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CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Germline Jak2-R1063H mutation interferes with normal
hematopoietic development and increases risk of thrombosis
and leukemic transformation
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The acquired JAK2-V617F mutation plays a causal role in myeloproliferative neoplasms (MPN). Weakly activating JAK2 germline
variants have been associated with MPN risk, but the underlying mechanisms remain unclear. We previously identified the JAK2-
R1063H germline variant, which contributes to hereditary MPN and increased disease severity in essential thrombocythemia. Here,
we studied alterations in hematopoiesis in Jak2-R1063H knock-in mice. The Jak2-R1063H mouse cohort exhibited increased
mortality, stimulated thrombopoiesis and elevated D-dimers levels, indicative of thrombotic complications. Bone marrow analysis
revealed myeloid bias, enhanced megakaryopoiesis and activation of inflammatory signaling. Transcriptional and functional assays
of hematopoietic stem cells suggested their accelerated aging and functional decline. The Egr1 transcriptional network, including
the Thbs1 gene, progressively increased in aging mice, reinforcing alterations initiated by Jak2/Stat signaling. In murine acute
myelogenous leukemia models, the Jak2-R1063H cooperated with a driver oncogene in promoting leukemogenesis. Germline JAK2-
R1063H was found in 10 of 200 MPN patients from local hematology centers, with a higher minor allele frequency compared to
healthy controls. Patients harboring JAK2-R1063H variant exhibited an increased incidence of thrombotic complications and disease
progression with shortened survival. In conclusion, our findings identify the JAK2-R1063H germline variant as a risk factor for MPN
development, thrombotic complications, and leukemic transformation.
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INTRODUCTION
The Janus kinase 2 (JAK2) gene encodes for a tyrosine kinase
responsible for mediating a critically important signaling in

risk of MPN[3-5], and germline variations in JAK2 itself, such as the
JAK2 GGCC haplotype, have been associated with JAK2-V617F
somatic mutation acquisition and the development of MPNs [6, 71.

immune and hematopoietic cells [1]. The most frequently
occurring gain-of-function JAK2 mutation, V617F, gives rise to a
constitutively active JAK2 kinase, which drives the JAK/STAT
signaling that leads to excessive proliferation and survival of
myeloid progenitor cells in most of the Philadelphia chromosome-
negative classical myeloproliferative neoplasms (MPNs) [2]. Multi-
ple studies have demonstrated that besides the somatic muta-
tion(s), there is a substantial hereditable component, linked to the

Also, non-canonical, weakly activating germline JAK2 variants may
predispose progenitor cells to acquire JAK2-V617F and accelerate
MPN progression to acute myeloid leukemia (AML) [8, 9]. Cases of
hereditary thrombocytosis associated with some germline JAK2
variants indicate a distinct impact of JAK2 variants compared to
somatic JAK2 mutations [10-12]. The JAK2-R1063H germline
variant, functionally characterized in cooperation with JAK2-
E846D, contributed to hereditary MPN with erythrocytosis and
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megakaryocytic atypia [13]. Mambet et al. [14] showed that
patients with essential thrombocythemia (ET) carrying JAK2-
R1063H and JAK2-V617F mutations had increased JAK2 signaling
and disease severity, with 28% of them experiencing thrombotic
events. The study also demonstrated that while most of the
patients with the JAK2-R1063H mutation were heterozygous
germline carriers, rare patients were (nearly) homozygous for
the R1063H mutation and in rare cases the R1063H was an
acquired somatic mutation [14]. Additionally, whole exome
sequencing identified JAK2-R1063H in a patient with venous
thromboembolism, suggesting it as a potential disease-causing
variant [15]. Evaluation of the risk of MPN-associated thrombosis
typically considers quantitative changes in platelets [16], but
metabolic alterations mediating aberrant platelet activity and
function may also play a crucial role, potentially driving
hyperreactivation and increasing thrombotic risk in these patients
[17]. However, the mechanism of thrombosis associated with
weakly activating JAK2 germline mutations has not been
described, nor it is known whether these variants modulate
hematopoietic stem cell (HSC)/progenitor function as proposed
for other contributors to germline MPN risk [3]. In this context, no
study to date has investigated whether the JAK2-R1063H variant
may promote a non-hierarchical platelet differentiation pathway,
in which platelet-biased HSCs give rise directly to megakaryocyte
progenitors (MkPs), bypassing canonical multipotent intermedi-
ates [18, 19], and leading to overactive platelets that increase the
risk of thrombosis in the elderly [19]. To study the biology of the
JAK2-R1063H variant, we generated CRISPR/Cas9-edited Jak2-
R1063H mice and provide a phenotypic and molecular character-
ization of this model.

MATERIALS AND METHODS

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the
Declaration of Helsinki. The project was approved by the Ethics Committee
of University Hospital Brno. Reference number 22-240620/EK and approval
number 102/20 dated 24 June 2020. Written informed consent for
participation and publication of results was obtained from all enrolled
patients and/or their legal guardians. For in vivo work in mice, studies were
carried out in compliance with The Ministry of Agriculture of the Czech
Republic and protocols approved by the Czech Academy of Sciences
Animal Welfare and Ethical Review Advisory Body (protocol 67/2020).

Mice

The mouse model bearing Jak2-R1063H mutation was created using
microinjection of synthesized 5 uM ssODNs (87 bp) containing the R1063H
mutation, 5 uM sgRNA mRNA and 100 ng/pl Cas9 protein into C57BL6/N-
derived zygotes. In this study, 10-14- and 52-62-week-old mice were
referred to as young (3M) and old (12M), respectively. In some
experiments, 75- to 80-week-old mice were analyzed, referred to as
18 M. Since the quantification of the R1063H allele in the patient DNA
samples indicated both heterozygous and homozygous state [14], we bred
and analyzed the knock-in Jak2-R1063H homozygous mice (depicted as
RH/RH; unless otherwise stated, the designation Jak2-R1063H mice refers
to this genotype) to enhance the potential effect. In some experiments, we
also analyzed heterozygous Jak2-R1063H mice (depicted as m/RH).
Additional methods are described in the Supplemental File.

