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Abstract
Deflecting and changing the direction of propagation of electromagnetic waves are needed in multiple applications,
such as in lens–antenna systems, point-to-point communications and radars. In this realm, metamaterials have been
demonstrated to be great candidates for controlling wave propagation and wave–matter interactions by offering
manipulation of their electromagnetic properties at will. They have been studied mainly in the frequency domain, but
their temporal manipulation has become a topic of great interest during the past few years in the design of
spatiotemporally modulated artificial media. In this work, we propose an idea for changing the direction of the energy
propagation of electromagnetic waves by using time-dependent metamaterials, the permittivity of which is rapidly
changed from isotropic to anisotropic values, an approach that we call temporal aiming. In so doing, here, we show
how the direction of the Poynting vector becomes different from that of the wavenumber. Several scenarios are
analytically and numerically evaluated, such as plane waves under oblique incidence and Gaussian beams,
demonstrating how proper engineering of the isotropic—anisotropic temporal function of εr(t) can lead to a
redirection of waves to different spatial locations in real time.

Introduction
Achieving arbitrary control of electromagnetic wave

propagation has been of great interest within the scientific
community for many years. It is well known that carefully
engineered spatially varying geometries and materials can
be implemented to manipulate wave–matter interac-
tions1. This spatial control of waves is, in fact, the
mechanism behind the development of many applications
we often use on a regular basis, such as lenses, sensors and
radars. The field of antennas has also benefited from this
spatial control of wave propagation, where, for instance,
in its basic configuration, it is possible to change the
direction of a transmitted wave by mechanically modify-
ing the spatial location of the transmitter, a technique
known as mechanical beam steering2.
To further improve the spatial control of waves and to

manipulate wave–matter interactions at will, metamaterials

(and metasurfaces as their two-dimensional (2D) version)
have been proposed in recent decades3,4. They have been
demonstrated to provide engineering of their electro-
magnetic parameters, such as the permittivity (ε) and per-
meability (µ), achieving extreme parameter values that are,
e.g., negative5–8 or near-zero9–14. They have been studied and
demonstrated in different wave mechanisms and spectral
bands ranging from acoustics, microwave and millimetre
waves, terahertz waves and optics15–19. The freedom offered
by metamaterials and metasurfaces, along with their compact
designs, has opened up new avenues to improve the per-
formance of devices and to develop new technologies, such
as mathematical operators20, antennas and lenses21–24, sen-
sors25–27 and polarisation converters28–30.
The beam steering of electromagnetic waves has also

benefited from the introduction of metamaterials, where it
has been shown that electromagnetic radiated beams can
be redirected by changing the position of the source in a
metalens–antenna system, by locally designing the phase
of the unit cells in the metamaterials, or by real-time
tuning of the effective electromagnetic parameters of the
metastructures31–36, among other techniques. These
steering properties are important in different areas, such
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as in point-to-point communications and radars, where
the spatial aiming of targets is required.
Metamaterials and metasurfaces have so far been stu-

died mostly in the time-harmonic scenario, where wave
propagation is controlled by engineering geometries and
materials in the spatial region, i.e., spatial inhomogeneity,
in which the wave is travelling. Recently, the temporal
modulation of metamaterials has also gained growing
attention within the scientific community37–44, as chan-
ging the electromagnetic properties (ε, µ) of metamater-
ials both in space (x, y, z) and time (t) can offer full four-
dimensional spatiotemporal control of wave–matter
interactions. It is important to highlight that the interac-
tion of electromagnetic waves in a time-modulated
medium has been of great interest in the scientific com-
munity for several decades, where, for instance, in the last
century, it was considered a time-dependent relative
permittivity εr(t) that is rapidly changed in time from one
positive value εr1 (greater than unity) to a different
greater-than-unity positive value εr2

40,41. With this con-
figuration, it was demonstrated that a set of two waves is
created at this temporal boundary, one of which is tra-
velling forward (FW), and the other, backward (BW).
Remarkably, an analogy between this temporal and the
spatial interface between two materials with different
electromagnetic parameters was demonstrated, showing
that the two waves created at a temporal boundary (FW
and BW) are the temporal equivalent/analogy to the
transmitted and reflected waves in spatial interfaces. In
this realm, temporal and spatiotemporal metamaterials
have recently been proposed and applied in several
exciting and intriguing applications, such as effective
medium theory45, inverse prisms46, nonreciprocity47,48,
anti-reflection temporal coatings49, frequency conver-
sion50 and time reversal51.
Motivated by the exciting possibilities and opportunities

