
Lee et al. Light: Science & Applications           (2022) 11:16 Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-021-00705-4 www.nature.com/lsa

ART ICLE Open Ac ce s s

High-throughput volumetric adaptive optical
imaging using compressed time-reversal matrix
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Abstract
Deep-tissue optical imaging suffers from the reduction of resolving power due to tissue-induced optical aberrations
and multiple scattering noise. Reflection matrix approaches recording the maps of backscattered waves for all the
possible orthogonal input channels have provided formidable solutions for removing severe aberrations and
recovering the ideal diffraction-limited spatial resolution without relying on fluorescence labeling and guide stars.
However, measuring the full input–output response of the tissue specimen is time-consuming, making the real-time
image acquisition difficult. Here, we present the use of a time-reversal matrix, instead of the reflection matrix, for fast
high-resolution volumetric imaging of a mouse brain. The time-reversal matrix reduces two-way problem to one-way
problem, which effectively relieves the requirement for the coverage of input channels. Using a newly developed
aberration correction algorithm designed for the time-reversal matrix, we demonstrated the correction of complex
aberrations using as small as 2% of the complete basis while maintaining the image reconstruction fidelity comparable
to the fully sampled reflection matrix. Due to nearly 100-fold reduction in the matrix recording time, we could achieve
real-time aberration-correction imaging for a field of view of 40 × 40 µm2 (176 × 176 pixels) at a frame rate of 80 Hz.
Furthermore, we demonstrated high-throughput volumetric adaptive optical imaging of a mouse brain by recording a
volume of 128 × 128 × 125 µm3 (568 × 568 × 125 voxels) in 3.58 s, correcting tissue aberrations at each and every 1 µm
depth section, and visualizing myelinated axons with a lateral resolution of 0.45 µm and an axial resolution of 2 µm.

Introduction
An arbitrary optical system interacting with light

waves can be described by transmission and reflection
matrices, as far as the linear light-matter interaction is
concerned. The transmission (reflection) matrix of an
optical system describes the transmitted (reflected)
electric field (E-field) at all the possible detection
channels for a set of orthogonal illumination channels.
Due to the characterization of the input–output
response, the measured matrix can be considered as a
replica of a real optical system within the context of the
covered illumination/detection channels. Therefore,
one can computationally process it as though a real

experiment is being conducted. The knowledge of the
matrix allows one to find solutions in a variety of
applications where lengthy experimental optimizations
are required. Examples include focusing light1,2, deli-
vering images3, and controlling transmission power4

through scattering media based on the transmission
matrix. The reflection matrix, suitable for more rea-
listic in vivo applications for which the detector cannot
be placed on the transmission side, has provided
exceptional opportunities for deep-tissue imaging5.
The reflection matrix has also been exploited to focus
light on a target embedded deep within strongly scat-
tering media6–8. The wave correlation of the single-
scattered waves in the reflection matrix was tailored to
attenuate the effect of multiple light scattering9. A
wavefront correction algorithm termed closed-loop
accumulation of single scattering (CLASS)10 was
developed based on the time-gated reflection matrix
for separately identifying the aberrations in the
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illumination and detection pathways without the need
for guide stars and in the presence of strong multiple
scattering noise. This offers imaging deep within bio-
logical tissues with a subdiffraction-limited resolu-
tion11. The singular value decomposition (SVD) was
applied to a time-gated reflection matrix for retrieving
a target image underneath strongly scattering
media12,13. Recently, it has been demonstrated that the
time-gated reflection matrix measured in the space
domain made it possible to image a mouse brain
through an intact skull inducing extreme aberrations14.
Indeed, the reflection matrix approaches provide for-
midable solutions in the context of computational
adaptive optics (AO) microscopy15,16 in that they can
deal with extremely severe aberrations with no need for
fluorescence labeling and guide stars. In addition, this
space-domain reflection matrix study proved that it
can serve as a type of wavefront sensorless AO17,18 that
is combined with hardware correction of aberration by
wavefront shaping devices such as a spatial light
modulator and deformable mirror to realize ideal
diffraction-limited multi-photon fluorescence imaging
through an intact skull14.
Despite these benefits, the matrix-based AO

approach has been elusive in real-time bio-medical
imaging applications. The recording of the full reflec-
tion matrix is a time-consuming process because the
E-field map of the reflected wave must be measured for
each illumination channel, as opposed to confocal
imaging’s requirement of point detection. Further-
more, the interferometric detection of the E-field is
sensitive to the random phase drift, which can dete-
riorate the recorded reflection matrix in the dynamic
samples. Sparse sampling of the matrix would be a
potential solution, but this is accompanied by incom-
plete sampling of illumination channels. Considering
that finding object information embedded within a
scattering medium requires identifications of wave
distortions in both the illumination and detection
pathways, insufficient sampling of the illumination
channels can undermine the capability to resolve illu-
mination distortions.
To overcome these issues, we consider a time-reversal

matrix RRy instead of the reflection matrix R. Here Ry

represents the conjugate transpose of R. Unlike the
reflection matrix itself, which describes the relationship
between the illumination and detection channels, the
time-reversal matrix describes the phase-conjugated
roundtrip process connecting the detection channels
to the same detection channels via the illumination
channels. Essentially, this reduces the two-way problem
with the reflection matrix to the one-way problem with
the time-reversal matrix on condition that the illumi-
nation channels are orthogonal. There are two major

benefits of dealing with the time-reversal matrix. It can
maintain high fidelity in terms of retaining the infor-
mation on the detection channels even if the illumina-
tion channel coverage is much smaller than that of the
complete set. Furthermore, it is not even necessary to
know the basis of the illumination channels, making it
robust to the random phase drift.
Here, we present a high-throughput volumetric AO ima-