RESULTS

Jak2-R1063H mutant mice exhibit stimulated thrombopoiesis
and age-related decline of erythropoiesis

The mice were born in normal (expected) frequency without marked
changes in spleen size and bone marrow (BM) cellularity (Supple-
mental Fig. 1A). However, we observed a relatively high frequency of
sudden death in the cohort of Jak2-R1063H mice with median overall
survival (OS) of 215 days (5/15) in comparison with the wt group
(0/15) (Fig. 1A). We analyzed functionality of the Jak2-R0163H
mutation in this in vivo model. Western blot (WB) analysis showed
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that Jak2 protein in unsorted BM cells was comparable between
Jak2-R1063H and wt mice, but BM cells stimulated with EPO, TPO,
G-CSF and IL-3 resulted in higher activation of Stat5 in the mutant
cells (Fig. 1B). We observed phosphorylated Stat5 also in the absence
of added growth factors in R1063H BM cells, suggesting weakly
activated signaling in ligand-unstimulated cells (Fig. 1B). This
experiment showed that the Jak2-R0163H mutation has expected
regulation in mice with the ability to overstimulate downstream
receptor signaling.

The Jak2-R1063H mice displayed significantly increased platelet
(PLT) counts when compared to wt mice during life-span (Fig. 1C
top), but only with age the counts exceeded the physiological
levels for C57BL/6N background [20]. Analysis of 3- and 12-month-
old heterozygous Jak2-R1063H animals (m/RH) showed inter-
mediate phenotype, supporting a dose-dependent effect of the
Jak2-R1063H mutation and excluding an unexpected phenotype
associated with the homozygous state (Fig. 1C bottom). To
investigate whether the observed hematopoietic alterations might
be driven (at least partially) by an expansion of platelet-biased
HSCs (i.e. recently described non-hierarchical megakaryopoiesis
pathway) [18, 19] we measured the expansion of Lin~/cKit™/
CD41%/CD48~ cells. This expansion was pronounced from
12 months of age, preceding the age-associated increase
observed in m/m (wt) animals (Fig. 1D). These findings suggest
that Jak2-R1063H progressively activates a platelet-biased differ-
entiation trajectory through involvement of direct pathway from
HSCs to MkPs [18, 19].

The plasma thrombopoietin (Tpo) level was normal (Fig. 1E). To
further confirm that the observed trend towards increased PLTs is
a cell autonomous defect, unsorted BM cells from wt or Jak2-
R1063H mice were transplanted into the lethally irradiated
recipients. The onset of increased PLTs was observed 9 weeks
after transplantation and persisted till 17 weeks, when the
experiment was terminated (Fig. 1F, Supplemental Fig. 1B).

The red blood cell (RBC) characteristics were normal but with more
pronounced signs of anemia in aged Jak2-R1063H group than in wt
mice (Fig. 1G top) and analysis of 3- and 12-month-old heterozygous
Jak2-R1063H animals (m/RH) showed an intermediate phenotype,
further supporting a dosage-dependent impact of the mutation also
on erythroid parameters (Fig. 1G bottom). We also observed normal
maturation of RBCs (data not shown), non-altered iron metabolism
(the exception was increased ferritin in old Jak2-R1063H mice,
Supplemental Fig. 1C), but increased erythropoietin (Epo) levels
(Fig. TH). White blood cell (WBC) parameters remained unaltered at
all examined time points (Supplemental Fig. 1D).

Although the WB analysis (Fig. 1B) revealed activation caused
by the Jak2-R0163H mutation downstream of EpoR and TpoR, it
was documented in the presence of excess of ligand, with limited
functional relevance for in vivo context. We hypothesized, that the
observed phenotype in thrombopoiesis/erythropoiesis could be
(at least partially) modulated by different coupling affinity of the
Jak2-R0163H kinase to EpoR and TpoR, as seen with human G-
CSFR, when JAK2-V617F/R1063H mutant couples to G-CSFR with
higher affinity than JAK2-V617F [14]. We performed co-
immunoprecipitation experiments in unstimulated HEK293 cells
stably expressing mouse EpoR and TpoR. As shown in Fig. 11 left,
less EpoR co-immunoprecipitated with Jak2-R1063H. Due to
technical issues with very weak TpoR signal, we were unable to
reliably evaluate the TpoR/Jak2-R1063H co-IP results (data not
shown). However, when we used HEK293 cells stably expressing
human EPOR and TPOR, more TPOR and less EPOR co-
immunoprecipitated with human JAK2-R1063H (Fig. 11 right). This
result suggested that due to the decreased binding affinity with
EpoR, the Jak2-R1063H signaling is slightly compromised but not
physiologically manifested as anemia (in young animals) due to
the compensation by slightly increased production of Epo. Vice
versa, increased coupling of Jak2-R1063H with TpoR promotes
mild thrombocytosis without elevated circulating Tpo.
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Jak2-R1063H alters normal hematopoietic development and
causes premature HSC aging and functional decline of HSC

compartment

While the total number of LSK cells in the BM remained
unchanged in the young animals, the Jak2-R1063H model
displayed increased number of HSCs, specifically long-term

Leukemia

hematopoietic stem cells (LT-HSCs) at a young age (3 M); the
proportion of populations of short-term hematopoietic stem cells
(MPP1) and multipotent progenitors (MPP2) remained unchanged
at this stage (Fig. 2A). In aged mice (12 M), Jak2-R1063H mice
exhibited increased frequency in the LSK population, mainly due
to the increase in MPP1 and MPP2 (Fig. 2A). The levels of myeloid-

