Fig. 1: Universal flat-optics approximators: general idea. | Light: Science & Applications

Fig. 1: Universal flat-optics approximators: general idea.

From: Broadband vectorial ultrathin optics with experimental efficiency up to 99% in the visible region via universal approximators

Fig. 1

a Problem setup composed of a flat optical surface constituted by resonant nanostructures: b with input si and output so scattered waves. (i) Dependency of the number of resonances on the dimensions of a nanostructure. c Block diagram of the input–output transfer function \({\mathbf{H}}\left( \omega \right) = \frac{{{\mathbf{s}}_{\mathrm{o}}\left( \omega \right)}}{{{\mathbf{s}}_{\mathrm{i}}\left( \omega \right)}}\). d Equivalent representation of (c) with a feedforward single hidden layer neural network modelling the effects of the resonances. eh Demonstration of the universal representation behaviour of (d): an arbitrarily defined system response (e, f, red markers) is obtained by tuning the resonances Ω of the network for given initial weights β, couplings Κ and damping Γ. The problem is solved by minimizing a cost function (g) by using an increasing number of resonances M, which defines the size of Ω. h Network configuration that represents the desired response (e, f, solid lines). The general demonstration of this result for an arbitrary structure is carried out in Supplementary Note II

Back to article page