ging method termed a compressed time-reversal closed-loop
accumulation of single scattering (CTR-CLASS), in which
the previously developed CLASS algorithm was extended to
a compressed time-reversal matrix constructed by a sparsely
sampled reflection matrix for correcting the complex
sample-induced aberrations with significantly reduced
number of measurements. In this implementation, we took
advantage of the time-reversal matrix and made use of
dynamically varying unknown speckle patterns as illumina-
tion channels. We demonstrated that both the aberration
map and object image can be retrieved using the number of
speckle patterns as small as 2% of the complete basis while
maintaining comparable fidelity to that of the fully sampled
matrix. Due to nearly 100-fold reduction of the matrix
recording time, the CTR-CLASS has enabled real-time
aberration-correction imaging for a field of view (FOV) of
40 × 40 µm2 (176 × 176 pixels) at a frame rate of 80Hz. We
applied the developed method for the volumetric AO ima-
ging of ex vivo mouse brain and visualized myelinated axons
with a lateral resolution of 0.45 µm and axial resolution of
2 µm over a volume of 128 × 128 × 125 µm3 (568 × 568 × 125
voxels) within a recording time of 3.58 s.

Results
Reflection matrix description of an imaging system
Let us first start with a mathematical model for an

optical imaging system of interest using reflection
matrix formalism. We consider the time-gated coherent
imaging of a target object through a scattering medium
in reflection geometry (Fig. 1a). For convenience, the
optical layout is unfolded by flipping the reflection
beam path over an object plane, making the layout
analogous to transmission geometry. Since the scat-
tering sample serves as a linear system with respect to
the E-field in coherent imaging, the reflected wave can
be described by a linear superposition of impulse
response functions,

Eoðro; riÞ ¼
Z

Poðro; rÞOðrÞPiðri; rÞd2rþ Emsðro; riÞ
ð1Þ

Here, Eo (ro;ri) is the time-gated E-field at position ro
on the output (detection) plane when a target object is
illuminated by a point source located at position ri on
the input (illumination) plane. O(r) is the object
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function that represents complex reflection coefficients
of the target object. Both the input and output planes
are conjugate to the object plane whose spatial
coordinate is r. Pi(o) (ri(o); r) is the time-gated E-field
point-spread-function (PSF) that represents E-field
distribution at the input (output) plane generated by
a point source located at a position r on the object
plane. The PSF describes transmissions of ballistic
waves that maintain their propagation directions in
propagation through the scattering medium. There-
fore, it has the linear shift-invariant property19, i.e.,
PiðoÞðriðoÞ; rÞ ¼ PiðoÞðriðoÞ � rÞ. Ems (ro; ri) represents
speckle noise generated by multiple-scattered waves
in the scattering medium, whose flight times fall within
a finite time-gating window. In scattering matrix
formalism, Eq. (1) can be represented by a time-gated
reflection matrix R whose element is Eo (ro; ri) for a

column index ri and row index ro. Based on Eq. (1), R
can be decomposed as

R ¼ PoOP
T
i þ Rms ð2Þ

Here, O is a diagonal matrix whose diagonal element is
O(r). Pi and Po are Toeplitz (diagonal-constant)
matrices whose elements are respectively given by the
input and output PSFs, Pi (ri; r) and Po (ro; r). Rms is a
matrix composed of Ems (ro; ri), and the superscript ‘T’
denotes matrix transpose operation. The first term on
the right-hand side in Eq. (2) is responsible for image
reconstruction. Based on the perturbation of the first-
order Born approximation, the first term assumes that
the incident wave does not change its propagation
direction until it reaches the object plane, but does
experiences phase retardation by the scattering
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Fig. 1 Schematics of imaging geometry and time-reversal process. a Description of the reflection matrix R in point illumination basis.
R½ro; r′i � ¼ ½Eoðro; r′iÞ� is a set of E-field responses Eoðro; r′iÞ to impulse input fields EiðriÞ ¼ δðri � r′iÞ. For clarity, the reflection pathway is unfolded to
the transmission side. O is the object’s reflection coefficient matrix, and PiðoÞ ¼ ½PiðoÞðr; riðoÞÞ� is the transmission matrix of the scattering medium for
wave propagation from position r to riðoÞ . The red and blue curves represent incident and reflected waves, respectively. b Reflection matrix RS in the
case of speckle illumination. RS½ro; j� ¼ ½Eoðro; jÞ� is a set of E-field responses Eoðro; jÞ for speckle input channels Sðri; jÞ. RS can be written as RS= RS,

where S½ri; j� ¼ ½Sðri; jÞ� is the input illumination matrix. c Geometric interpretation of the time reversal matrix. The time-reversal matrix W½ro; r′o� ¼
RSR

y
S can be interpreted as a reflection matrix describing a roundtrip process for a wave propagating from the output plane ro to the object plane r

and reflecting back to the output plane by the target object |O|2
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medium. For identical illumination and detection
paths, input and output PSFs are the same due to the
reciprocity principle in optics and thus satisfy the
relation Piðr0; rÞ ¼ Poðr0; rÞ. However, this is not a
necessary condition in the present study. As we
reported earlier10, the CLASS algorithm utilizing R is
developed in such a way to find high-fidelity solutions
for an unknown object function (O) and two PSFs (Pi

and Po) even in the presence of strong multiple
scattering noise Rms.