SPRINGER NATURE
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Fig. 1 Characterization of the Jak2-R1063H mouse model. A Increased mortality rate of the mutant mice. Kaplan-Meier survival analysis of
m/m (wt) (n=15) and RH/RH (n = 15) mice. Mantle-Cox test was used to assess statistical significance of obtained results (p =0.0350).
B Increased baseline (blank line) and cytokine-stimulated Jak2/Stat5 activation in lysates of total BM cells obtained from RH/RH 3-month-old
animals (n = 2, pooled cells), when compared to age-matched controls (n = 2), identified by WB analysis. C PLT counts for m/m (wt) and RH/RH
are shown at the indicated times (up); comparison of PLT counts for m/m (wt), heterozygous and homozygous Jak2-R1063H mice at 3 and
12 months of age (down), n>10 mice per group, per each time point. D Phenotypic MkPs stratification based on CD48 expression.
Representative flow cytometry plot (up) and quantification of CD48_low non-hierarchical MkPs at indicated time-points (n > 3 mice per group)
(down). E Tpo concentration in plasma (n = 4 mice per group). F Workflow of transplantation of unsorted Jak2-R1063H-positive or wt BM cells
to lethally irradiated C57BL/6NCrl recipients and PLT counts after transplantation (n > 10 mice per group). G RBC, hemoglobin (HGB) and
hematocrit (HCT) levels at the indicated times (n > 10 mice per group, per each time point) (up). Comparison of RBC, HGB and HCT counts for
m/m (wt), heterozygous and homozygous Jak2-R1063H mice at 3 and 12 months of age, n =2 10 mice per group, per each time point (down).
H Epo concentration in plasma (n>4 mice per group). | Altered coupling of mouse (m) Jak2-R1063H or human (h) JAK2-R1063H to
hematopoietic receptors. Mouse Jak2-Flag and human JAK2-Flag mutants were transiently expressed in HEK293 cells in which mouse V5-
tagged Epor and human HA-tagged EPOR/TPOR were stably expressed. Interaction was examined by co-immunoprecipitation with Flag/V5
antibody. Immunoblot band intensity was quantified by ImageJ software and normalized to loading control and human JAK2 wt. All data are

presented as mean = SD and unpaired t-test with Welsch’s correction was used for group comparison. *p < 0.05.

biased multipotent progenitors (MPP3) and lymphoid-biased
multipotent progenitors (MPP4) were not significantly altered
(Supplemental Fig. 2).

Transcriptional analysis of HSCs sorted at 3 and 12 months of
age revealed 54 genes and 124 genes, respectively, to be
expressed differentially between the wt and Jak2-R1063H (i.e.
differentially expressed genes (DEGs), FDR < 0.05; Supplemental
Table 1). Processes related to cell cycle were downregulated in the
young mutant HSCs (Fig. 2B left). These data suggested
accumulation of less cycling, relatively more quiescent cells in
the young R1063H BM when compared to wt. Also examples of
other significantly downregulated GSEA in the mutant 3-month-
old HSCs (G2M checkpoint gene set, double strand repair by
homologous recombination gene set, Fig. 2C) are consistent with
more quiescent HSC phenotype [21-23]. These data indicated that
downregulation of pathways related to cycling/cell cycle progres-
sion, known to be downregulated in old HSCs [21, 24], are
consequences of premature aging of R1063H HSCs in 3-month-old
mice. Also, significantly upregulated processes in the R1063H
HSCs, translation and ribosomal protein genes expression (Fig. 2C
left) and activated mTorc1 signaling (Supplemental Fig. 3A) are
compatible with HSC aging [24, 25]. In the 12-month-old mice,
lack of differential expression of the cell cycle-related gene sets
likely reflects their comparative expression achieved by physiolo-
gical aging of the wt HSC controls, but the processes associated
with ribosomal genes expression remained enriched in the mutant
HSCs of the 12-month-old animals (Fig. 2B right).

Then we questioned whether a significant increase of LSK, that
is predominantly caused by significant increase of MPP1/MPP2
populations in aged R1063H murine BM (Fig. 2A), could result from
a pro-proliferative signaling, known to be activated in MPP1/MPP2
cell subsets [26]. Earlier studies showed that loss of STAT5
expression in hematopoiesis specifically reduces numbers of
MPP1/MPP2 [27], so opposite effect would be expected for
augmented STAT5 activity. We assessed the expression of
previously defined key STAT5 target genes in hematopoiesis [28]
and found that their increased expression clearly distinguishes
R1063H and wt HSCs in 12M (Fig. 2D left). This differential
expression was age-dependent, not present in 3-month-old HSCs,
and distinguished also HSCs derived from young and old mutant
mice (Fig. 2D right). These data suggested that the transcriptional
differences in HSC compartment between the young and aged
mutant animals, reinforced during aging, could be primarily linked
to life-lasting chronic stress-induced conditions caused by the
weakly activating Jak2 mutation.

To better characterize the extent of intrinsic R1063H HSCs
alterations during aging, we constructed the principal component
analysis and identified age as the main source of transcriptional
variation in HSC and also LK compartment (Fig. 2E). The skewing
of transcriptional activation of aged HSCs was more pronounced
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in Jak2-R1063H population (Fig. 2F). Analysis of DEGs during aging
confirmed, besides the mentioned JAK/STAT activation, also
upregulation of PI3K-Akt signaling and the down-regulation or
loss of immune system process and hematopoietic differentiation
(Fig. 2F). These data likely reflect a known phenomenon of
diminished differentiation and impaired immune response asso-
ciated with a decrease of lymphoid-biased HSCs in aged
hematopoiesis [24, 29, 30]. HSC compartment at 12 M also showed
downregulation of majority of LT-HSC specific genes [31] in Jak2-
R1063H cells, confirming faster, premature functional decline and
relative exhaustion of this cell population in mutant animals
(Fig. 2G). Using publicly available RNA-seq datasets (GSE123401)
[32], we show that the transcriptional features of exhaustion/
premature aging of Jak2-R1063H HSCs in BM of young mice are
comparable to those that characterize HSC of young mice carrying
Vav-Cre Jak2-V617F (see Supplemental Methods and Supplemen-
tal Fig. 3B-D).

