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Therapies containing the hypomethylating agents (HMA) decita-
bine (DEC) or azacitidine (AZA) are standard of care for patients
with acute myeloid leukemia (AML) ineligible for intensive
chemotherapy. However, initially responsive disease eventually
develops secondary resistance [1–4].
Resistance against DEC may result from alterations in pyrimi-

dine metabolism, e.g., deficiency of the DEC-activating deoxycy-
tidine kinase (DCK), or upregulation of the DEC-catabolizing
cytidine deaminase or upregulation of SAMHD1, inactivating DEC
triphosphate [5–8]. Moreover, expansion of subclones with
mutations in signaling proteins may cause secondary resistance
[9]. However, for most patients, the resistance-mediating altera-
tion remains elusive.
Here, we investigated acquired resistance after continued DEC

treatment in the randomized phase II DECIDER trial.
In this trial, 200 patients received DEC alone or combined with

valproic acid (VPA) or all-trans retinoic acid (ATRA) or VPA and
ATRA [4]. Thirty-five (18%) patients achieved a complete remission
(CR), CR without recovery of platelets or neutrophils (CRi), or
partial remission (PR); further, 84 (42%) patients had an anti-
leukemic effect (ALE) or stable disease (SD). Of these, 14 patients
with progressive disease (PD) or relapse after ≥6 months of
treatment had samples available from both treatment start and
time of PD. Pretreatment characteristics are provided in Supple-
mentary Table S1. Patient selection and methods are described in
the Supplementary Data.
All 14 patients received DEC, 8 also received ATRA, and 4 VPA.

Six patients achieved CR, CRi or PR as best response, the
remainder ALE or SD (Fig. 1). Resistance samples were collected

a median of 10.1 months after treatment initiation (range: 6–64),
corresponding to a median of 9 treatment cycles (range: 7–52),
including 7 patients with ≥12 cycles (Fig. 1).
We analyzed blasts collected at baseline and at resistance via

whole exome sequencing (WES). At baseline, patients harbored a
median of 16 mutations (range: 3–25). Most frequently mutated
was RUNX1 (n= 4 patients); two patients each harbored mutations
in ASXL1, SF3B1, SRSF2, or TET2.
At secondary resistance, the overall number of mutations had

increased to a median of 36 (range: 6–63), indicating a clonal shift
towards resistance. We concentrated on genes known to be
cancer-associated (as defined by OncoKB) and on recurrently
mutated genes (i.e., acquired in ≥2 patients) (Fig. 2A).
Towards resistance, nine patients had gained at least one

mutation in a cancer gene, corresponding to a median of one
mutation per patient (range: 0–7). IDH1 was the only cancer gene
that acquired a mutation in more than one patient (p.R132G VAF
5.3%, p.R132H 48%). Further cancer genes mutated in single
samples are involved in signaling pathways (e.g., KIT VAF 21%,
KRAS 30%), or transcription (e.g., GATA2 VAF 45%, KMT2A 43%).
Mutations in recurrently mutated genes were acquired in 13

patients, with a median of 2 per patient (range: 0–6). In addition to
IDH1 mutations, mutations in DCK (p.S13X VAF 17%, p.R104G VAF
11%) were acquired at resistance in two patients. Further
recurrently mutated genes included SALL3 (VAFs 29%, 22%),
USH2A (VAFs 36%, 39%), and TAS2R19.
TAS2R19mutations were acquired in five patients at two distinct

loci (p.K167E VAF 6.3%, 11%; p.G77S 7.2%, 6.1%, 6.3%). TAS2R19
has no known function in AML; it is predicted to be involved in G
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protein-coupled receptor signaling pathways and is rarely
mutated in cancer (Supplementary Table S2). Recurrence and
hotspot location, but not the low VAF, support the functional
relevance of these mutations.
Thus, in individual patients, resistance may be linked with