Compressive sensing of the reflection matrixS
The matrix R in Eq. (2) can be directly measured by

scanning the position ri of the focused illumination and
wide-field detection of the backscattered wave field
Eoðro; riÞ across ro. To obtain the full time-gated
reflection matrix for a given FOV, it is necessary to
scan a focused beam over the FOV with a lateral sam-
pling interval of the diffraction-limited resolution, Δx=
λ/(2NA), where λ is the wavelength of light source, and
NA is the objective numerical aperture. For a
2-dimensional (2D) FOV of size L × L, the required
number of sampling points for a complete sampling is
given by N= L/Δx which is the total number of ortho-
gonal spatial modes for the given FOV, NA, and λ. In

fact, the full reflection matrix R 2 CN ´N can be mea-

sured by sending any complete set fEiðri; jÞgNj¼1 of N

illumination fields, instead of point-by-point scanning
with a focused beam. One can measure the respective
output field Eoðro; jÞ for each jth illumination and con-

struct a reflection matrix Rm 2 CN ´N whose columns
are assigned by the measured output E-fields

fEoðro; jÞgNj¼1. In this case, the column and row indices

of Rm are j and ro, respectively. Then, the measured Rm

is expressed as Rm ¼ REi, where Ei 2 CN ´N is an illu-

mination matrix constructed by fEiðri; jÞgNj¼1 in the same

way as Rm. The reflection matrix of the sample can be
obtained by multiplying the measured matrix Rm by the
inverse of Ei, i.e., R ¼ RmE�1

i . This requires knowledge
of the illumination fields.

Complete sampling of the reflection matrix for a large FOV
can be time-consuming and resource-intensive, and thus
limits its practical applicability. Main objective of this study is
to reduce the data acquisition time. Here, we propose the use
of a set ofM unknown random speckle illumination patterns,
fSðri; jÞgMj¼1 for compressive sensing of R. In particular, we
consider the case in which M is significantly smaller than N
(M≪N). The time-gated E-field image Eoðro; jÞ is recorded
for each jth speckle illumination, and the sparsely-sampled
reflection matrix RS 2 CN ´M is then constructed using
fEoðro; jÞgMj¼1 as a matrix element (Fig. 1b). Therefore, the
matrix RS with column index j and row index ro can be

expressed as

Rs ¼ PoOP
T
i S þ RmsS ð3Þ

where S 2 CN ´M is the sensing matrix constructed by

fSðri; jÞgMj¼1. To realize aberration correction and image

reconstruction without a prior knowledge of the illumina-
tion pattern, we consider a CTR matrix, W ¼ RsRy

s . By

inserting Eq. (3) in W, the matrix is expressed as W ¼
ðPoOPT

i SÞðSyP�
i O

yPy
oÞ þWms, where Wms is the noise

matrix associated with the multiple scattering Rms, and the
superscript ‘*’ denotes the complex conjugate. Note that the
covariance matrix SS†∈CN×N is almost an identity matrix I
for sufficiently large M. However, finite overlaps among
random speckles can cause non-zero off-diagonal elements,
i.e., SS†= I+ σ, where σ denotes the additive complex
random noise whose matrix elements σ½ri; r0i� are given by
correlations of two series of random speckle fields
illuminating different positions, ri and r0i. Therefore, W can
be expressed as

W ¼ PoOIP
y
o þWms þW σ ð4Þ

where OI denotes |O|
2, a diagonal matrix with its diagonal

elements given by the reflectance of the object, |O(r)|2. The

first term in Eq. (4) uses the relation PT
i P

�
i ¼ PiP

y
i ¼ I ,

which is valid when Piðri; rÞ is a shift-invariant PSF induced
by a phase-only pupil aberration. The last term W σ ¼
PoOPT

i σP
�
iO

yPy
o denotes the sparse sampling-induced

noise associated with σ. Statistically, mean amplitude of

σ½ri; r0i� is given by hjPM
j¼1Sðri; jÞS�ðr0i; jÞjiri;r0i ¼ 1=

ffiffiffiffiffi
M

p
,

where the bracket notation denotes an average over the
variables in the subscript. Sðri; jÞ is normalized such that

hPM
j¼1jSðri; jÞj2iri ¼ 1. Therefore, the magnitude of the

matrix elements of Wσ becomes smaller as M increases,
which makes Wσ negligible for sufficiently large M.

Physical interpretation of the time-reversal matrix W is
given in Fig. 1c. In this discussion, we excluded the noise
terms in Eq. (4) to focus our attention more on a successful
time-reversal process. The noise degrades the fidelity of the
aberration correction and the signal-to-noise ratio (SNR) of
the reconstructed image, which will be discussed in detail in
“Analysis of image SNR” section. By the successive time-
reversal operation Ry

S, a spherical wave (red curves) emitted
from a point source at a position r0o on the output plane
propagates in the backward direction through the object
(P�

i O
yPy

o) followed by a fictious scattering layer whose
transmission matrix is S†. Afterwards, the RS is applied such
that the reflected wave (blue curves) returns to the scattering
layer (S) and the object (PoOPT

i ) in the forward direction to
arrive at the output plane. Here, the important point is that

Lee et al. Light: Science & Applications           (2022) 11:16 Page 4 of 13



the operation indicated by the shaded gray box (PT
i SS

yP�
i )

serves as a phase-conjugation mirror when SSy � I , i.e., the
illumination speckles are sufficiently orthogonal. In other
words, a point source emanating from an object plane
comes back to the same position via its travel through
PT
i SS

yP�
i . This eliminates the need to consider the input

aberration Pi and illumination patterns S. As a result, the
matrix W ¼ RSR

y
S can be interpreted as a time-gated

reflection matrix describing an imaging system that images a
reflective object with the reflectance OI through a scattering
medium with an input transmission matrix of P�

o and an
output transmission matrix of Po. The whole process
becomes an N-by-N square matrix with its column and row
indices both corresponding to ro.
There are a few major benefits of considering W instead

of R. First, the sensing matrix S describing the illumination
patterns is removed in W, thereby eliminating the need to
know the illumination speckle patterns. This makes it
possible to send an arbitrary choice of illuminations, such as
dynamic speckle patterns generated by a rotating diffuser,
and thus it is no longer necessary to scan pre-defined
positions of point illumination using scanning mirrors.
Second, W is greatly simplified such that only Po and OI

remain to be identified. Imperfection in illumination and
detection optics often causes discrepancy between Pi and Po
in the reflection geometry. Pi and Po are intrinsically dif-
ferent in the transmission geometry. However, in W, it is
not necessary to consider Pi. Another critical benefit is the
possibility of sparse sampling. The condition SS† ≈ I satisfies
even when M is extremely small. In contrast, if there is
significant downsampling in the focused illumination, both
the ability to identify the aberration and the imaging fidelity
are significantly degraded.

