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Abstract
The healthcare industry is in dire need of rapid microbial identification techniques for treating microbial infections.
Microbial infections are a major healthcare issue worldwide, as these widespread diseases often develop into deadly
symptoms. While studies have shown that an early appropriate antibiotic treatment significantly reduces the mortality
of an infection, this effective treatment is difficult to practice. The main obstacle to early appropriate antibiotic
treatments is the long turnaround time of the routine microbial identification, which includes time-consuming sample
growth. Here, we propose a microscopy-based framework that identifies the pathogen from single to few cells. Our
framework obtains and exploits the morphology of the limited sample by incorporating three-dimensional
quantitative phase imaging and an artificial neural network. We demonstrate the identification of 19 bacterial species
that cause bloodstream infections, achieving an accuracy of 82.5% from an individual bacterial cell or cluster. This
performance, comparable to that of the gold standard mass spectroscopy under a sufficient amount of sample,
underpins the effectiveness of our framework in clinical applications. Furthermore, our accuracy increases with
multiple measurements, reaching 99.9% with seven different measurements of cells or clusters. We believe that our
framework can serve as a beneficial advisory tool for clinicians during the initial treatment of infections.

Introduction
Infections by microorganisms are a global healthcare

issue that is associated with a large number of deaths and
a significant amount of expenses. Notably, bacteria
account for approximately half of the reported cases of
infections1, as well as a large portion of the entire
healthcare spending2. Hence, effectively treating this

widespread and possibly deadly illness has been a long-
sought goal in the clinical society.
Multiple studies indicate that an antibiotic treatment

appropriate to the pathogen, during the early hours of an
infection, can significantly reduce the mortality3,4. In
clinical settings, however, early antibiotic treatments are
commonly empirical and imperfect, mainly due to the
long turnaround time of routine microbial identifica-
tion5,6, resulting in increased mortality risk7.
The typical turnaround time of the routine microbial

identification is over 24 h8. Conventional approaches
including culture tests are often nonspecific as well as
time-consuming, despite being relatively simple to per-
form9. Molecular diagnostic methods screen for genetic
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materials in a shorter duration, yet they are not scalable
for arbitrary pathogens8. In recent days, matrix-assisted
laser desorption/ionization time-of-flight mass spectro-
scopy (MALDI-TOF MS) serve as the gold standard of
microbial identification. MALDI-TOF MS detects the
molecular markers of bacteria8,9 but only when the sam-
ple quantity is detectable, which is commonly satisfied
after 24 h of culture.
Image-based methods have also been implemented to

promptly detect or identify bacteria from a low quantity.
Fluorescence microscopy has often been utilized in
detecting and counting individual bacteria10. More recently,
fluorescence in situ hybridization has allowed screening for
certain types of bacteria, by specifically labeling genomic
patterns11,12. However, fluorescence imaging entails
destructive chemical alteration of the sample, as well as
requiring optimally manufactured probes for high specifi-
city. Label-free alternatives including autofluorescence
microscopy have been adopted for bacterial detection to
circumvent the drawbacks of labeling13,14, but at a specifi-
city restricted to the variation in the intrinsic fluorophores.
In this study, we tackle the challenge of rapid microbial

identification by exploiting three-dimensional (3D)
quantitative phase imaging (QPI) and image classification
based on an artificial neural network (ANN). 3D QPI is a
label-free imaging technique that measures the 3D
refractive index (RI) tomogram of a live cell and has been
actively employed in quantitative cell profiling15–19.
Our unprecedented utilization of 3D QPI and ANN for

bacterial identification achieves 82.5% accuracy in deter-
mining the species from a single bacterial cell or cluster.
The accuracy increases with 3D QPI measurements of
multiple specimens, reaching 99.9% with seven different
measurements. We note that this accuracy is obtained
between 19 major species of bacteria that account for
bloodstream infections (BSIs)20–22, further underlining
the potential in clinical applications. This exceptional
performance from a minute quantity of bacteria suggests
that the proposed method can guide the early antibiotic
treatment prior to the time-consuming culture process.

Results
The workflow of the 3D QPI in the identification fra-

mework is illustrated in Fig. 1. Our 3D QPI system, which
is commercialized and dubbed holotomography (HT-2H,
Tomocube Inc., Daejeon, Republic of Korea), utilizes
Mach-Zehnder laser interferometry equipped with a
digital micromirror device (DMD) as shown in Fig. 1a.
The DMD scans the illumination angle and the 3D
refractive index (RI) tomogram is reconstructed from the
sinogram of 2D QPI measurements under the principle of
optical diffraction tomography (Fig. 1b, c)23.
The 3D RI tomogram is then classified into one of the

19 species, through a trained ANN. The training process

involves gradient-based optimization of the network
parameters, using the training dataset whose species are
known. Our implementation of ANN mainly consists of
3D convolution operations for effective recognition of the
3D structure in 3D RI tomograms (Fig. 2). More specifi-
cally, the dense connections between the convolution
operations induce the ANN to revisit the feature maps of
the shallower layers even at the deep layers24.
The key function of this identification framework is to

identify the species of the bacteria from single to few cells.
It can provide preliminary results during the early stages
of infections before the diagnostic evidence from gold
standard methods is available dozens of hours later.
Incorporation of the proposed framework into the gold
standard routine is practicable since it operates without
destroying nor chemically modifying the bacteria.