opened up by the spatiotemporal modulation of meta-
materials in four dimensions (x, y, z, t) and the importance
of the beam steering of electromagnetic waves for differ-
ent applications, in this work, we introduce the concept of
temporal aiming as the temporal analogue of spatial
aiming. First, the fundamental physics of the proposed
technique are presented, considering an oblique incident
p-polarised monochromatic plane wave propagating in an
unbounded medium with a time-dependent permittivity
εr(t). A temporal interface is introduced by changing the
relative permittivity εr(t) from an isotropic positive value
εr1 to an anisotropic permittivity εr2 = {εr2x, εr2z} (all with
positive values greater than unity) at time t= t1. In so
doing, the wavenumber k is preserved before and after the
temporal change, but the direction of the energy (Poynt-
ing vector S) is modified to a different angle compared
with k. The dependence of the new direction of the
Poynting vector on the incident angle before the temporal

change of ε and the values of the permittivity tensor εr2 is
presented and discussed. Next, we study more complex
scenarios by using Gaussian beams under normal and
oblique incidence to consider the case of multiple plane
waves travelling in different directions. With this set-up, it
is demonstrated how the direction of the energy is mod-
ified to multiple angles when using an isotropic-to-
anisotropic temporal boundary. Finally, the temporal
aiming technique is numerically demonstrated by using a
narrowband wavepacket under oblique incidence. As will
be shown, this transmitted wavepacket can be “ushered”
and “re-directed” in real time to reach different receivers
placed at different spatial locations by properly engi-
neering the εr(t) of the background medium. All the
results presented here are compared with numerical
simulations, demonstrating good agreement with the
design and analytical calculations.

Results
Temporal aiming: isotropic-to-anisotropic change in εr
First, let us discuss the spatial scenario schematically

described in Fig. 1a. In this case, we can consider a
monochromatic continuous wave (CW) that is being
emitted by a source located on the xz plane and tilted to
an angle θ1. The background medium is homogeneous,
isotropic and time-independent, with a relative perme-
ability µr(t)= µr1 and relative permittivity εr(t)= εr1 (see
the inset of Fig. 1a). As is well known, the wave emitted
from this source will also be tilted with the wavenumber k
and Poynting vector S parallel, travelling along the same
direction defined by θ1. Now, let us place two receivers at
two different spatial locations (Rx1 and Rx2), as sche-
matically shown in Fig. 1a. As observed, this is not the
best scenario if one needs to send the emitted wave to
either of the two receivers since the source is not aligned
to Rx1 or to Rx2. However, as described in the intro-
duction, the most simple yet effective way to reach either
Rx1 or Rx2 is to perform mechanical beam steering2,32. In
this technique, the source is placed on a translation stage,
and then spatially shifted to different locations on the xz
plane to tilt the emitted wave to the correct angle θ1 such
that it reaches either Rx2 (Fig. 1b) or Rx1 (Fig. 1c). In
addition to this technique, there are other effective and
more sophisticated alternatives that can be used to steer
electromagnetic waves, such as phased arrays (in which
the phase shifts between the antenna elements can be
changed in real time) and metamaterial-based antennas
with tuneable properties31,34,36. In this context, steering
electromagnetic waves is considered a key feature in
applications where the spatial aiming of targets is needed,
such as radars and point-to-point communications, as
explained before.
The spatial aiming described in Fig. 1a–c has been

discussed considering the time-harmonic scenario
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(frequency domain), taking into account that the relative
permittivity and permeability of the background medium
are constant [εr(t)= εr1, µr(t)= µr1]. With this in mind,
one may ask the following: would it be possible to change
the direction of the energy propagation of an emitted
monochromatic CW plane wave in time by considering a
time-dependent permittivity εr(t) ≠ εr1 of the background
medium? If such temporal aiming is possible, what type of
function for εr(t) may we use to achieve it? To answer
these questions, in this work, we focus our attention on
the rapid change in relative permittivity (approximately
modelled mathematically as a “step function”), which is
rapidly modified in time from an initial value (equal to or
greater than unity) εr1 to another greater-than-unity εr2 at
a time t= t1, considering that the fall/rise time is smaller

than the period T of the incident wave. (Strictly speaking,
one needs to take into account the material dispersion in
these scenarios. However, if we assume that the material
resonance frequencies are much larger than the frequency
of operation, we can approximately assume the materials
to be dispersionless).
Let us study the case schematically shown in Fig. 1d. We