Image reconstruction
The concept of the time-reversal matrix was initially

introduced for selective focusing in acoustics20–22 and
then has been intensively studied in microwaves23,24 and
optics7,12,25. In these previous studies, either iterative
operation or the singular value decomposition (SVD) of
the time-reversal matrix W= R†R was used for selective
focusing on a few highly reflecting targets embedded in a
scattering medium. Each input singular vector with a
nonzero singular value of W corresponds to a specific
wavefront of the incident light focusing on one of the
targets whose reflectivity is proportional to the eigenvalue.
This approach has also been applied to deep optical
imaging of an extended target in a scattering medium,
where the image is reconstructed by using the dominant
singular values and corresponding singular vectors12,13.
In contrast, we consider the CTR matrix W ¼ RSR

y
S and

introduce a matrix decomposition of W into a product of
three matrices, W ¼ PoOIPy

o in order to find the unknown

object function (OI) embedded within a scattering medium
inducing optical aberrations (Po). In conventional compres-
sive sensing26,27, the sampling process is modeled as y= Sa
+ n, where y 2 RM ´ 1 is a vector of sparsely sampled data,
a 2 RN ´ 1 is the original signal to be recovered, S 2 RM ´N

is a known sensing (or measurement) matrix with M≪N,
and n denotes a measurement noise. Here, M is the number
of measurements and N is the number of signals of interest.
The problem of recovering the signal a is underdetermined
or ill-posed because there are more unknowns than equa-
tions. To reliably solve the problem, we need a prerequisite
that the degree of signal sparsity S (the number of nonzero
elements in a) is smaller than the number of measurements,
M: M � OðS logðN=SÞÞ.
Conventional compressive sensing concerns the sparsity of

the target a. In our study, the reflection matrix R 2 CN ´N is

sparsely sampled by the sensing matrix S 2 CN ´M : RS=
RS. Thus, the degree of sparsity of R is of concern. Essen-
tially, our model R ¼ PoOIPT

i allows us to treat R as a
highly sparse matrix. Since OI is diagonal and PoðiÞ is a
Toeplitz matrix, R contains only 3N unknowns. Since the
measured RS contains the number of elements N ×M, it
forms a system of N ×M equations with 3N unknowns.
Theoretically, there needs M � Oð3 logðN=3ÞÞ to accu-
rately estimate the solutions. However, we used the
unknown speckle illuminations, i.e. unknown sensing matrix
S, and thus converted the problem to a decomposition of
time reversal matrix, W ¼ PoOIPy

o þWms þW σ, where
Wms is due to multiple scattering noise, and Wσ is the
additional sparsity-induced noise. Since Wσ scales with
1=

ffiffiffiffiffi
M

p
, the reduction of sampling M gives rise to the

increase of noise. This makes it necessary to set M larger
than the estimated value to properly decompose W.

To identify the aberration and reconstruct an
aberration-corrected image, the basis of W is changed to
the spatial-frequency domain (k-space) by taking the
Fourier transform for both the column and row bases.
The CTR matrix in k-space is expressed as

~W ¼ ~Po ~OI~P
�
o þ ~WN þ ~W σ ð5Þ

where a tilde (~) above the variable denotes the Fourier
transformation of the variable into spatial-frequency domain.
The matrix ~Po½k0o; ko� represents the planewave based
transmission matrix between the object and output planes.
When the output PSF is space-invariant, ~Po becomes a
diagonal matrix whose elements are given by its complex
pupil function ~PoðkoÞ ¼ eiϕoðkoÞ, where ϕoðkoÞ is the output
pupil phase map. We consider here a phase-only pupil
function that has amplitude of unity. The matrix ~OI is the
target spectrum matrix in which each column consists of a

Lee et al. Light: Science & Applications           (2022) 11:16 Page 5 of 13



shifted special-frequency spectrum of the target: ~OI½k0o; ko� ¼
~OI½k0o � ko�.
The CTR-CLASS algorithm10, acting on the CTR

matrix ~W , identifies an aberration correction matrix ~Pc

that maximizes the total intensity of the object image

~O
ðcÞ
I ðkÞ reconstructed from a corrected CTR matrix ~W c ¼

~P
�
c
~W ~Pc. Here, ~O

ðcÞ
I ðkÞ is reconstructed by the sum of ~W c

along diagonals: ~O
ðcÞ
I ðkÞ ¼ P

ko
~W c½ko þ k; ko�. The algo-

rithm iteratively finds the solution ~PcðkoÞ in the following
way. At the nth iteration, the nth correction pupil function

~P
ðnÞ
c ðkÞ ¼ eiϕ

ðnÞ
c ðkÞ, target spectrum ~O

ðnÞ
I ðΔkÞ, and time-

reversal matrix ~W
ðnÞ

are calculated as

ϕðnÞ
c ðkoÞ ¼ arg

X
Δk≠0

~W
ðn�1Þ½ko þ Δk; ko� � ~Oðn�1Þ�

I ðΔkÞ
( )

ð6Þ

~W
ðnÞ½k0o; ko� ¼ ~P

ðnÞ
c ðk0oÞ ~W

ðn�1Þ½k0o; ko�~P
ðnÞ�
c ðkoÞ ð7Þ

~O
ðnÞ
I ðΔkÞ ¼

X
ko

~W
ðnÞ½ko þ Δk; ko� ð8Þ

where Δk ¼ k0o � ko. The nth correction phase angles

ϕðnÞ
c ðkoÞ is found by taking inner products of the angular

spectrum images ~W
ðn�1Þ½ko þ Δk; ko� and the corrected

image ~O
ðn�1Þ
I ðΔkÞ. Note that the target spectrum ~O

ðnÞ
I ðΔkÞ

is reconstructed by synthesizing all the spatial frequency
spectra covered by the input and output angles (jk=ð2πÞj,
jk0o=ð2πÞj � 2NA=λ), resulting in a special-frequency band
of jΔk=ð2πÞj � 2NA=λ. The iteration starts with the

initial conditions of ~P
ð0Þ
c ðkoÞ ¼ 1 and ~W

ð0Þ ¼ ~W and
continues until the root-mean-square (RMS) of the phase,

σ2ϕ ¼ hjϕðnÞ
c ðkoÞj2iko becomes less than a predefined value.