3D QPI measurement of bacteria
A database of 3D RI tomograms was established from

the isolates of 19 BSI-related bacterial species (Fig. 3). The
database comprised a total of 10,556 3D RI tomograms,
where each tomogram contained a single bacterium or
several adhering bacteria. 3D QPI effectively conveyed the
3D structure of the bacteria, and some characteristic
morphologies were visible in the 3D RI tomograms, e.g.,
cellular chains of streptococci. The species and the cor-
responding numbers of tomograms are as follows: Acine-
tobacter baumannii (664), Bacillus subtilis (515),
Enterobacter cloacae (541), Enterococcus faecalis (526),
Escherichia coli (600), Haemophilus influenzae (511),
Klebsiella pneumoniae (525), Listeria monocytogenes (632),
Micrococcus luteus (247), Proteus mirabilis (517), Pseu-
domonas aeruginosa (596), Serratia marcescens (519),
Staphylococcus aureus (558), Staphylococcus epidermidis
(559), Stenotrophomonas maltophilia (549), Streptococcus
agalactiae (537), Streptococcus anginosus (644), Strepto-
coccus pneumoniae (566), and Streptococcus pyogenes
(750). The majority tomograms of bacilli, i.e., rod-shaped
bacteria, contained single bacterial cells. On the other
hand, most of cocci and coccobacilli, i.e., spherical and
ovoid bacteria, respectively, were in the form of clusters of
several adhering bacteria. For instance, the specimens
belonging to the genus Streptococcus are mostly found as
chains of multiple adhering bacteria; a feature that the
genus is characterized with. 3D QPI also facilitates the
calculation of biophysical properties of each specimen (see
section 1 of Supplementary Information), owing to the
quantitative contrast related to the sample composition.

Identification of pathogens using a single tomogram
With a single 3D RI tomogram, the proposed framework

achieved a blind test accuracy of 82.5% in species identi-
fication. This single-measurement accuracy is comparable
to the rate of correct species identification obtained using
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MALDI-TOF MS with a sufficient number of bacteria25.
The high performance was realized despite the limited
amount of samples, by statistically utilizing the detailed 3D
morphologies of the bacteria. Namely, each neuron in the
ANN was distinctly activated based on the morphology of
the input tomogram, as the result of the training process.
This led the ANN output to be related to the conditional
probability of the species given the input tomogram and
the training data distribution (Fig. 4a).
We note that this accurate single-measurement identi-

fication is the product of both 3D QPI and ANN, which
rigorously measure and recognize the morphologies,

respectively. To verify this, variant frameworks were
implemented by altering the imaging strategy and the
algorithm (see sections 2–4 of Supplementary Informa-
tion). The performance of species identification dramati-
cally decreased when 3D QPI was replaced with 2D QPI or
2D QPI sinogram, as well as when the ANN was replaced
with a conventional machine learning algorithm26.
The omission of the correct species could be further

prevented at the expense of specificity. Namely, the cor-
rect species can be indicated at a higher rate by taking
more than one species as the possible pathogen; we refer
to this rate that the correct species is included in the N
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most likely species as the top-N accuracy. The top-2
accuracy and top-3 accuracy of the proposed framework
were 94.3% and 97.1%, respectively (Fig. 4b). In clinic,
although this trade-off itself is not unexpected, lowering
risk with such strategies would be favorably considered
whereas the loss of specificity can be buffered based on
other indications, including characteristic symptoms and
environmental evidence. Also, the sharp mitigation of the
omission rate also underlines that the ANN robustly
extracted features related to the correct species, even in
the misidentified data. This robust feature extraction
ability was also indicated by comparing the contrast of
ANN outputs for the correctly and incorrectly identified
data (see section 5 of Supplementary Information).