Next, we aimed to determine whether the observed less cycling,
more quiescent HSC status in young Jak2-R1063H mice is
intrinsically driven and maintained after transplantation into wt
recipients [33, 34]. We non-competitively transplanted total BM
derived from control and R1063H littermates into CD45.1 recipients
and assessed HSC numbers 17 weeks post-transplantation. The
frequency for Jak2-R1063H HSCs was decreased compared to wt
control mice, while the MPP frequencies were comparable (Fig. 2H).
These results support our findings that Jak2-R1063H mutation
results, at least in part, in HSC-autonomous premature aging/
functional decline, but do not exclude microenvironmental
contribution (driven by cell-extrinsic factors present in the Jak2-
R1063H BM niche) to the pathological premature aging and
functional decline of hematopoiesis in Jak2-R1063H mice.

Myeloid bias, enhanced megakaryopoiesis and inflammatory
signatures in Jak2-R1063H mutant hematopoiesis

Based on the above data (Fig. 1D), we reasoned that the direct
pathway of HSC differentiation to MkPs is promoted by Jak2-
R1063H in aged mice. We questioned if the canonical mega-
karyopoiesis pathway, which functions in parallel with the non-
hierarchical pathway [19], is also enhanced and whether it may
function more prominently at younger age. To explore the
functional consequences of Jak2-R1063H expression in the
myeloid progenitor compartment further, and in view of
described myeloid bias and augmented megakaryocyte expansion
associated with hematopoietic aging [34, 35], we analyzed
immunophenotypically-defined LK cells (Lin~/Scal /cKit"o") in
the Jak2-R1063H murine BM. We observed non-significant
increase in megakaryocytic/erythroid progenitors (MEP) at
3 months of age (Fig. 3A, left), and substantial myeloid bias in
aged mice, characterized by a disproportionate increase in CMP
cells and a marked decrease in MEP cells (Fig. 3A, right). At the
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level of committed cell subsets downstream of MEP, we observed
significantly increased megakaryocytic and erythroid progenitors
in young R1063H mice (Fig. 3B left); the trend towards expansion
of pre-CFU-Es and megakaryocyte progenitor skewing persisted
also in old mice (Fig. 3B, left).

Leukemia

We questioned whether megakaryocytic differentiation pro-
gram (Figs. 1D and 3B) and thrombopoiesis in aged Jak2-R1063H
mice (Fig. 1C) could be explained on the level of differential STAT
activation downstream Jak2-R1063H mutation. It was previously
reported that in JAK2-V617F CD34" progenitors, intrinsically
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Fig.2 Jak2-R1063H mutation alters hematopoietic development and causes HSC functional decline with age. A Quantification of absolute
number of distinct stem and progenitor populations in BM. Lin~ c-Kit™ Sca-17 (LSK), Lin~ c-Kit" Sca-1" CD48~ CD150" (HSC), Lin~ c-Kit* Sca-
1" CD48~ CD150" CD34~ CD135 (LT-HSQ), Lin~ c-Kit* Sca-1" CD48~ CD150" CD34* CD135 (MPP1), Lin~ c-Kit" Sca-1" CD48* CD150"
CD34" CD135~ (MPP2) (n >4 mice per group). B Relevant unique downregulated and upregulated GO terms in RH/RH HSCs, as calculated
using Cytoscape platform (STRING App). € GSEA for transcriptional activation and HSC dysregulation of young (3 M) RH/RH vs. m/m, NOM p
values < 0.05. D Hierarchical clustering of expression levels of Stat5 targets clearly distinguishes old Jak2-R1063H HSCs from wt (m/m) HSC
(left) and from their young Jak2-R1063H counterparts (right). Heatmap representations of differential expression of Stat5 target genes. Red
indicates upregulation, blue indicates downregulation of gene expression, and color intensity indicates the level of differential expression.
Rows in the heatmaps represent individual samples. E Principal component analysis (PCA) (n =4 mice per group, only RH/RH old mice (12 M)
n = 3). F Volcano plot depicting expression levels of genes upregulated (red points) and downregulated (blue points) during aging (3 M versus
12M) in m/m and RH/RH HSCs; FDR < 0.05, |IongC | >1 (up left). Venn diagrams of intersecting upregulated or downregulated genes |
log,FC| 2 2, p < 0.05 comparing m/m and RH/RH HSCs during aging (up right). Relevant unique upregulated and downregulated GO terms
and KEGG pathways in RH/RH HSCs, as calculated using Cytoscape platform (STRING App) (down). G Heatmap of top 25 genes representing
mouse LT-HSC compartment. H Workflow of transplantation of unsorted BM cells to lethally irradiated recipients (n = 5 mice per group) and
frequencies of BM HSC and MPP 17 weeks after transplantation. Data are presented as mean + SD and unpaired t-test with Welsch'’s correction

was used for group comparison. *p < 0.05.

increased STAT1 phosphorylation promoted enhanced megakar-
yocytic and reduced erythroid differentiation and ET-like pheno-
type [36]. To evaluate differences in signaling caused by Jak2-
R1063H kinase, we examined the phosphorylation levels of Stat1,
Stat3, and Erk1/2 within the c-kit"™-enriched BM population. WB
analysis revealed increased baseline Stat1 phosphorylation level
for Jak2-R1063H cells, with a marked increase after the short pulse
stimulation with IL3, EPO and also TPO in old mice (Fig. 3C right);
in the young Jak2-R1063H mice, the activation could be better
demonstrated for Stat3 (Fig. 3C left). Cell-intrinsic inflammatory
properties were demonstrated for JAK2-V617F myeloid progeni-
tors [37, 38]. To test this aspect, we could only directly compare (at
the gene expression level) LK cells from the 3-month-old mice,
where individual myeloid populations did not differ significantly
between mutant and wt animals (Fig. 3A). We observed interferon
gamma response, TNFa signaling via NF-kB and inflammatory
response gene sets significantly enriched in the Jak2-R1063H
mutant LKs (Fig. 3D). These data are consistent with chronic
inflammatory signaling mediated by Jak2-R1063H in the mouse
BM compartment.

