Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Regulation of metabolic adaptation and leukemia progression by MUSASHI2-DEPTOR-KIF11 axis

Abstract

Amino acid homeostasis is critical for leukemic cell survival, with the mTOR pathway playing a central role in sensing and responding to nutrient availability. DEPTOR, a component and negative regulator of mTOR complexes, has been extensively studied in solid tumors and multiple myeloma, but its role in acute myeloid leukemia (AML) remains unclear. Here, we identify DEPTOR as a key regulator of leukemia progression through its interaction with KIF11. DEPTOR expression is transcriptionally induced by ATF4 and post-transcriptionally stabilized by MSI2, which binds to DEPTOR mRNA and prevents its degradation. DEPTOR is highly expressed in leukemia stem cells (LSCs) and is associated with poor clinical outcomes. Functionally, DEPTOR loss impairs leukemogenesis in both AML and blast phase chronic myeloid leukemia (bpCML) models, without affecting normal hematopoietic stem cells. Mechanistically, DEPTOR stabilizes KIF11 by preventing its ubiquitination and proteasomal degradation, thereby ensuring proper mTORC1 localization and metabolic adaptation during nutrient stress. Collectively, our findings establish the MSI2/DEPTOR/KIF11 axis as a critical driver of leukemogenesis and a promising therapeutic target for aggressive myeloid leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upregulation of DEPTOR during amino acid starvation is associated with ATF4/MSI2 axis.
Fig. 2: DEPTOR depletion impairs adaptive responses and disrupts mTORC1 localization during amino acid starvation.
Fig. 3: Elevated DEPTOR expression associates with poor prognosis in AML patients.
Fig. 4: Deptor is essential for the progression of KMT2A::MLLT3/NRAS-induced AML and bpCML in vivo.
Fig. 5: Hematopoiesis remains unaffected by Deptor deletion.
Fig. 6: DEPTOR binds to KIF11 and regulates its stability.
Fig. 7: DEPTOR depletion is partially rescued by the ectopic expression of KIF11.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are provided within the article. Additional information related to this research is available upon request from the corresponding author.

References

  1. Sembill S, Ampatzidou M, Chaudhury S, Dworzak M, Kalwak K, Karow A, et al. Management of children and adolescents with chronic myeloid leukemia in blast phase: International pediatric CML expert panel recommendations. Leukemia. 2023;37:505–17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Experimental Hematol Oncol. 2024;13:12.

    Article  Google Scholar 

  3. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019;36:70–87.

    Article  PubMed  Google Scholar 

  4. Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino acid metabolic vulnerabilities in acute and chronic myeloid leukemias. Front Oncol. 2021;11:694526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grønningsæter IS, Fredly HK, Gjertsen BT, Hatfield KJ, Bruserud Ø. Systemic metabolomic profiling of acute myeloid leukemia patients before and during disease-stabilizing treatment based on all-trans retinoic acid, valproic acid, and low-dose chemotherapy. Cells. 2019;8:1229.

  7. Butler M, van der Meer LT, van Leeuwen FN. Amino acid depletion therapies: starving cancer cells to death. Trends Endocrinol Metab. 2021;32:367–81.

    Article  CAS  PubMed  Google Scholar 

  8. Fulton TL, Mirth CK, Piper MDW. Restricting a single amino acid cross-protects Drosophila melanogaster from nicotine poisoning through mTORC1 and GCN2 signalling. Open Biol. 2022;12:220319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Timosenko E, Ghadbane H, Silk JD, Shepherd D, Gileadi U, Howson LJ, et al. Nutritional stress induced by tryptophan-degrading enzymes results in ATF4-dependent reprogramming of the amino acid transporter profile in tumor cells. Cancer Res. 2016;76:6193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poulain L, Sujobert P, Zylbersztejn F, Barreau S, Stuani L, Lambert M, et al. High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia. 2017;31:2326–35.

    Article  CAS  PubMed  Google Scholar 

  11. Catena V, Fanciulli M. Deptor: not only a mTOR inhibitor. J Exp Clin Cancer Res. 2017;36:12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137:873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Chen J, Qiu D, Zeng Z. Regulatory role of DEPTOR‑mediated cellular autophagy and mitochondrial reactive oxygen species in angiogenesis in multiple myeloma. Int J Mol Med. 2021;47:643–58.

    Article  PubMed  Google Scholar 

  14. Li N, Yousefi M, Nakauka-Ddamba A, Li F, Vandivier L, Parada K, et al. The Msi family of RNA-binding proteins function redundantly as intestinal oncoproteins. Cell Rep. 2015;13:2440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang L, Sun J, Ma Y, Chen H, Tian C, Dong M. MSI2 regulates NLK-mediated EMT and PI3K/AKT/mTOR pathway to promote pancreatic cancer progression. Cancer Cell Int. 2024;24:273.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kwon HY, Bajaj J, Ito T, Blevins A, Konuma T, Weeks J, et al. Tetraspanin 3 Is required for the development and propagation of acute myelogenous leukemia. Cell Stem Cell. 2015;17:152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li F, Han Y, Chen R, Jiang Y, Chen C, Wang X, et al. MicroRNA-143 acts as a tumor suppressor through Musashi-2/DLL1/Notch1 and Musashi-2/Snail1/MMPs axes in acute myeloid leukemia. J Transl Med. 2023;21:309.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE, et al. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature. 2010;466:765–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med. 2010;16:903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doyle A, McGarry MP, Lee NA, Lee JJ. The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res. 2012;21:327–49.