again assume a p-polarised monochromatic CW plane
wave travelling in an unbounded medium with an inci-
dent angle θ1. Let us first consider that the permittivity is
time-dependent εr(t) and is isotopically changed from a
positive value εr1 to another positive value εr2. This sce-
nario was studied in the last century, and it was shown
that this εr(t) can induce a temporal boundary/interface
that generates a FW (temporal transmission) and a BW
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Fig. 1 Schematic representation and comparison of spatial and temporal aiming. a–c Sketch of the conventional mechanical beam-steering
technique, where the beam emitted by a source can be directed to either receiver 1 (Rx1) or receiver 2 (Rx2) by simply placing the source on a
translation stage and moving it on the xz plane. d–f Temporal aiming sketch, considering a source emitting a monochromatic wavepacket
embedded in a time-dependent medium, where its relative permittivity is changed from an isotropic value εr1 to a tensor εr2 = [εr2x, εr2z] at t= t1.
Vectors S and k are parallel before the change in εr for t < t1, d, and non-parallel for t > t1, e–f. The angle of the vector S can be designed to reach
either e, receiver 2 or f, receiver 1, depending on the tensor εr2 = [εr2x, εr2z]
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(temporal reflection) wave travelling with the same angle
as that of the incoming wave, i.e., the wavenumber k is
preserved while the frequency is changed from f1 to f2=
(

ffiffiffiffiffiffi

εr1
p

/
ffiffiffiffiffiffi

εr2
p

)f1. This type of time-dependent εr(t) was then
recently used to propose exciting applications, such as
time reversal and anti-reflection temporal coatings, as
explained in the introduction. Nevertheless, since k is the
same before (t= t1

−) and after (t= t1
+) the change in ε

from εr1 to εr2 and the direction of propagation for both k
and energy S is not modified, it is straightforward to
conclude that this type of εr(t) is not suitable for the
temporal aiming described in Fig. 1, since our aim is to
redirect the energy of emitted waves to different receivers
placed at different spatial locations.
Now, what if we change the relative permittivity εr

from an isotropic value εr1 to an anisotropic permittivity
tensor at t= t1 such that εr2 = [εr2x, εr2z] with εr2x ≠ εr2z,
both of which are positive, real-valued and greater-than-
unity parameters? The schematic representation of this
ε(t) is shown in the inset of Fig. 1d. Note that here, we
consider only the z and x components of the permittivity
tensor since we have a TM polarisation with the electric
field lying on the xz plane. Akbarzadeh et al. recently
explored this function of εr(t) to create what they aptly
called the “inverse prisms”, demonstrating that vector k
is again preserved as the isotropic case while the fre-
quency is modified, but this time with a value depending
on the tensor εr2 and the incident angle θ1

46, hence their
coined name, i.e., “inverse prism”. However, one may
ask an intriguing question: what will happen to the
Poynting vector S in this scenario? Would it be possible
to exploit this isotropic-to-anisotropic temporal varia-
tion of ε(t) for temporal aiming, as we propose here?
To answer these questions, let us analytically evaluate

this case, as shown in Fig. 1d. For t < t1, the background
medium is isotropic and homogeneous with relative per-
mittivity and relative permeability values εr1 and µr1,
respectively. With this set-up (assuming the e(iωt) time
convention), the magnetic and electric fields are H1 ¼
ŷei ω1t�kxx�kzzð Þ and E1 ¼ 1

ε0ω1εr1
ei ω1t�kxx�kzzð Þ kz 0 �kx½ �,

respectively, with ω1= 2πf1, kx= –kcos(θ1), kz= ksin(θ1),
k ¼ ω1=v1, v1 ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffi

μr1εr1
p

and c being the velocity of light
in vacuum. At t= t1, the relative permittivity is changed to
εr2 = [εr2x , εr2z], and for completeness, the permeability is
changed to µr2y. As mentioned before, this temporal
boundary creates a set of FW (E2

+, H2
+) and BW (E2

−,
H2

−) waves, with the total electric and magnetic fields
defined as E2= E2

++ E2
− and H2=H2

+– H2
−, respec-

tively. After applying the temporal boundary conditions
for vectors B and D at the temporal boundary (Dt1-δ=
Dt1+δ and Bt1-δ= Bt1+δ in the limit when δ→043), it is
straightforward46 to calculate the normalised amplitude of
the electric field for both FW and BW waves (for the sake

of completeness and easy access, we also give the com-
plete derivation of the fields in Supplementary Materials
section 1), resulting in the following expressions:

E ±
2

E1
¼ 1

2

μr2yω2 ± μr1ω1

μr2yω2

" #

εr1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2r2zk
2
z þ ε2r2xk

2
x

p

εr2xεr2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ k2x
p ð1Þ

with ω2 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½k2x=ðεr2zμr2yÞ� þ ½k2z =ðεr2xμr2yÞ�
q

. As

observed, the new frequency ω2 and the amplitude of
the generated FW and BW waves clearly depend on the
incident angle θ1 and the values of µr2y and tensor εr2 =
[εr2x , εr2z], as expected. Note that Eq. (1) reduces to the
one shown in ref. 46 when µr2y= µr1. Moreover, in the
special case where the change in permittivity/permeability
is isotropic (εr2= εr2x= εr2z, µr2= µr2y), Eq. (1) is reduced
to the case described in refs. 40,41 with
E ±
2 =E1

� � ¼ 0:5 εr1=εr2ð Þ± ffiffiffiffiffiffiffiffiffiffiffiffi

μr1εr1
p

=
ffiffiffiffiffiffiffiffiffiffiffiffi

μr2εr2
p� �� �

.