Gene expression profiles suggest a key role for Egr1 in
transcriptional regulatory network of aged Jak2-R1063H
progenitors

Among the genes differentially overexpressed across the HSC/
progenitor Jak2-R1063H populations, we identified an immediate
early response gene Egrl (Supplemental Table 1), a known
transcriptional master regulator of HSC aging, quiescence and
overall HSC/progenitor functionality [39, 40]. Egr1 was significantly
upregulated in the Jak2-R1063H 12 M HSCs vs. wt 12 M HSCs and
also in the Jak2-R1063H 12 M HSCs vs. 3 M mutant HSCs (Fig. 4A). In
addition, although increased Egr1 transcript levels in Jak2-R1063H
12 M LK cells vs. wt 12 M LK cells did not reach significance (Fig. 4A),
some of the key Egrl targets, as mentioned bellow, were
significantly upregulated in both HSC/LK mutant populations. We
searched for overlap between the putative EGR1 target genes in the
ChlIP-seq datasets (ENCODE transcription factor dataset) [41], and
genes differentially upregulated in Jak2-R1063H 12 M HSCs vs. 3 M
HSCs (Supplemental Table 1) and found that many of upregulated
genes in 12-month-old mutant HSCs are targets of EGR1; many of
these target genes were also upregulated in 12-month-old R1063H
HSCs vs. 12-month-old wt HSCs. These data suggested a
progressive augmentation of a subset of Egr? transcriptional
signature in the Jak2-R1063H HSCs/progenitors.

Among the genes functionally validated as responsible for HSC
aging [42], JUNB, ZFP36, IER2 or Cited2, are proposed EGR1 targets
in biomedical database [41] and showed different expression
pattern (Supplemental Table 1). The most differentially upregu-
lated Egr1 target in 12M mutant HSCs compared to wt
(Supplemental Table 1) was Thbsl, the gene encoding
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thrombospondin 1. ThbsT was also significantly upregulated in
12 M mutant LKs and HSCs vs. 3 M mutant HSCs (Fig. 4B). Thbs1 is
a ligand for CD36 and CDA47 receptors and it is implicated in
angiogenesis, tumor growth and thromboembolism [43, 44].
Correlation analysis [45] revealed a strong positive correlation of
Egr1 expression with the Thbs1 expression in HSC/LK populations,
suggesting their functional relationship in these cells (Fig. 4C). One
of the differentially upregulated Stat5-target genes was Pim1
(Fig. 2D), that is commonly found upregulated in JAK2-V617F
polycythemia vera (PV) and other myeloid malignancies [46]. Pim
kinases are considered to be “weak oncogenes” and it seems that
upregulation of this gene alone is not sufficient to promote overt
disease such as PV or AML [46, 47], but may cooperate in its
development. Egr1 expression and Pim1 expression revealed a
very strong positive coregulation in HSC/LK populations in 12 M
mice (Fig. 4D), but such a possible relationship in Jak2-R1063H
progenitors requires further functional analyses.

Jak2-R1063H mutation represents risk factor for thrombosis
Our previous analysis of MPN patients bearing concomitantly
JAK2-R1063H and V617F mutations revealed increased incidence
of thrombotic events [14], so we asked whether the increased
mortality in the cohort of Jak2-R1063H mice (which occurred
suddenly precluding pathological analysis) (Fig. 1A) could be
related to platelet pathology, similar to that observed for JAK2-
V617F [17, 48]. We measured the levels of D-dimers as a marker of
thrombosis and found them significantly increased in the young
Jak2-R1063H group (Fig. 5A). Using Seahorse flux analyzer, we
measured extracellular acidification rate (ECAR) that reflects
cellular glycolysis, and oxygen consumption rate (OCR) as a
measure of mitochondrial metabolism. We showed significant
increase in basal/ATP-linked respiration, while maximal respiration
remained unchanged (Fig. 5B), suggesting higher utilization of
mitochondrial ATP by Jak2-R1063H PLTs (Supplemental Fig. 4). In
subsequent RNA-seq analysis we demonstrated strong enrich-
ment of fatty acid metabolism genes, including type Il scavenger
receptor CD36 (Fig. 5C), which was shown to promote PLT
activation and thrombosis by activating redox sensing/signaling
events [49]. As mentioned above, the most differentially
upregulated gene in 12M mutant HSCs compared to wt was
Thbs1, the gene encoding thrombospondin 1, a CD36 ligand
(Fig. 4B). Also, as noted above, the hyperactive PLTs produced by
the platelet-biased HSC trajectory are prone to thrombosis [19].
Overall, the presence of the germline Jak2-R1063H mutation leads
to a significant increase in PLTs in mice (Fig. 1C), independent of
Tpo levels (Fig. 1D), and to increased thrombotic markers (Fig. 5A).
Endothelial cells (ECs) play a critical role in maintaining vascular
homeostasis and regulating thrombotic responses. In the context
of JAK2-V617F-driven MPNs, ECs harboring the mutation have
been shown to adopt a pro-inflammatory, pro-adhesive, and pro-
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myeloid precursors in BM. Lin~ c-Kit™ Sca-1" (LK), Lin~ c-Kit" Sca-1~ CD34" chRII/III"’W (CMP), Lin~ c-Kit" Sca-1~ CD34" FcgRIl/IIT (GMP) and
Lin~c-Kit™ Sca-1-CD34 FcgRI/II®Y (MEP) (n > 4 mice per group). B Quantification of absolute number of erythroid/megakaryocytic committed
subsets - Lin~ c-Kit"Sca-17/CD41~/CD150'°"/CD105 " (CFU-E), Linc-Kit"Sca-1"/CD41~/ CD 150"/CD105 " (Pre—erythroid CFU), Lin~c-Kit"Sca-
17/CD41%/CD150" (MKP), Lin~c-Kit"Sca-1"/ CD41'°" /CD150"/CD105~ (Pre-MegE) and Lin~c-Kit"Sca-1/CD41'°*/CD150~/CD105" (Pre-GM)
(n = 4 mice per group). C Phosphorylation of Stat1 (Tyr 694), Stat3 (Tyr 705) and Erk1/2 (Thr 202/Tyr 204) proteins in m/m (wt) and RH/RH c-Kit"
enriched fraction of total BM. Total Erk protein and Vinculin served as loading control. WB shows the baseline (blank line) and cytokine-
stimulated protein activities in protein lysates from enriched c-kit* cells, starved for 40 hours and unstimulated or stimulated with indicated
cytokines for 15 min. D GSEA for selected pathways from Hallmark gene sets enriched in RH/RH vs. m/m in LK cells, NOM p values < 0.05. Data
are presented as mean + SD and unpaired t-test with Welsch’s correction was used for group comparison. *p < 0.05.