The final output correction phase function is found by
accumulating all the preceding correction phases,

ϕcðkoÞ ¼
Pnmax

n¼1ϕ
ðnÞ
c ðkoÞ.

Experimental setup of CTR-CLASS microscopy
The schematic of the experimental setup is shown in

Fig. 2a for recording a CTR matrix W. The basic config-
uration is a low-coherence wide-field interferometric
microscope, but a sample is illuminated by random
speckle fields while the reference wave is a planar wave. A
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custom-built wavelength-tunable Ti:Sapphire pulsed laser
(center wavelength of 800–900 nm, bandwidth of 30 nm)
was used as a low-coherence light source. An optical
diffuser mounted on a motorized rotation stage was
inserted at a conjugate image plane in the illumination
path to produce uncorrelated random speckle fields for
the sample wave. Backscattered sample waves from the
target were captured by an objective lens (Nikon, ×60, NA
1.0) and delivered to a high-speed CMOS camera (Pho-
tron, FASTCAM mini UX100) placed at a conjugate
image plane. A reference plane wave was introduced at
the camera to generate the off-axis low-coherence inter-
ferogram, from which we obtained the time-gated E-field
of the backscattered sample wave (see Supplementary
Information Note 1 for the detailed setup). Figure 2b
shows three representative E-field amplitude and phase
images of the sample under different speckled illumina-
tions. To obtain a complete N-by-N reflection matrix for a
FOV having N orthogonal modes, N E-field images must
be acquired for an orthogonal set of N illumination fields,
where each image has a total of N orthogonal pixels.
However, we recorded only M (<N) E-field images using
random speckle illuminations to reduce the acquisition
time and reconstruct a sparsely sampled N-by-M reflec-
tion matrix RS as shown in Fig. 2c.
For efficient sparse sampling of the reflection matrix, it

is important to minimize the correlation between the
speckle fields as much as possible. For a given camera
exposure time and frame rate, the angular velocity of the
rotating diffuser was carefully selected to minimize the
spatial correlation between two consecutive speckle pat-
terns (Supplementary Information Note 2). To justify the
validity of SS† ≈ I, we experimentally measured the S
matrix by placing a mirror at the sample plane. Figure 2d
shows SS† matrix obtained using M= 700 speckled
illuminations for a FOV of 40 × 40 µm2 with a diffraction-
limited resolution of 450 nm, resulting in the total num-
ber of orthogonal modes, N= 88 × 88= 7744. The SS†

was nearly diagonal matrix with the ratio between off-
diagonal and diagonal elements of ≲0.1.

Proof-of-concept experiment
To demonstrate the high-throughput data acquisition

and aberration correction capabilities of the CTR-CLASS
microscopy, we imaged a homemade Siemens star target
covered by a 600-µm-thick plastic layer introducing
strong optical aberrations. The laser operated at a center
wavelength of 900 nm, and had a coherence length of
~12 µm. For a FOV of 40 × 40 µm2 (N= 88 × 88 pixels),M
speckled E-field images of the target were imaged by the
high-speed camera operating at a frame rate of 12,500 Hz
with an exposure time of 20 µs.
We define the compression ratio that indicates the

degree of sparse sampling as CR=M/N. Figure 3a shows

the CTR matrix W constructed by speckle patterns for
CR= 1. In the absence of aberration (Po= I), the matrix
W � PoOIPy

o is almost diagonal because it is reduced to
OI. In the presence of aberration and scattering, the signal
in the diagonal spreads out to the off-diagonal elements.
The matrix ~W in spatial-frequency domain and the
identified correction phase ϕcðkoÞ by the CTR-CLASS
algorithm are shown in Fig. 3b, c, respectively. The cor-
rected CTR matrix W c ¼ Py

cWPc is shown in Fig. 3d. The
intensity images before and after the aberration correction
were reconstructed from ~W and ~W c, respectively. The
uncorrected image shown in Fig. 3e is blurry and hardly
recognizable, while object structures are sharply resolved
in the corrected image in Fig. 3f. Both the imaging reso-
lution and the signal-to-background ratio (SBR) were
significantly improved compared to those in the uncor-
rected image. We quantified the degree of aberration
correction by measuring the normalized intensity profiles
of PSFs before and after the aberration correction (Fig.
3g–i). The Strehl ratio, defined by the peak intensity of the
PSF, is a measure of AO performance. The Strehl ratio αo
before aberration correction is given by αo ¼ jPoð0Þj2.
Likewise, the Strehl ratio αc after correction is given by
αc ¼ jPresð0Þj2, where Pres(r) is the residual PSF after the
correction (Pres ¼ Py

cPo). The enhancement in the Strehl
ratio, (αc/αo) measured from the line profiles of the PSFs
was at least 20. The measured full-width at half-maximum
(FWHM) of the aberration-corrected PSF was about
450 nm, which is the diffraction-limit spatial resolution of
the system.