Equation (1) denotes the amplitude of the FW and BW
waves; however, it is important to remark that each
component along the x and z axes (E2×

+, E2z
+, E2×

−,
E2z

−) will be differently affected depending on the values
of εr2 = [εr2x , εr2z] (the complete expressions for each
component can be found in Supplementary Materials
section 1). In this context, since we have a p-polarised
monochromatic CW wave, it is interesting to evaluate
the behaviour of the Poynting vector S. From the deri-
vation shown in Supplementary Materials section 1, it
can be demonstrated that for times t > t1

+, the
momentum k is preserved (θ1k= θ2k= θ1), while the
direction of the Poynting vector for both FW and BW
waves can be calculated as θ2S ¼ θSFW ¼ θSBW ¼
tan�1 �E2xð þ=Eþ

2zÞ ¼ tan�1 �E�
2x=E

�
2z

� �

, which can be
reduced to the following simple expression:

θ2S ¼ tan�1 tan θ1ð Þ εr2z
εr2x

� �	 


ð2Þ

From the expression above, one may notice that the
direction of the energy flow is now different from the
direction of the phase variation [θ2S≠ (θ2k= θ1)], with
the former angle depending on the angle of the incident
wave before the temporal change (θ1) and the values of the
relative permittivity tensor εr2x and εr2z. A schematic
representation of this performance is shown in Fig. 1e, f,
where it is shown how the direction of the energy flow (S) is
different from the direction of the wavenumber (k), and that
the former can be steered in time by changing the relative
permittivity from isotropic to anisotropic tensorial values,
reaching the receivers Rx1 or Rx2, depending on the values
of εr2 = [εr2x, εr2z] and the incident angle. In the following
sections, we discuss analytical and numerical calculations
using this temporal change of εr for plane waves and
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Gaussian beams to achieve temporal aiming with time-
dependent metamaterials.

Oblique incident plane wave: results obtained using
isotropic-to-anisotropic ε(t)
Let us now evaluate the response of the proposed

temporal aiming approach using a time-dependent εr(t)
that is rapidly changed from isotropic to anisotropic
values. Without loss of generality, we consider a constant
permeability (µr1= µr2= 1). The isotropic relative per-
mittivity is initially εr1= 10 and is modified to εr2 at t=
t1= 38 T, where T is the period of the monochromatic
incident wave before the change in permittivity occurs.
Let us first use two different values for the relative per-
mittivity tensor, i.e., εr2 = [εr2x= 8, εr2z= 12] and ε2 =
[εr2x= 2, εr2z= 20], noting that in both cases, εr2z > εr2x.