thrombotic phenotype, contributing to the higher incidence of
vascular events in these patients [50, 51]. Nevertheless, analysis of
pulmonary ECs in the Jak2-R1063H model did not reveal similar
features (Fig. 5D), thus does not provide evidence of the link
between ECs and Jak2-R1063H-associated pathobiology.

Cooperative role of Jak2-R1063H mutation in leukemic
development

The presence of JAK2-R1063H has been proposed as a potential
risk factor for progression from MPN to AML [9]. In order to mimic
leukemic transformation, we used model based on overexpression
of the oncogenic fusion protein MLL-AF9 [52]. MLL-AF9 spleno-
cytes were transplanted into wt or mutant mice, allowing us to
determine the effects of the mutant niche on leukemic

Leukemia

progression. We observed quicker leukemic onset in Jak2-
R1063H than in wt mice (Fig. 5E, Supplemental Fig. 5) suggesting
cell extrinsic effect of Jak2-R1063H mutation which might favor
leukemogenesis. In addition, Jak2-R1063H HSCs transduced with
MLL-AF9 oncogene exhibited both enhanced colony-forming
potential upon MLL-AF9 introduction and increased re-plating
capacity, confirming also the intrinsic effect of Jak2-R1063H
mutation in promoting leukemic development (Fig. 5F). A previous
in vitro sensitivity assay of Ba-F3/EPOR cells showed that human
JAK2-R1063H and JAK2-V617F/R1063H double mutant cells are
significantly more sensitive to JAK2 inhibitor, ruxolitinib, com-
pared to wt cells [14]. The colony assay of wt and Jak2-R1063H BM
cells under increasing concentration of ruxolitinib showed similar
results. The consistent result was observed also by cultivating wt

SPRINGER NATURE
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Fig. 4 Egr1-mediated transcriptional reprogramming in aged Jak2-R1063H HSCs. A, B Differential expression of Egr1 (A) and Thbs1 (B)
genes in HSC and LK compartments of Jak2-R1063H (RH/RH) and wt (m/m) animals. Boxplots generated from RNA-seq data. Student’s t test
with Bonferroni correction, *p < 0.05; CPM counts per million. C, D Correlation curves depicting a significant strong positive correlation of Egr1
and Thbs1 expression levels (C) and a significant very strong positive coregulation of Egr1 and Pim1 (D) genes in HSC and LK compartments.
Pearson correlation analysis combined values of both wt (m/m, black dots) and Jak2-R1063H (RH/RH, red dots). CPM counts per million,

p value, R correlation coefficient.

and Jak2-R1063H LSKs transduced with MLL-AF9, suggesting
potential therapeutic implication (Fig. 5G). Structural modeling of
interactions in the JAK2 wt and the R1063H mutant active site with
ruxolitinib suggested stronger binding into the mutant (Supple-
mental Fig. 6). These findings provide a plausible structural
explanation for the increased sensitivity of the R1063H mutant to
JAK2 inhibition by ruxolitinib.

Clinical outcomes of MPN patients carrying the JAK2-R1063H
germline variant support that it is a risk-conferring variant
Samples from 200 consecutive MPN patients (71 ET, 46 primary
myelofibrosis (PMF), 83 PV) were analyzed for the presence of
JAK2-R1063H variant. This variant was found in 10 patients (5%) —
6 ET (8.4% of all ET patients), 3 PV (3.6% of all PV patients) and 1
PMF (2.2% of all PMF patients) (Fig. 6A left). All JAK2-R1063H-
positive MPN patients were also JAK2-V617F-positive, except for 3
CALR-positive ET patients (Fig. 6A middle). No significant
difference was found between JAK2-R1063H positive and negative
patients in terms of age at diagnosis (60 vs. 52 years), sex (female
percentage 60% vs. 62%), and occurrence of bleeding (0 vs. 6%)
(Supplemental Table 2A). However, there was a trend towards a
higher incidence of thrombotic events (33% vs. 22%) and
especially disease progression - i.e. transformation to AML or
post-PV fibrotic progression (33% vs. 13%) in JAK2-R1063H-
positive group (Fig. 6A right, Supplemental Table 2A). All
progressions to AML were observed in patients with an initial
diagnosis of ET. Moreover, patients with JAK2-R1063H had shorter
median OS (8.4 years vs. not reached) (Fig. 6B). Comparison of the
healthy Czech population from the 1000 Czech Genomes Project
[53] with a group of our 200 MPN patients showed that the minor
allele frequency (MAF) of the JAK2-R1063H in the healthy
population is lower than in the group of MPN patients (1.67%
vs. 2.50%; not statistically significant). The aggregate frequency of
the JAK2-R1063H allele in general European population is much
lower (0.58%) [54].
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DISCUSSION