Analysis of image SNR
We evaluated the performance of image recovery

depending on CR to determine the minimum achievable
CR. Reconstructed images and aberration phase maps for
various CR are shown in Fig. 4a. The first row shows the
reconstructed intensity images normalized byM for CR=
0.5, 0.1, 0.02, and 0.017, and the second row shows the
corresponding aberration phase maps. The identified
aberration maps were almost identical all the way into the
high spatial frequency range, although CR was sig-
nificantly reduced. Diffraction-limited high-resolution
images could be successfully restored for CR ≥ 0.02 (M ≥
155). Considering the camera frame rate of 12,500 Hz, it
took only 12.4 ms to record the CTR matrix W for CR=
0.02, setting the highest achievable aberration-correction
image frame rate to 80 Hz for a FOV of 40 × 40 µm2 (88 ×
88 pixels). If the CR was further reduced to less than 0.02,
the image reconstruction failed to find the correct aber-
ration map and object image. The line profiles along the
white dotted lines on the reconstructed images in Fig. 4a
are compared in Fig. 4b to quantify the image quality.
Interestingly, neither the image contrast nor the spatial
resolution of the reconstructed image was diminished by
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the reduction of CR, so far as the image reconstruction
was successful. This means that even the severe decrease
in CR does not hamper the performance of aberration
correction. We compared the residual root-mean-square
(RMS) wavefront errors of the identified wavefront maps
relative to the aberration map obtained from the full
reflection matrix (blue dots in Fig. 4c). The residual RMS
wavefront errors remained nearly constant regardless of
CR. This indicates that aberrations were properly cor-
rected even with the small M. The pupil phase retardation

ϕðnÞ
c ðkoÞ is estimated from the inner product of the

angular spectrum image for the illumination angle of ko,
~W ½ko þ Δk; ko� and the angular synthesized image
~OIðΔkÞ in Eq. (6), where the summation is taken over total
N spectral frequencies, Δk. Thus, the standard error of the
estimated pupil phase scales with 1=

ffiffiffiffi
N

p
. Essentially, the

performance of aberration correction is determined by N,
the number of sampled spectral frequencies or equiva-
lently the image size. Therefore, as long as N is sufficiently
large, the pupil phase retardation can be identified with
high fidelity even for a small number of measurements,M.

An important figure of merit in imaging is the signal-to-
noise ratio (SNR), which is defined by the ratio of the mean

intensity of the target image and the standard deviation of
random background noise. To estimate the image SNR, we
consider the aberration-corrected CTR matrix W c ¼
Py
cWPc ¼ Py

cPoOIPy
oPc þ Py

cWmsPc þ Py
cW σPc. Note that

the incident speckle field is normalized as

hPM
j¼1jSðri; jÞj2iri ¼ 1, which means the average intensity of

speckle illumination fields at each pixel ri is 1/M. For
intuitive understanding, let us consider sending speckle
illumination fields whose average intensity per pixel is 1.
We define the signal sc as the intensity of the target
reconstructed after the correction, which corresponds to
the main diagonal of the first term Py

cPoOIPy
oPc. Therefore,

sc is given by sc ¼ MαcOIðrÞ. There are mainly two kinds of
noise sources: (1) measurement noise Wms and (2) sparse
sampling-induced noise Wσ. First, the measurement noise
includes multiple scattering noise, photon shot noise, and
dark count noise of a camera sensor. In the case of imaging
through a scattering medium, the measurement noise is
dominated by multiple scattering noise, which is much
larger than photon shot noise and dark count noise. Due to
the random nature of noise, the standard deviation of the
measurement noise, σms remains almost unchanged after
aberration correction and is proportional to the square root
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of M: σms ¼
ffiffiffiffiffi
M

p
m. Here m denotes the measurement

noise in a single wide-field image, which is mainly given by
the average intensity of multiple scattering noise. Second, as
we discussed earlier, the sparse sampling-induced noise is
inherently caused by the overlaps among speckle illumina-
tion patterns and is given by W σ ¼ PoOσOyPy

o. The stan-
dard deviation of the sparse sampling-induced noise, σs also
scales proportionally with the square root of M: σs ¼ffiffiffiffiffi
M

p hOIðrÞir, where hOIðrÞir is the average reflectance of
the target. In fact, the σs is analogous to the measurement
noise, except that it is proportional to the target’s average
reflectance. Then, the SNRc can be estimated to be SNRc ¼
sc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ms þ σ2

s

p
.

In the strong multiple scattering regime (OIðrÞ 	 m),
the SNRc of the reconstructed image from the CTR
matrix is approximated as SNRc � sc=σms ¼ffiffiffiffiffi
M

p ðαc=αoÞSNR1, where SNR1 ¼ αoOIðrÞ=m is the SNR

of a single wide-field image obtained without correction.
In the weak scattering regime of SNR1≫ 1, the SNRc is
mainly determined by the sparse sampling-induced noise
and given by SNRc � sc=σs ¼

ffiffiffiffiffi
M

p
αc(OIðrÞ=hOIðrÞir). In

this proof-of-concept experiment, the plastic aberrating
layer caused strong aberrations, but not much the mul-
tiple scattering noise. The Siemens star target used in this
demonstration consists of binary patterns with nearly
100% reflectivity (OIðrÞ ¼ 1) and a fill factor value of
~50% (hOIðrÞir ¼ 1=2), giving the ratio OIðrÞ=hOIðrÞir �
2. In this specific case of a binary target with 50% fill
factor, the SNRc is expressed as SNR ¼ 2

ffiffiffiffiffi
M

p
αc. In terms

of compression ratio, it is expressed as SNR ¼
2

ffiffiffiffi
N

p
αc

ffiffiffiffiffiffiffi
CR

p
. We plotted the SNR as a function of CR in

Fig. 4c (red dots) and observed that the SNR fits well withffiffiffiffiffiffiffi
CR

p
. The ratio between the diagonal and off-diagonal

elements of Wc is the signal to background noise ratio,
which in turn is equal to the SNR of the reconstructed
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image. We found that ratios between the diagonal to off-
diagonal elements of both SS† and Wc also fit well withffiffiffiffiffi
M

p
as shown in Fig. 4d, confirming the validity of our

analysis. We found that this ratio fits well with
ffiffiffiffiffi
M

p
,

confirming the validity of our SNR analysis.
Image reconstruction was successful up to a CR value of

0.02 (M ≥ 155), but it was shown to fail with a further
decrease of CR. As explained above, the reduction in CR
introduces random noise. Below a certain threshold CR
value, the noise level becomes too high for the algorithm
to retrieve the pupil phase map. It is difficult to generalize
the minimum achievable CR value because it depends on
various factors such as the SNR1 of the uncorrected
image, the distribution of the target spectrum, and the
complexity of the aberration. Therefore, appropriate
choice of CR value is necessary depending on the sample
for an optimal image acquisition speed and quality.