With this set-up, the analytical calculations of the angle of
the Poynting vector θ2S for t > t1 as a function of the
incident angle θ1 using Eq. (2) are shown as blue and
black circles in Fig. 2a. In this figure, it is clear how θ2S
depends on the tensor εr2 and θ1, as explained in the last
section. Moreover, note that for the case with εr2 = [εr2x
= 2, εr2z= 20], θ2S is larger for smaller values of θ1 than
in the case with εr2 = [εr2x= 8, εr2z= 12]. For instance, if
θ1= 15°, then θ2S will be 69.5° and 21.9° for each case,
respectively. These results are expected since the ampli-
tude of the x and z components of the electric field for
t > t1 can be increased or reduced depending on the values
of εr2x and εr2z (see Supplementary Information section 1
for detailed expressions). To further evaluate this per-
formance, let us consider an incident angle θ1= 45°. The
plot of the analytical expression of the out-of-plane
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Fig. 2 Analytical results of temporal aiming using plane waves. a Analytically derived angles of the instantaneous Poynting vector θ2s (t > t1) as a
function of the incident angle θ1 (t < t1) when εr is changed from isotropic εr1= 10 to anisotropic εr2 = [εr2x= 8, εr2z= 12] (blue circles) and to εr2 =
[εr2x= 2, εr2z= 20] (black circles). b Snapshot of the Hy field (colour plot) and instantaneous Poynting vector (black arrows) distributions for an
incident wave with θ1= 45° at t < t1. c, d Snapshot of the Hy field of the FW wave (colour plot) and instantaneous Poynting vector (black arrows)
distributions at t > t1 when εr is changed from εr1= 10 to εr2 = [εr2x= 8, εr2z= 12] and to εr2 = [εr2x= 2, εr2z= 20], respectively, for a time t= 38.2 T >
t1. e, The same as in panel a but when εr is changed from εr1= 10 to εr2 = [εr2x= 12, εr2z= 8] (blue circles) and to εr2 = [εr2x= 20, εr2z= 2] (black
circles). f The same as in panel b but with an incident angle θ1= 65° at t < t1. g, h The same as in panels c, d but when εr is changed from εr1= 10 to
εr2 = [εr2x= 12, εr2z= 8] and to εr2 = [εr2x= 20, εr2z= 2], respectively, for the same incident angle as in panel f, θ1= 65°. The time-dependent relative
permittivity εr(t) for the cases under study is shown at the top of panels c, d and g, h
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magnetic field (Hy) distribution before the change in εr
(t < t1) is shown in Fig. 2b, along with the distribution of
the instantaneous Poynting vector (black arrows). Now, at
t= t1= 38 T, ε is changed from isotropic εr1= 10 to εr2 =
[εr2x= 8, εr2z= 12]. The analytical Hy field distribution for
the FW wave for a time t= 38.2 T > t1 is shown in Fig. 2c.
From these results, it can be seen how k is preserved with
θ1k= θ2k= θk= θ1= 45° while the instantaneous Poynt-
ing vector has an angle θ2S= 56.3°, in agreement with the
analytically calculated values from Fig. 2a (extracted from
Eq. (2)). As shown in Fig. 2a, if one needs to further
increase θ2S, we can just use a different value of εr2. For
instance, a snapshot of the analytical Hy distribution of
the FW wave using εr2 = [εr2x= 2, εr2z= 20] is shown in
Fig. 2d at the same time instant as in Fig. 2c. As observed,
θ2S is further increased to 81.4° for the same initial angle
θ1= 45°. An animation showing this latter scenario can be
seen in Supplementary Video 1.
For completeness, let us now evaluate the case where

εr2z < εr2x. Following the same idea as in Fig. 2a–d, εr is
changed from isotropic εr1= 10 to εr2 = [εr2x= 12, εr2z=
8] and εr2 = [εr2x= 20, εr2z= 2] at t= t1= 38T. The
analytically derived angles of the instantaneous Poynting
vector θ2S are shown in Fig. 2e as blue and black circles,
respectively. By comparing these results with those shown
in Fig. 2a, we notice that θ2S is now larger when εr2 =
[εr2x= 12, εr2z= 8] than when εr2 = [εr2x= 20, εr2z= 2],
again because of the dependence of the x and z compo-
nents of the electric field and θ2S on the values of εr2x and
εr2z. For instance, if we now take the same θ1= 15°, θ2S will
be 33.7° and 8.5° for each case. Let us now evaluate the
analytically derived field distribution, and let us consider
an angle θ1= 65°. A snapshot of the incident Hy dis-
tribution for t < t1 is shown in Fig. 2f, along with the
instantaneous Poynting vector. Now, if the relative per-
mittivity is changed to εr2 = [εr2x= 12, εr2z= 8], the
resulting Hy distribution at t= 38.2 T > t1 is the one shown
in Fig. 2g, where we have also plotted the instantaneous
Poynting vector. As observed, the angle of k is always
preserved (θ1= 65°), but θ2S is reduced to θ2S= 55°, in
agreement with the results shown in Fig. 2e. If we now
consider εr2 = [εr2x= 20, εr2z= 2], θ2S is further reduced to
θ2S= 17.8°. An animation showing this latter scenario can
be found in Supplementary Video 2. For the sake of
completeness, snapshots in time of the BW waves for the
cases shown in Fig. 2c, d and Fig. 2g, h are shown in
Supplementary Information section 2.
These results demonstrate how the value of θ2S will

differ from the wavenumber direction θ1k= θ2k= θk= θ1
when εr is changed from isotropic to anisotropic values.
Moreover, this θ2S can be tuned to smaller/larger angles
than θ1k= θ2k= θk= θ1 by properly engineering the
values of the tensor εr2 = [εr2x, εr2z], a feature that is
important for the proposed temporal aiming approach.

