient.
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available and deposited in the Gene Expression Omnibus (GEO) under the accession number GSE298593 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE298593]. All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Falini B, Bolli N, Liso A, Martelli M, Mannucci R, Pileri S, et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia. 2009;23:1731–43.

    Article  CAS  PubMed  Google Scholar 

  2. Lam YW, Trinkle-Mulcahy L, Lamond AI. The nucleolus. J Cell Sci. 2005;118:1335–7.

    Article  CAS  PubMed  Google Scholar 

  3. Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E, et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity?. Blood. 2011;117:1109–20.

    Article  CAS  PubMed  Google Scholar 

  4. Falini B, Brunetti L, Sportoletti P, Martelli MP. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136:1707–21.

    Article  PubMed  Google Scholar 

  5. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 2005;437:147–53.

    Article  CAS  PubMed  Google Scholar 

  6. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell. 2003;12:1151–64.

    Article  CAS  PubMed  Google Scholar 

  7. Haindl M, Harasim T, Eick D, Muller S. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep. 2008;9:273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci. 2007;32:286–95.

    Article  CAS  PubMed  Google Scholar 

  9. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352:254–66.

    Article  CAS  PubMed  Google Scholar 

  10. Dohner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–77.

    Article  PubMed  Google Scholar 

  11. Falini B, Dillon R. Criteria for diagnosis and molecular monitoring of NPM1-mutated AML. Blood Cancer Discov. 2024;5:8–20.

    Article  CAS  PubMed  Google Scholar 

  12. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bolli N, Nicoletti I, De Marco MF, Bigerna B, Pucciarini A, Mannucci R, et al. Born to be exported: COOH-terminal nuclear export signals of different strength ensure cytoplasmic accumulation of nucleophosmin leukemic mutants. Cancer Res. 2007;67:6230–7.

    Article  CAS  PubMed  Google Scholar 

  14. Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34:499–512.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu HC, Rerolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, et al. Actinomycin D targets NPM1c-primed mitochondria to restore PML-driven senescence in AML therapy. Cancer Discov. 2021;11:3198–213.

  16. de The H. Differentiation therapy revisited. Nat Rev Cancer. 2018;18:117–27.

    Article  PubMed  Google Scholar 

  17. de The H, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32:552–60.

    Article  PubMed  Google Scholar 

  18. Burnett AK, Hills RK, Green C, Jenkinson S, Koo K, Patel Y, et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood. 2010;115:948–56.

    Article  CAS  PubMed  Google Scholar 

  19. Schlenk RF, Frohling S, Hartmann F, Fischer JT, Glasmacher A, del Valle F, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia. 2004;18:1798–803.

    Article  CAS  PubMed  Google Scholar 

  20. Cao Y, Liu Y, Shang L, Wei W, Shen Y, Gu Q, et al. Decitabine and all-trans retinoic acid synergistically exhibit cytotoxicity against elderly AML patients via miR-34a/MYCN axis. Biomed Pharmacother. 2020;125:109878.

    Article  CAS  PubMed  Google Scholar 

  21. Lübbert M, Grishina O, Schmoor C, Schlenk RF, Jost E, Crysandt M, et al. Valproate and retinoic acid in combination with decitabine in elderly nonfit patients with acute myeloid leukemia: results of a multicenter, randomized, 2 × 2, phase II trial. J Clin Oncol. 2020;38:257–70.

    Article  PubMed  Google Scholar 

  22. Schlenk RF, Döhner K, Kneba M, Götze K, Hartmann F, Del Valle F, et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica. 2009;94:54–60.

    Article  CAS  PubMed  Google Scholar 

  23. El Hajj H, Dassouki Z, Berthier C, Raffoux E, Ades L, Legrand O, et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood. 2015;125:3447–54.

    Article  CAS  PubMed  Google Scholar 

  24. Martelli MP, Gionfriddo I, Mezzasoma F, Milano F, Pierangeli S, Mulas F, et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood. 2015;125:3455–65.

    Article  CAS  PubMed  Google Scholar 

  25. Hleihel R, El Hajj H, Wu HC, Berthier C, Zhu HH, Massoud R, et al. A Pin1/PML/P53 axis activated by retinoic acid in NPM1c acute myeloid leukemia. Haematologica. 2021;106:3090–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skayneh H, Jishi B, Hleihel R, Hamie M, El Hajj R, Deleuze-Masquefa C, et al. EAPB0503, an imidazoquinoxaline derivative modulates SENP3/ARF mediated SUMOylation, and induces NPM1c degradation in NPM1 mutant AML. Int J Mol Sci. 2022;23:3421.

  27. Yan S, Sun X, Xiang B, Cang H, Kang X, Chen Y, et al. Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. EMBO J. 2010;29:3773–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, Laurent G, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest. 2012;122:3088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boutzen H, Saland E, Larrue C, de Toni F, Gales L, Castelli FA, et al. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J Exp Med. 2016;213:483–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altucci L, Rossin A, Hirsch O, Nebbioso A, Vitoux D, Wilhelm E, et al. Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res. 2005;65:8754–65.

    Article  CAS  PubMed  Google Scholar 

  31. McKeown MR, Johannessen L, Lee E, Fiore C, di Tomaso E. Antitumor synergy with SY-1425, a selective RARalpha agonist, and hypomethylating agents in retinoic acid receptor pathway activated models of acute myeloid leukemia. Haematologica. 2019;104:e138–e42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang M, Thomas D, Li MX, Feng W, Chan SM, Majeti R, et al. Role of cysteine 288 in nucleophosmin cytoplasmic mutations: sensitization to toxicity induced by arsenic trioxide and bortezomib. Leukemia. 2013;27:1970–80.

    Article  CAS  PubMed  Google Scholar 

  33. Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev. 2018;32:167–83.

    Article  CAS  PubMed  Google Scholar 

  34. Gu X, Ebrahem Q, Mahfouz RZ, Hasipek M, Enane F, Radivoyevitch T, et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates. J Clin Invest. 2018;128:4260–79.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuo ML, den Besten W, Thomas MC, Sherr CJ. Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle. 2008;7:3378–87.

    Article  CAS  PubMed  Google Scholar 

  36. Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, et al. Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol. 2008;183:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dassouki Z, Sahin U, El Hajj H, Jollivet F, Kfoury Y, Lallemand-Breitenbach V, et al. ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation. Blood. 2015;125:474–82.

    Article  CAS  PubMed  Google Scholar 

  38. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol. 2008;10:547–55.

    Article  CAS  PubMed  Google Scholar 

  39. Acin-Perez R, Hoyos B, Zhao F, Vinogradov V, Fischman DA, Harris RA, et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J. 2010;24:627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nohara K, Mallampalli V, Nemkov T, Wirianto M, Yang J, Ye Y, et al. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun. 2019;10:3923.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22:280–97.

    Article  CAS  PubMed  Google Scholar 

  42. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

  44. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  45. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HEH and AB planned and designed this study. RH, HS, H-CW, MH, JD, CM conducted the experiments. AK performed the Bioinformatics analysis. RH analyzed the data and reported the study to HEH, AB, MS and HdT contributed to the conceptualization of this study. HEH wrote the original draft. AB reviewed the original draft. HEH validated the final manuscript.

Corresponding author

Correspondence to Hiba El Hajj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hleihel, R., Skayneh, H., Wu, HC. et al. Retinoic acid disrupts an NPM1c/ROS/SENP3/ARF oncogenic axis in acute myeloid leukemia. Leukemia (2025). https://doi.org/10.1038/s41375-025-02731-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41375-025-02731-2

Search

Quick links