Volumetric aberration-correction imaging of a mouse
brain
With the CTR-CLASS microscope, we demonstrated the

high-throughput aberration-corrected volumetric imaging of
myelinated axons in an ex vivo mouse brain. In this
demonstration, the pulsed laser operated at a center wave-
length of 848 nm with a coherence length of 8 µm. Typically,
a set of E-field images constituting a reflection matrix are
recorded for each fixed depth to maintain the input and
output planes throughout the measurements. This depth-
wise matrix recording slows down the volumetric imaging.
Here, we employed continuous depth scanning to speed up
the volume coverage. Since the output planes are con-
tinuously varying, we added numerical propagation steps to
synchronize the output planes prior to the application of
CTR-CLASS algorithm. The synchronization of the input
planes is not necessary as there is no need to know the used
input channels. To experimentally implement this concept, a
whole mouse brain was mounted on a motorized stage and
continuously scanned along the z-axis at a constant speed of
35 µm/s while dynamically varying speckle patterns illumi-
nated the specimen (Fig. 5a). The E-field images of the
backscattered waves were recorded by the high-speed
camera at a frame rate of 5000Hz. Therefore, there was
7 nm depth difference between the neighboring frames. The
camera exposure time (50 µs) and the angular velocity of the
rotating diffuser (210 degree/s) were carefully selected to
ensure that the spatial correlation of the speckle patterns
between the consecutive frames was less than 0.1 (See
Supplementary Information Note 2). For the total image
acquisition time of 3.58 s, we obtained a series of 17,891
E-field images with a frame size of 128 × 128 µm2 (300 ×
300 pixels), spanning a depth range of 125 µm from the
surface of the brain. The angular spectra of the obtained
E-field images are filtered by applying a binary pupil mask
with NA= 0.94. Then, we finally obtained E-field images

with a size of 128 × 128 µm2 (284 × 284 pixels) and
diffraction-limited resolution of 0.45 nm.
To reconstruct a 3D volume image, we first prepared

depth-corrected E-field images at 125 depths spaced 1 µm
apart. To retrieve an aberration-corrected image at each
given depth z, E-field images taken within a range of z ±
4 µm numbering 1147 were numerically propagated to the
depth z by adding appropriate quadratic spectral phase
factors in their angular spectra. To deal with position-
dependent aberrations, the depth-corrected E-field images
were divided into 11 × 11 subregions, and the CTR matrix
for each subregion was separately constructed using these
images. Finally, we retrieved aberration-corrected 2D
images by applying the CLASS algorithm to the CTR
matrices at individual subregions in all depth z. The
reconstructed 3D volume image over 128 × 128 × 125 µm3

(568 × 568 × 125 voxels) is shown in Fig. 5b (See Supple-
mentary Video 1). Note that the depth-dependent defocus
due to refractive index mismatch between immersion
water and the tissue causes the separation of the objective
focus and coherence volume resulting in blurred ima-
ges28. We could find and compensate the depth-
dependent defocus by numerically propagating the
E-field images such that the total intensity of recon-
structed images without aberration correction was max-
imized. The depth-dependent defocus was about 3 µm at
z= 100 µm, which was less than the coherence length
(8 µm) of light source. Representative section images at
various depths are shown in Fig. 5c. The left-hand column
shows maximum intensity projection (MIP) of the
reconstructed images without aberration correction,
whereas the middle column shows corresponding MIP
images after aberration correction. The right-hand col-
umn shows identified output pupil phase maps for 11 ×
11 subregions. There were no significant aberrations at
z= 15 µm except for spherical aberration. Up to a depth
of 50 µm, the aberration-corrected images were almost
identical to those without correction. As the imaging
depth was increased, the aberration maps became more
complex, and myelinated fibers in the uncorrected images
became blurred due to the inhomogeneity within the
tissue. Specifically, there was a blood vessel with a dia-
meter of ~30 µm located close to the surface of the brain.
The white dashed curves in the uncorrected image at z=
15 µm in Fig. 5c indicate wall boundaries of the blood
vessel. We observed that the blood vessel induced pro-
nounced aberrations such that the aberration maps in
areas under the vessel were more complex than those in
other areas. In addition, correlation between aberration
maps of neighboring subregions decreased rapidly, sug-
gesting that the isoplanatic patch size was reduced with
depth. At the depth of 115 µm, myelinated axons were
almost invisible without aberration correction. Intensity
line profiles along the white dotted lines in the images at
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z= 115 µm are shown in Fig. 5d. Comparing the line
profiles, we observed that the CTR-CLASS can recover a
nearly diffraction-limit resolution of ~0.45 µm (the
minimum thickness of myelinated fiber in FWHM) and
high-contrast images of myelinated fibers (up to ~7-fold
increase in signal-to-background ratio). The axial reso-
lution measured from cross-sections of myelin fibers
along z-axis was ~2 µm.