Multiple plane waves: Gaussian beam propagation
In the previous section, we evaluated the case where the

relative permittivity of the medium is modified from
isotropic to anisotropic values for a monochromatic CW
plane wave under oblique incidence θi. However, what
would happen if we use more complex waves, such as a
Gaussian beam? To answer this question, let us study an
oblique incident monochromatic p-polarised Gaussian
beam (in-plane E field), as schematically shown in Fig. 3a.
As is well known, a Gaussian beam can be modelled as a
summation of multiple plane waves travelling in different
directions (same magnitude of the wavenumber but dif-
ferent directions for vector k in the same figure)52.
Moreover, it is also known that the angular aperture of
the Gaussian beam will be large/small for small/large
values of the beam waist diameter D. If we then use a
time-dependent metamaterial for the medium through
which the Gaussian beam is travelling, as in the examples
from Fig. 2 (i.e., εr from εr1 to εr2 = [εr2x, εr2z]), one will
expect to preserve k (in every direction) for t > t1, while
the angle of the instantaneous Poynting vector θ2S will be
different for each direction of k. This is because each
plane wave forming the Gaussian beam will have different
θ1k= θ2k= θk= θ1 (θ1kn, with n= a, b, c … denoting each
of the multiple plane waves forming the Gaussian beam).
To visualise this, let us calculate the analytical values of
θ2S as a function θ1k, as shown in Eq. (2), considering the
expression for plane waves. The results are shown as black
circles in Fig. 3b when relative εr is modified from εr1= 10
to εr2 = [εr2x= 1, εr2z= 15]. Note that the same trend as
in Fig. 2a is observed since εr2x < εr2z, showing a clear
dependence of θ2S on θ1k, as expected. To better under-
stand these results using monochromatic Gaussian
beams, let us consider an incident angle θi= 0° and a
beam waist diameter D= 9λ. Here, the permittivity of the
whole medium is the same as in Fig. 3b, where it is
initially εr1= 10 and then it is changed to εr2 = [εr2x= 1,
εr2z= 15] at t= t1= 30.3 T. With this set-up, the
numerical results of the power-flow distribution (i.e., the
magnitude of the instantaneous power flow) on the xz
plane, along with the instantaneous Poynting vector (blue
arrows), for a time t= 30.2 T (t= t1

−) are shown in Fig.
3c. As observed, most of the energy is travelling near θ=
0° because of the large beam waist diameter (D= 9λ), as
expected. The power-flow distribution and the instanta-
neous Poynting vector for a time instant just after the
change in permittivity to an anisotropic value (t= 30.4 T,
t= t1

+) are shown in Fig. 3d. By comparing these results
with those from Fig. 3c, it can be clearly seen that the
Poynting vector angles θ2S are still close to θ= 0°, but they
are indeed modified compared with θ1kn. These results are
in agreement with the analytical angles shown in Fig. 3b,
where a value of θ2S= 0° will be achieved for an angle
θ1k= 0° and can be increased to θ2S ≈ 15° for a small angle
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θ1k= 1°. For completeness, the power-flow distribution
and instantaneous Poynting vector for a time t > t1 are
shown in Fig. 3e.
The results discussed in Fig. 3c–e were obtained con-

sidering a large beam waist diameter (D= 9λ). However,
what if we use a smaller value of D? To evaluate this case, we

use D= 2λ, and the results of the power-flow distribution
and instantaneous Poynting vector for a time t= 30.2 T
(before the change in εr) are shown in Fig. 3f. As clearly
shown, the angular aperture of the Gaussian beam is
increased (as expected), and the energy is now travelling
along multiple θ1kn directions. With this set-up, let us
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+/
E1) and BW (E2

−/E1) electric fields (red and green circles, respectively). c–e Numerical results of the snapshot of the power-flow distribution and
instantaneous Poynting vector (blue arrows) distributions for a Gaussian beam with a beam waist diameter D= 9λ before the change in εr (when
εr1= 10) at t= 30.2 T (t= t1

−) and after the change in the relative permittivity to εr2 = [εr2x= 1, εr2z= 15] at t= 30.4 T (t= t1
+) and at t= 36.3 T

(t > t1), respectively. f–h Numerical results of the snapshot of the power-flow distribution and instantaneous Poynting vector (blue arrows)
distributions at the same times as in panels c–e and using the same time-dependent εr(t) but considering a Gaussian beam with a beam waist
diameter of D= 2λ. In all the numerical results, the incoming signal is switched off once the temporal boundary is induced at t= t1 to appreciate the
effect of using a time-dependent εr(t) on a signal already present in the medium
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now change εr to an anisotropic value, as in Fig. 3d. The
results of the power-flow distribution and instantaneous
Poynting vector at t= 30.4 T are shown in Fig. 3g. As
observed, k is preserved, as expected, but we can now
clearly see how multiple directions of θ2S are obtained, in
agreement with the description provided by the plane
waves in Fig. 3b. The power-flow distribution and
instantaneous Poynting vector for a time t > t1, as shown
in Fig. 3e, are shown in Fig. 3h. From this figure, one can
notice that the magnitude of the power-flow distribution
is larger for angles other than 0°. This observation can be
explained by looking at the red curve in Fig. 3b, which
shows the amplitude of the electric field for the FW wave
as a function of the incident angle θ1k (values calculated
using Eq. (1)). As observed, there is a clear dependence of
E2