Because JAK2 activities and downstream signaling have pleio-
tropic effects in hematopoiesis [55, 56], we asked whether weakly
activated Jak2, a lifelong consequence of the JAK2-R1063H variant,
leads to the evolution of an age-associated phenotype.

In our mouse model, HSCs and progenitors expressing Jak2-
R1063H variant revealed some characteristics of accelerated
(premature) aging, including selected transcriptional character-
istics [24, 25], myeloid-skewed differentiation [34] or impairment
of HSCs [30] with observed loss of LT-HSC gene expression
signature and decreased repopulation potential following trans-
plantation [33, 34]. Increased anemia in aged R1063H mice would
then also reflect more progressive aging-related changes in
hematopoiesis in the mutant BM [35]. Physiologically, HSCs of 3-
month-old mice exhibit a quiescent transcriptional signature and
MPP1/MPP2 exhibit a cycling/proliferative signature [26]. The fact
that the Jak2-R1063H-positive HSCs are at 3 months even more
quiescent and accumulated in greater numbers at this age
suggests that they have an increased proliferative history from
early development, which has contributed to their accelerated
aging and myeloid bias [57]. The exhaustion/premature aging of
Jak2-R1063H HSCs belong to phenotypic features that share
similarities with the oncogenic V617F mutation, as we documen-
ted by comparative analysis with the Vav-Cre Jak2-V617F mouse
model [32]. The most striking difference in the hematopoietic
phenotype of the two mutations is the absence of granulocytosis
in our model. Even though we have previously described
statistically higher WBC and neutrophils in the double mutant
JAK2-V617F/R1063H ET patients [14], the effect on granulocytosis
in these patients could be caused by cumulative effect on
JAK2 signaling of the two JAK2 (germline R1063H and somatic
V617F) mutations. Specific differences in granulopoiesis in
humans and mice may also play a role [58].

Our data suggest that in Jak2-R1063H-positive hematopoiesis,
cell-autonomous signaling with a likely contribution of a pro-
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Fig. 5 Jak2-R1063H mutation represents increased risk for thrombosis with altered bioenergetic PLT metabolism and accelerates
leukemia transformation. A D-dimers concentration in plasma (n = 4 mice per group). B Combined PLTs OCR profiles from m/m (wt) and RH/
RH mice (young (3 M)). Quantification of basal, ATP linked and maximal respiration are shown in right (n>6 mice per group). C GSEA
enrichment plots for Hallmark “Fatty acid metabolism” gene set enriched in RH/RH vs. m/m (wt) PLTs. Heatmap of top ten most upregulated
and downregulated genes from Hallmark “Fatty acid metabolism” gene set (n =3 mice per group, middle). Transcripts per million of CD36
gene in PLT from m/m and RH/RH mice (young (3 M), right). D Workflow of pulmonary ECs isolation and representative flow cytometry plot
(left). GSEA for selected pathways enriched in Jak2-V617F ECs [50] that are not over-represented in Jak2-R1063H mice (right). E Workflow.
Kaplan-Meier survival analysis of m/m (n=6) and RH/RH (n =5) mice intravenously injected with 200 MLL-AF9 leukemic cells. MLL-AF9
splenocytes isolated from a leukemic mouse were transplanted into non-irradiated 10- to 14- weeks old m/m (wt) and RH/RH recipients.
Mantle-Cox test was used to assess statistical significance of obtained results (p = 0.0133). F Workflow. GFP sorted 100 LSK cells transduced
with MLL-AF9 oncogene were plated in semisolid media and total number of colonies were evaluated after 7 days. For serial re-plating,
colonies were harvested from the methylcellulose media, washed, counted and seeded again. G Analysis of colonies grown in semisolid media
with the increasing concentration of ruxolitinib, when Y-axis indicates the proportion of colonies to absolute numbers (n = 3 mice per group
(left), 3 independent experiments in right). Data are presented as mean + SD and unpaired t-test with Welsch'’s correction was used for group
comparison. *p < 0.05.
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Fig. 6 Clinical data. A Descriptive characteristics of MPN patients negative and positive for the JAK2-R1063H variant. Left graph shows higher
proportion of ET in the JAK2-R1063H-positive group. Middle graph shows mutational landscape within the JAK2-R1063H-negative and R1063H-
positive patient groups. Right graph shows the rate of thrombotic events and disease progression (transformation and post-PV fibrotic
progression) in the JAK2-R1063H-negative and R1063H-positive group of patients. None of the patients who progressed in the JAK2-R1063H-
positive group had a mutation in the TP53 gene; 4 patients with TP53 mutation were among the 19 patients who progressed in the JAK2-
R1063H-negative group. B Kaplan-Meier curve of OS of MPN patients negative and positive for the JAK2-R1063H variant (left). Patients with the
JAK2-R1063H mutation who progressed to sAML (n=3) were treated with hydroxyurea (HU) (n=2) and one patient received HU plus
interferon. For patients with the JAK2-R1063H mutation who did not progress (n = 7), treatment included HU (n = 2), anagrelide (n=3), or a
combination of HU and anagrelide (n=2). Kaplan-Meier estimate of OS in patients with and without JAK2-R1063H mutation (right upper
panel). Cl confidence interval, n/n censored = number of dead patients/number of censored patients, NR not reached. p value was obtained
through statistical testing of OS with Log-rank test. 40 patients with missing data were not included in the survival analysis. For Cox regression
model of hazard ratio estimate of death (right lower panel): CI confidence interval, HR hazard ratio. p value was obtained through Chi-squared
test. 40 patients were excluded due to missing data. For additional clinical data see Supplemental Tables 2A, B.