mutations in genes with well-established roles in AML or HMA
metabolism [5–9]. To our knowledge, ours is the first report to
identify mutant DCK as potential secondary resistance mechanism
in DEC-treated patients. Future studies may investigate whether
switch to AZA (activated through uridine-cytidine kinases, not
DCK) may be beneficial in these patients. In the absence of 2nd
line options, mutations in signaling pathways may support the
switch to respective inhibitors. Mutant IDH1 may offer the ready
possibility for salvage treatment with an IDH1 inhibitor.
At secondary resistance, we also observed the loss of a median

of six mutations (range: 1–15) per patient compared to baseline.
These included mutations in RUNX1 (baseline VAFs 35%, 99%),
NPM1 (26%), PPM1D (12%), and TP53 (95%) (Fig. 2A).
Given the latter observation and the attention TP53 receives in

the context of DEC [10], we studied TP53, including copy number
analyses, in greater detail (Supplementary Fig. S2). The TP53
mutation loss occurred in patient 14 (P14), who was the only
patient with mutant TP53 at baseline and who had a single TP53
copy at baseline (mutant) and resistance (wild-type). Two other
patients (P8, P12) gained TP53 wild-type alleles towards resistance.
Two patients (P9, P10) exhibited bi-allelic TP53 losses at both
baseline and resistance. That patients would rather acquire TP53
wild-type alleles than TP53 alterations under long-term DEC
treatment is unlikely related to resistance but highlights the
unique and incompletely understood impact of DEC on TP53-
mutant AML clones.
To better comprehend the data, we determined signatures of

cancer processes from the WES data (Supplementary Fig. S3) [11].
Among these, signature AC03 was gained towards resistance in
nine patients (Fig. 2A, Supplementary Fig. S3). The acquisition
correlated with treatment duration and VPA co-treatment,

although not statistically significant (Supplementary Fig. S4). The
AC03 gain was also identified in all cell lines with secondary DEC
resistance we generated (Supplementary Fig. S5).
AC03 resembles the mutational phenotype of BRCA1/BRCA2-

mutant cancers, despite lacking these mutations (i.e., BRCAness),
due to alternative mechanisms of homologous recombination
deficiency [12]. Cancers with BRCAness rely on PARP1 and can be
targeted by PARP inhibitors (PARPi). DEC enhances PARP1
chromatin recruitment, synergizing cytotoxicity with PARPi [13].
A phase I trial of DEC plus the PARPi talazoparib (TAL) in AML (22
of 25 patients had prior HMA) showed increased PARP trapping
and γH2AX foci in responders [14].
Given the BRCAness at DEC resistance and clinical availability of

PARPi, we tested whether cell lines with acquired BRCAness show
increased sensitivity to TAL (Supplementary Fig. S6). TAL alone did
not induce apoptosis in any tested cell lines, including those with
secondary DEC resistance, nor did it increase apoptosis in
combination treatments, compared to controls. Solely, in
treatment-naive MOLM13 cells, apoptosis increased with TAL +
DEC and TAL + DEC + ATRA (Supplementary Fig. S7). Differentia-
tion marker analyses also revealed no major impact of TAL alone
or combined (Supplementary Fig. S6).
The lack of increased PARPi sensitivity suggests that BRCAness

after DEC treatment may not stem from HRd. Consistently,
BRCAness was not associated with high (>42) HRd scores in
patient samples (Supplementary Table S3). While corroboration
outside of cell lines (e.g., patient-derived xenograft models) is
needed, our results suggest that HMA-induced genomic instability
leads to BRCAness (defined by AC03 signature) that may not
predict PARPi sensitivity.
We assessed DNA methylation profiles and compared them at

resistance to baseline using single-sample analysis (Fig. 2B). A
median of 29,264 CpGs (8.9%) were hypomethylated at resistance,
whereas hypermethylation was less frequent (median 9853 CpGs,
3%). Consistent with single-sample results, group-wise analysis
found 17,854 CpGs (5.4%) significantly hypomethylated at