+/E1 on θ1k, achieving an increased/reduced amplitude
for large/small values of θ1k when considering the values
under study of εr2 = [εr2x= 1, εr2z= 15]. For instance,
E2

+/E1 is 0.74 when θ1k= 0° and increases up to 6.6 when
θ1k= 90°. Similarly, for the BW wave (green circles in
Fig. 3b), E2

−/E1 is −0.074 when θ1k= 0°; then, it reaches
its maximum of 3.4 when θ1k= 90°. For completeness, the

amplitudes of the FW and BW waves obtained using the
temporal permittivity functions studied in Fig. 2 are
also shown in Supplementary Fig. S3 of the Supplemen-
tary Materials. Animations showing the examples from
Fig. 3c–e and Fig. 3f–h can be found in Supplementary
Movie 3.
The results discussed in Fig. 3 were calculated con-

sidering normal incident Gaussian beams at θi= 0°. For
completeness, the numerical results of the power-flow
distribution and instantaneous Poynting vector using
oblique incident Gaussian beams with θi= 25° and the
same beam waist diameters as in Fig. 3, i.e., D= 9λ and
D= 2λ, are shown in Fig. 4a, b and Fig. 4c, d, respectively.
As observed for a time t= t1

– (i.e., when εr1= 10), most of
the energy travels along the incident angle θi= 25° for
D= 9λ (Fig. 4a), while it spreads to more angles when
D= 2λ (Fig. 4c), as expected. Now, when ε is changed to
an anisotropic tensor εr2 = [εr2x= 1, εr2z= 15] (Fig. 4b, d),
the energy is re-directed to θ2S, which is no longer parallel
to the angle of the wavenumber k, θ1kn, as explained
before. Moreover, note that in the results shown in Fig.
4b, d, the BW waves created at the temporal boundary are
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clearer than the results shown in Fig. 3. This is because of
the dependence of the amplitude of the FW and BW
waves on the angle θ1k. Since larger angles θ1k are gen-
erated when tilting the Gaussian beam to an angle
θi= 25° (compared with θi= 0° in Fig. 3), the amplitudes
of both FW and BW waves are further increased (as
detailed in Fig. 3b and Eq. (1)).

Temporal aiming narrowband Gaussian wavepacket
In the previous section, we analysed the temporal

aiming approach using time-dependent metamaterials
with an isotropic-to-anisotropic change in the relative εr
by considering a monochromatic plane wave under
oblique incidence and Gaussian beams with different
beam waist diameters. In this section, we discuss how
temporal aiming can be achieved when the source
generates a narrowband Gaussian wavepacket. A sche-
matic representation of this scenario is shown in Fig. 5.
Let us consider an oblique incident (θ1) Gaussian
wavepacket propagating in a medium with a time-
dependent εr [εr (t), µr= 1]. Moreover, consider that we
have three receivers (Rx1, Rx2 and Rx3) placed at dif-
ferent spatial locations. Without loss of generality, Rx1
is directly aligned with the incoming oblique incident
wavepacket, while Rx2 and Rx3 are placed at different
locations (see Fig. 5).

Now, if we want to send the wavepacket to Rx1, we need
only to keep ε(t)= ε1= constant since both the source
and Rx1 are aligned. However, if the wavepacket is already
propagating in the medium, would it be possible to
redirect it to reach either Rx2 or Rx3? In the previous
section, it was shown how the Poynting vector S is
modified to an angle different from the wavenumber k
once the relative permittivity is changed from an isotropic
value to an anisotropic tensor. Based on this, a way to
deflect the propagating wavepacket and reach Rx2, for
instance, would be to engineer a time-dependent ε(t), as
shown in the inset of Fig. 5 for this receiver. In this case, εr
can be changed from εr1 to εr2 = [εr2x ≠ εr2z] at t= t1 and
kept at this value for a certain time duration Δt= t2–t1.
During this time interval, the wavepacket preserves k (as
explained in the previous sections), but the direction of
the energy flow (S) changes. Hence, the interval Δt should
be selected such that the wavepacket moves along the xz
plane until it is aligned with the receiver Rx2 at time
t= t2