inflammatory milieu promotes pro-thrombotic complications and
risk for malignant development. Our data revealed intrinsic
activation of Jak2/Stat5 signaling in the BM of young Jak2-
R1063H-mutant mice and augmented activation of a set of Stat5
target genes in old animals’ BM cells. We also observed differential
Stat3 and Stat1 activation in Jak2-R1063H-positive c-kit progeni-
tors, with more exhibited Stat1 activation in aged mutant
progenitors. In agreement with the Jak2-R1063H mouse pheno-
type, STAT1 is known to support megakaryocytic differentiation
and to create a bias towards an ET phenotype [36]. Importantly,
we observed age-dependent alterations in the activation of two
distinct pathways for megakaryopoiesis, which give rise to PLTs
[18, 19]. The traditional “myeloid bias” (which includes increased
MkPs) was detectable in both, 3M and 12M old mutant mice,
whereas accumulated stress (marked by Egr1 expression signa-
ture) appears to lead to an augmented direct MkP differentiation
trajectory from platelet-biased HSCs only during aging. Further
studies will be needed to clarify the role of JAK2-R1063H (as well
as the role of other germline mutations associated with
thrombocytosis) [10-12], in the regulation of both pathways.

In previous studies, chronic inflammatory conditions and Egr1
overexpression have been connected with acquisition of mole-
cular/phenotypical markers of aged-state of hematopoiesis
[59, 60]. A key factor modulating the phenotype of Jak2-R1063H
mice appears to be the overexpression of Egrl in aged HSCs/
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progenitors. Given that the expression of Egr1 (and Egr1 targets)
increases with animal age and that STAT and EGR1 signaling are
directly or indirectly interconnected [61-63], we conclude that
stress/inflammatory response-associated Egr1 signaling in aging
mice likely reinforces some alterations initiated by Jak2/Stat target
genes’ expression.

Patients with MPNs are known to be at an elevated risk of
thrombosis, but the mechanism for MPN-related coagulation
activation is not yet fully characterized [16]; there is evidence that
JAK2-mutated ECs may contribute to the MPN pro-thrombotic state
[45, 51]. We observed increased mortality in Jak2-R1063H mouse
cohort and elevated levels of D-dimers, indicative of thrombotic
complications, but the ECs from these mice did not exhibit pro-
adherent and pro-thrombotic features. Whereas MPN patients
typically exhibit activated OXPHOS and mTORC1 signaling path-
ways and enhanced mitochondrial activities in PLTs, both leading to
PLT hyperactivity [17], Jak2-R1063H-positive PLTs metabolic
abnormalities were associated with fatty acid metabolism. This
metabolic shift is critical, since it was shown that mitochondrial ATP,
needed for PLT granule secretion and thrombus formation, is
primarily derived from fatty acid oxidation [64]. Thrombosis in MPN
patients is a multifactorial event involving chronic inflammation
[65], functionally hyper-reactive PLTs produced by direct mega-
karyocyte differentiation pathway from platelet-biased HSCs [66]
and other complex interactions among various blood cells [16], so
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role of these processes and cell types in the thrombosis risk caused
by the Jak2-R1063H mutation cannot be excluded. Differential
overexpression of Thbs1, coregulated with Egr1 in the mutant HSCs
and LKs, may be involved in chronic inflammatory responses within
the progenitors and promote the observed aging-related HSC
defects [67]. Whether and how is thrombospondin 1 secreted and
promotes the observed PLT activation and contributes to
thrombosis remains to be determined.

In this study, we focused primarily on the cell intrinsic alterations
caused by Jak2-R1063H that underlie the observed murine
phenotype. The exception was the assessment of the effect of
Jak2-R1063H on leukemia progression, in which we demonstrated
both, cell-intrinsic as well as cell-extrinsic effect of the mutation on
leukemia progression. The cell-autonomous factor contributing to
the accelerated leukemic development could be overexpression of
Pim1 oncogene [46]. Pim1 expression was shown to be significantly
increased in hematopoietic progenitors of Jak2-V617F knock-in
mice [47] and was overexpressed in JAK2-V617F-positive ET patients
[36, 68]. Whether a possible inflammatory microenvironment
(mediated by R1063H-positive hematopoietic cells and nonhema-
topoietic niche cells) produces inflammatory factors that can act as
the cell-extrinsic factors supporting the expansion of MLL-AF9
leukemic cells [69] remains undefined and should be further
addressed by future research endeavors.

Earlier clinical studies have suggested a higher risk of
thrombotic events in patients with JAK2-R1063H variant
[14, 15] as well as a higher risk of transformation to AML [9],
and our clinical evidence is consistent with these studies.
Interestingly, all transformations to AML in our JAK2-R1063H-
positive group occurred in patients initially diagnosed with ET;
two of these ET patients carried the CALR driver mutation, none
of them carried a mutation in the TP53 gene. The frequency of
the rare germline low-penetrance risk alleles predisposing to
sporadic MPN may be population-specific [70]. The studied JAK2
variant has a MAF of 1.67% in the Czech population, which is
relatively high; the available database for JAK2-R1063H across
multiple ethnicities reveals that the MAF is much lower for most
populations [54]. Missing analyses of more diverse cohorts is a
limitation of our study; further population studies will be needed
to better delineate the overall disease risk conferred by this
variant.
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