Discussion
The reflection matrix containing full optical

input–output response of a scattering medium has offered
robust image reconstruction in comparison with con-
ventional adaptive optics approaches relying on partial
information. In particular, it enables the correction of
extremely complex aberrations in stringent conditions
where there are strong multiple scattering noise and no
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guide stars available. As a trade-off, the matrix recording
is too time-consuming to perform real-time imaging.
Throughout our study, we demonstrated that the use of a
time-reversal matrix, instead of the reflection matrix, can
be a solution for the high-throughput volumetric imaging
equipped with all the benefits of the reflection matrix
approaches. We proved that the time-reversal matrix
approach can maintain the fidelity of aberration correc-
tion and image reconstruction using as small as 2% of the
full basis sampling. Due to nearly 100-fold reduction of
the matrix recording time, we could achieve aberration-
correction imaging for a 2D FOV of 40 × 40 µm2 at a
frame rate of 80 Hz. Furthermore, we realized the volu-
metric imaging of a mouse brain over a volume of 128 ×
128 × 125 µm3 in 3.58 s with a lateral resolution of
0.45 µm and an axial resolution of 2 µm throughout all the
voxels including the areas underneath a blood vessel.
The proposed method presents a noteworthy con-

ceptual advance. It is a new discovery that the time-
reversal matrix can be highly compressed in terms of
illumination channel coverage. We found that it is not
even necessary to know what the illumination channels
were. These conceptual findings naturally led to the
advances in practicality. In addition to the reduction of
illumination channel coverage, there is no need to per-
form time-consuming pre-calibration to gain prior
knowledge on illumination field. It is no longer necessary
to concern the phase stability among the E-field images.
This enabled us to use dynamically varying random
speckle patterns for illumination, instead of laser beam
scanning by carefully aligned scanning mirrors, which
greatly simplifies the experimental setup. We also pre-
sented novel volumetric image processing algorithm that
replaces previous depth-wise angular scanning with con-
tinuous depth scanning in conjunction with dynamic
speckle illuminations. We introduced the depth-
correction step where all E-field images taken at differ-
ent depths within the coherence length of the light source
were numerically propagated to the target depth. This
increases the number of images to be used for con-
structing a time-reversal matrix at each target depth,
which effectively increases the volumetric imaging speed.
All these benefits of using the compressed time-reversal

matrix come with a price to pay. A finite overlap between
random illumination channels introduces additive noise in
addition to multiple scattering noise. Therefore, achievable
imaging depth is reduced relative to the full sampling by the
amount of sparse sampling-induced noise. Using orthogonal
illumination channels such as the Hadamard patterns
instead of unknown speckles can minimize the sparse
sampling-induced noise at the expense of hardware simpli-
city. In case when a priori knowledge of the scene is known,
the number of required measurements could be drastically
reduced by introducing a learned sensing approach29,30

using optimized illumination channels. Another drawback is
that the achievable imaging resolution with the CTR-CLASS
algorithm is diffraction limited. This is because, without
knowledge of the illumination channels, the spatial cut-off
frequency is solely determined by that of detection channels.
The above shortcoming can be overcome by introducing a
new image reconstruction algorithm combining the CTR-
CLASS with methods that can reconstruct super-resolution
images without prior knowledge of the illumination pat-
terns, such as blind structured illumination microscopy31

and random illumination microscopy32,33. In this study,
ballistic waves scattered once by an object are used for image
reconstruction, and multiple-scattered waves inside a scat-
tering medium are considered as background noise. How-
ever, multiple-scattered waves do also carry spatial
information of the object. CTR-CLASS algorithm can
potentially be extended to make the deterministic use of
multiple-scattered waves in image reconstruction for further
reducing measurement time or lowering the achievable
spatial resolution well below the diffraction limit34.
High-throughput volumetric imaging equipped with

aberration correction capability for every depth section
allows detailed mapping of microstructures deep within
tissues. This will lead to accurate quantification of structural
and molecular information in various biological systems.
Therefore, the presented method will find its use for a wide
range of studies in life science and medicine including the
myelin-associated physiology in neuroscience, retinal
pathology in ophthalmology and endoscopic disease diag-
nosis in internal organs. Due to the high-speed measure-
ment of tissue aberration, it can also serve as wavefront
sensing AO to provide aberration information for the
hardware aberration correction. This will help to improve
the imaging depth of fluorescence and nonlinear imaging
modalities such as multi-photon microscopy, super-
resolution microscopy, and coherent Raman microscopy.

Materials and methods
Acquisition time for the CTR-matrix
As long as the laser power is enough, the major factor

determining the acquisition of the CTR-matrix is the
frame rate of the camera, fcam. In this study, a laser power
of about 40mW was illuminated on mouse brain sample
for volumetric imaging, which was sufficient to obtain
high SNR camera images with an exposure time of 50 µs.
The acquisition time set by the frame rate of the camera is
given by T=M/fcam. The size of the camera pixel corre-
sponds to 0.128 µm in sample space. In the proof-of-
concept experiment with a phantom aberrating layer, a
series of camera images (1280 × 400 pixels) were acquired
with a frame rate of 12,500 Hz and cropped to 312 × 312
pixels, which corresponds to a FOV of 40 × 40 µm2 in
sample space. For volumetric imaging of the mouse brain,
a series of camera images (1280 × 1000 pixels) were
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acquired with a frame rate of 5000 Hz, which corresponds
to a FOV of 164 × 128 µm2 in sample space.

Animal preparation
Adult (over 8weeks) C57BL/6 mice were deeply anesthe-

tized with an intraperitoneal injection of ketamine/xylazine
(100/10mg/kg) and decapitated. After the scalp and skull
were removed, the brain was fixed with 4% paraformaldehyde
at 4 °C overnight and washed with phosphate-buffered saline
(PBS) three times. For imaging, the fixed brain was stuck to a
plastic dish and immersed in PBS. All animal experiments
were approved by the Korea University Institutional Animal
Care & Use Committee (KUIACUC-2019-0024).
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