−. Once this step is achieved, then εr can be returned
from εr2 = [εr2x ≠ εr2z] to its original value εr1 at t= t2 to
allow the wavepacket to travel again with the initial angle
θ1, reaching Rx2. Similarly, this process can be performed
to redirect the pulse to Rx3, and the same values of εr1 and
εr2 = [εr2x ≠ εr2z] can be applied as in the previous case.
The only difference would be that the time interval Δt
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should now be modified accordingly to align the wave-
packet to this receiver.
An example of the temporal aiming described in Fig. 5 is

presented in Fig. 6 using an oblique incident narrowband
wavepacket with θ1= 25°. The specific time-dependent
εr(t) of the medium for re-directing the wavepacket to
Rx1, Rx2 and Rx3 is shown in Fig. 6a–c, respectively. For
Rx1 (Fig. 6a), the permittivity εr is constant at εr1= 10,
with no change because the source is aligned to this
receiver, as explained before. The numerical results of the
Hy field distribution at different times for this case are
shown in Fig. 6d–f, where it can be seen how the pulse is

directly sent to Rx1. Now, to reach Rx2, the relative εr
is changed from isotropic εr1= 10 to anisotropic εr2 =
[εr2x= 1, εr2z= 15] (the same values as in Fig. 4) at t=
t1= 30.3 T and kept at this value until it is returned to
εr1= 10 at t= t2= 33.5 T (Δt= 3.2 T). The numerical
results of the Hy field distribution for a time t < t1, t1 < t <
t2 and t > t2 for this case are shown in Fig. 6g–i, respec-
tively. As observed, when t1 < t < t2 (Fig. 6h), the wave-
packet propagates with an angle defined by the Poynting
vector (θ2S ≈ 82°, in agreement with the analytical values
from Eq. (2), which predicts θ2S= 81.4°). Finally, once
ε is returned to the isotropic state with εr1= 10, the
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wavepacket propagates with the same incident angle
(θ1= 25°) and is able to reach Rx2 (Fig. 6i). The same
process is then applied to the wavepacket to reach Rx3,
but now the parameter Δt is increased to Δt= 6.3 T. The
εr function for this receiver and the Hy field distribution at
different times are shown in Fig. 6c, j–l, demonstrating
how the wavepacket can reach Rx3 using this time-
dependent function of εr. An animation showing the
results of the temporal aiming described in Fig. 6 can be
found in Supplementary Video 4. Finally, it is important
to note that we change here the relative permittivity of the
whole medium through which the wave is travelling. This
temporal aiming may be achieved using 2D transmission
lines loaded with time-varying circuit elements or with
tuneable metasurfaces36,53.

Discussion
In conclusion, we have discussed time-dependent

metamaterials by inducing temporal boundaries using a
rapid change in permittivity from isotropic to anisotropic
values. The physics behind this temporal variation of the
electromagnetic properties of the medium has been pre-
sented, highlighting that the wavenumber and instanta-
neous Poynting vector of the electromagnetic waves
already propagating in this medium exhibit different
directions determined by the change in the permittivity
tensor. This performance has been exploited to achieve
temporal aiming, where an electromagnetic wavepacket
can be ushered and re-directed to desired angles by
engineering the isotropic–anisotropic temporal variation
of the relative permittivity. Different examples have been
evaluated both numerically and analytically, such as plane
waves under oblique incidence and monochromatic nor-
mal and oblique incident Gaussian beams. Moreover, our
temporal aiming approach was also evaluated considering
the case of an oblique incident narrowband Gaussian
wavepacket, showing that it can be possible to deflect and
redirect a wavepacket to reach receivers placed at differ-
ent spatial locations by using isotropic–anisotropic–
isotropic temporal metamaterials. The ideas presented
here may find applications in integrated photonics sce-
narios where it may be required to redirect and send
waves to specific targets/receivers on photonic chips in
real time, and may open up new avenues in manipulating
waves by ushering and guiding wavepackets at will.

Materials and methods
All numerical simulations were performed using the

time-domain solver of the commercial software COMSOL
Multiphysics®. For all the simulations, a rectangular box of
dimensions 105λ × 62.5λ was implemented. The incident
field was applied from the top boundary of the simulation
box via a scattering boundary condition with an out-of-
plane magnetic field. The complete non-paraxial Gaussian

beam expression was introduced using the angular spec-
trum technique for plane waves. In this method, the
Gaussian beam is calculated as a summation (integral in our
case) of multiple plane waves propagating with the same
magnitude of wavenumber k but in different directions52.
Scattering boundary conditions were also implemented on
the bottom, left and right boundaries of the simulation box
to avoid undesirable reflections. Finally, a triangular mesh
was implemented with minimum and maximum sizes of
1.5 × 10−8 λ and 0.1 λ, respectively, to ensure accurate
results. The rapid changes in ε in all the studies were
modelled by implementing rectangular analytical functions
with smooth transitions using two continuous derivatives to
ensure convergence in the calculations.
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