    Article  CAS  PubMed  Google Scholar 

  21. Hu W, Xiong H, Ru Z, Zhao Y, Zhou Y, Xie K, et al. Extracellular vesicles-released parathyroid hormone-related protein from Lewis lung carcinoma induces lipolysis and adipose tissue browning in cancer cachexia. Cell Death Dis. 2021;12:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cunningham A, Erdem A, Alshamleh I, Geugien M, Pruis M, Pereira-Martins DA, et al. Dietary methionine starvation impairs acute myeloid leukemia progression. Blood J Am Soc Hematol. 2022;140:2037–52.

    CAS  Google Scholar 

  23. Sun J, Sheng W, Ma Y, Dong M. Potential role of musashi-2 RNA-binding protein in cancer EMT. Onco Targets Ther. 2021;14:1969–80.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Paz I, Kosti I, Ares M Jr, Cline M, Mandel-Gutfreund Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 2014;42:W361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rasmussen BB, Adams CM. ATF4 is a fundamental regulator of nutrient sensing and protein turnover. J Nutr. 2020;150:979–80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 2020;48:D882–d9.

    Article  CAS  PubMed  Google Scholar 

  27. Hitz BC, Lee J-W, Jolanki O, Kagda MS, Graham K, Sud P, et al. The ENCODE uniform analysis pipelines. bioRxiv. 2023:2023.04.04.535623.

  28. Jin H-O, Hong S-E, Kim J-Y, Jang S-K, Park I-C. Amino acid deprivation induces AKT activation by inducing GCN2/ATF4/REDD1 axis. Cell Death Dis. 2021;12:1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Demetriades C, Doumpas N, Teleman Aurelio A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell. 2014;156:786–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahara T, Amemiya Y, Sugiyama R, Maki M, Shibata H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci. 2020;27:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sari IN, Yang Y-G, Wijaya YT, Jun N, Lee S, Kim KS, et al. AMD1 is required for the maintenance of leukemic stem cells and promotes chronic myeloid leukemic growth. Oncogene. 2021;40:603–17.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, You X, Zheng Y, Shen Y, Xiong X, Sun Y. The UBE2C/CDH1/DEPTOR axis is an oncogene and tumor suppressor cascade in lung cancer cells. J Clin Investig. 2023;133:e162434.

  34. Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal. 2024;22:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carter BZ, Mak DH, Shi Y, Schober WD, Wang R-Y, Konopleva M, et al. Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: overcoming imatinib resistance. Cell Cycle. 2006;5:2223–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kantarjian HM, Padmanabhan S, Stock W, Tallman MS, Curt GA, Li J, et al. Phase I/II multicenter study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of AZD4877 in patients with refractory acute myeloid leukemia. Investig N Drugs. 2012;30:1107–15.

    Article  CAS  Google Scholar 

  37. Eguren M, Álvarez-Fernández M, García F, López-Contreras AJ, Fujimitsu K, Yaguchi H, et al. A synthetic lethal interaction between APC/C and topoisomerase poisons uncovered by proteomic screens. Cell Rep. 2014;6:670–83.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Wang Y, Du Z, Yan X, Zheng P, Liu Y. Fbxo30 regulates mammopoiesis by targeting the bipolar mitotic kinesin Eg5. Cell Rep. 2016;15:1111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jang YG, Choi Y, Jun K, Chung J. Mislocalization of TORC1 to lysosomes caused by KIF11 inhibition leads to aberrant TORC1 activity. Mol Cells. 2020;43:705–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shahin R, Aljamal S. Kinesin spindle protein inhibitors in cancer: from high throughput screening to novel therapeutic strategies. Future Sci OA. 2022;8:Fso778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Y, Xu M-F, Chen J, Zhang J-L, Wang X-Y, Huang M-H, et al. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Experimental Cell Res. 2024;436:113975.

    Article  CAS  Google Scholar 

  42. Villar VH, Nguyen TL, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoshii T, Tadokoro Y, Naka K, Ooshio T, Muraguchi T, Sugiyama N, et al. mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J Clin Investig. 2012;122:2114–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang Y, Yang Y, Hua C, Xu S, Zhou M, Guo H, et al. Rictor has a pivotal role in maintaining quiescence as well as stemness of leukemia stem cells in MLL-driven leukemia. Leukemia. 2017;31:414–22.

    Article  CAS  PubMed  Google Scholar 

  45. Lechman Eric R, Gentner B, Ng Stanley WK, Schoof Erwin M, van Galen P, Kennedy James A, et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell. 2016;29:214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu F, Chen Z, Liu J, Hou Y. The Akt–mTOR network at the interface of hematopoietic stem cell homeostasis. Experimental Hematol. 2021;103:15–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean Government (MSIT) (NRF-2023R1A2C1003952) and by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (RS-2024-00437643).

Author information

Authors and Affiliations

Authors

Contributions

TS and JAM planned, designed, and performed the majority of experiments and helped write the manuscript. NM, LMW, NJ, and INS performed mechanism studies, and VGO and DK analyzed patient-derived data. HYK planned and guided the project and wrote the manuscript.

Corresponding author

Correspondence to Hyog Young Kwon.

Ethics declarations

Competing interests

Declaration of Generative AI and AI-assisted technologies in the writing process: During the preparation of this work, the author(s) used ChatGPT in order to improve readability and language. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Ethical approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. All patients were provided written informed consent to participate in studies and for the research use of their specimens in agreement with the Declaration of Helsinki. Animal protocols were reviewed and approved by Soonchunhyang University Institutional Animal Care and Use Committee.

Consent for publication

This manuscript has not been published previously and is not under consideration for publication elsewhere.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setiawan, T., Muhammad, J.A., Marcellina, N. et al. Regulation of metabolic adaptation and leukemia progression by MUSASHI2-DEPTOR-KIF11 axis. Leukemia (2025). https://doi.org/10.1038/s41375-025-02768-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41375-025-02768-3

Search

Quick links