Fig. 3: Simulation of the excitation and emission enhancement based on finite element method calculations. | Light: Science & Applications

Fig. 3: Simulation of the excitation and emission enhancement based on finite element method calculations.

From: Sharpening emitter localization in front of a tuned mirror

Fig. 3

a Scheme of the sample geometry. b Excitation intensity enhancement in the vicinity of a silver nanocoating (dm= 50 nm, dd = 10 nm) for two different excitation wavelengths (λex). c, d Far-field radiation patterns for parallel (II) and perpendicular (.) dipole orientations in the vicinity of a glass coverslip (gray) and the silver nanocoating (blue) at a height of 10 nm (solid), 50 nm (doted), 100 nm (dashed), and 150 nm (dash-doted) for A532 (c) and A647 (d). e, f The combination of quantum yield enhancement (dotted) and detectability enhancement (dashed) leads to a tailored height-dependent emission enhancement profile (solid) for A532 (e) and A647 (f)

Back to article page