Fig. 1 Treatment and treatment timeline of patients. Depiction of the treatment each patient received and the time on treatment until
sampling. Best response indicated per patient. ALE anti-leukemic effect, ATRA all-trans retinoic acid, C cycle, CR complete remission, CRi CR
without recovery of platelets or neutrophils, DEC decitabine, Maint maintenance, PD progressive disease, PR partial remission, SD stable
disease, VPA valproic acid.
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resistance, with only two CpGs significantly hypermethylated. This
indicates the lasting biologic effect of long-term DEC treatment,
persisting even at secondary resistance.
Further analyses revealed no significant correlations between

the number of hypo- and hypermethylated CpGs and treatment
duration (Supplementary Fig. S8). Analyses of the genomic
distribution of differentially methylated CpGs showed a small
but significant enrichment in intergenic regions and depletion
near the promoter regions (TSS200) (Fig. 2C, Supplementary
Fig. S9). We next investigated shared hypo- and hypermethylated
CpGs across patients and noted a non-random overlap among
hypomethylated CpGs, but not hypermethylated CpGs (Fig. 2D,
Supplementary Fig. S9).
Gene set enrichment analysis showed the top 10 most enriched

terms for hypomethylated CpGs were related to ion transport or
the nervous system (Supplementary Fig. S10). Overactive ion
transport in AML is understudied. Among the hypomethylated
genes at resistance was SLC39A10 (zinc transporter ZIP10);
blocking ZIP10 decreases AML cell growth and viability [15].
In the DECIDER trial, we observed that adding ATRA delays

secondary resistance [4], leading to overrepresentation of

respective patients in our current study. The beneficial impact of
ATRA combined with DEC is being further investigated in the
DECIDER-2 trial (DRKS00023646). Due to relatively low patient
numbers, we could not analyze mutational or methylation
differences by DEC combination partners, though ATRA and VPA
may impact the molecular underpinnings of resistance develop-
ment in the individual patient. Despite this, it may even be
conceivable that our data can be applied to the current HMA +
venetoclax standard, but future studies are required to
confirm this.
Our study is the first to provide extensive genetic and DNA

methylation data on AML patients with secondary resistance after
prolonged HMA treatment. While no universal gene or pathway
was linked to resistance, individual patients acquired mutations
with biological or clinical relevance (e.g., in DCK, IDH1, or signaling
genes). In addition, we observed BRCAness emerging in most
patients, likely rather as product of continued DEC treatment than
driving resistance, and not sensitizing to PARPi in cell lines. DNA
methylation profiling identified CpGs differentially methylated
between baseline and resistance, comprising almost exclusively
hypomethylated CpGs at resistance. Persistent and non-random

Fig. 2 Changes in mutation and DNA methylation at secondary resistance. A Overview of mutated cancer genes (according to OncoKB) and
recurrently mutated genes gained or lost at secondary resistance compared with baseline for each patient. Acquisition of AC03 signature
(BRCAness) is indicated in the upper row. VAF, variant allele frequency. B Comparative heatmap displaying methylated CpG sites for each
patient at treatment start (t1) and resistance (t2). Group-wise differential analysis to show methylation changes between baseline (t1) and
resistance (t2). The x-axis represents individual patients, and the y-axis corresponds to CpG sites showing hypomethylation. Patients are
grouped by treatment (as indicated). C Genomic distribution of differentially methylated CpGs. Hypomethylated sites were annotated based
on their genomic context and assessed for their enrichment relative to the overall distribution of these regions in the EPIC array. Enrichment
of hypomethylated CpGs of the intergenic region can be seen, as well as depletion of hypomethylation in the TSS200 promoter regions.
D Identification of shared hypomethylated CpGs across patients. Significant non-random overlap of hypomethylated CpGs (p value 7.03E-09).
Blue lines are random CpGs from the EPIC array, whereas the black lines are CpGs commonly hypomethylated across patients. Of overall 208,
248 hypomethylated CpGs, 21,235 were consistently hypomethylated in >50% of patients. ATRA all-trans retinoic acid, DEC decitabine, VPA
valproic acid.
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DNA hypomethylation at resistance may inform future treatment
approaches.
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