Error in identification using a single tomogram
To characterize the distribution of errors, the blind

test result for the entire test dataset was investigated
using the confusion matrix (Fig. 5a). The most frequent
errors included the misidentification of A. baumannii as
S. pneumoniae, K. pneumoniae as S. pneumoniae, S.
agalactiae as S. aureus, and L. monocytogenes as B.
subtilis. Notably, the misidentification of thick bacilli
and coccobacilli as S. pneumoniae contributed to a large
portion of the error. This is in consistency with the
relatively elongated morphology of Streptococcus pneu-
moniae compared to other cocci27,28. The overall iden-
tification performance varied among different species of
bacteria. Among the 19 species, M. luteus was identified
with both the highest sensitivity (95.0%) and specificity
(100%). K. pneumoniae was the least sensitively identi-
fied species (62.5%), whereas S. peumoniae was the least
specifically identified species (97.8%). The distribution of
sensitivity and specificity in identifying each species are

presented in more detail in section 6 of Supplementary
Information.
The distribution of the second and third most likely

species provided further insights regarding interspecific
similarities (Fig. 5b). These plots visualize how similar the
test data of different species are, concerning the features
extracted by the ANN. Notably, a group of multiple
species with morphological resemblance can be outlined
as a cluster. The species of bacilli form a large cluster
while the rest of the 19 species form another large cluster.
In addition, E. cloacae, E. coli, and K. pneumoniae,
namely, the species belonging to the family Enter-
obacteriaceae, showed a distinct clustering amidst other
species of bacilli.
Apart from species identification, the proposed frame-

work accurately performed common categorizations of
bacteria from a single 3D QPI measurement. Accuracies
of 94.6% and 94.2% were achieved in distinguishing
between Gram-negative and positive bacteria, and
between aerobic and facultatively anaerobic bacteria,
respectively (Fig. 5c, d). This suggests the capability to
distinguish bacteria in different standards, after training
the ANN accordingly while maintaining the workflow.

Identification of pathogens using multiple tomograms
While the single-measurement performance of the

proposed framework was comparable to that of the gold
standard methods, securing more samples further increa-
ses the identification accuracy. The identification based on
multiple measurements of 3D RI tomograms was realized
by taking the average of the ANN outputs resulting from
each of the individual 3D RI tomograms (Fig. 6a). The
accuracy of species identification rose from 84.5% to
95.2%, 98.4%, and 99.9%, when reflecting two, three, and
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seven tomograms, respectively (left column, Fig. 6b). The
error rate dropped more sharply than a simple reciprocal
function of the sample quantity. This dramatic gain in the
accuracy was attributable to the robust feature-extracting
ability of the ANN. The correct species were strongly
indicated in the ANN output even in the misidentified
cases, as underlined in the abovementioned trade-off
between the sensitivity and specificity; this can be seen

from example data and outputs displayed in Fig. 6a where
the multi-measurement identification is accurate even
when the majority of the individual tomograms are
misclassified.
The multi-measurement strategy was also applied to the

categorization between Gram-positive and negative bac-
teria, and between aerobic and facultatively anaerobic
bacteria (center and right columns, Fig. 6b). Although a
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larger sample quantity led to higher performances in these
categorizations as well, the gain in accuracy was not as
significant as in the species identification. The two stan-
dards for categorization are not closely related to the
optically accessible morphologies, and this might be why
these categorizations did not benefit as profoundly from

the multi-measurement strategy. Furthermore, it is indi-
cated that the species-sensitive training drives the ANN to
extract more diverse features as the multi-measurement
identification of species interpreted into gram-stainability
or respiratory metabolism provides higher accuracy than
the direct categorization.

82
.5

95
.2

98
.4 99

.4

99
.8

99
.9

99
.8

Average ANN output

B. subtilis
L. monocytogenes

E. cloacae
E. coli

K. pneumoniae
P. mirabilis

P. aeruginosa
S. marcescens
S. maltophilia
A. baumannii
H. influenzae

M. luteus
E. faecalis

S. agalactiae
S. anginosus

S. pneumoniae
S. pyogenes

S. aureus
S. epidermidis

–20 –10 0 10 20

1st

3rd

2nd

b

Multiple inferencesa

Data 1

Data 2

Data 3

Species

0

80

85

90

95

100

Number of data

Gram-stainability

Number of data

Respiratory metabolism 

Number of data

B
lin

d 
te

st
 a

cc
ur

ac
y 

(%
)

7 71 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7

94
.2

97
.2 98

.6 99
.2

99
.4

99
.7

99
.7

94
.6 97

.1 98
.0

98
.2

98
.4

98
.7

98
.6

Fig. 6 Species identification based on multiple measurements of 3D RI tomograms. a Securing a higher accuracy by taking the average of ANN
outputs resulting from multiple tomograms. The highlighted species indicate the correct species in each ANN output. b Reduction of error in
classifying the species, gram-stainability, and respiratory metabolism. The error reduction is sharper than a simple reciprocal function owing to the
feature-extracting ability of the artificial neural network

Kim et al. Light: Science & Applications          (2022) 11:190 Page 7 of 12



Discussion
We propose a bacterial identification framework that is

sensitive to a few individual bacteria, using 3D QPI and
ANN. The exceptionally high accuracy under a limited
sample quantity is attributable to the remarkable single-cell
profiling ability of 3D QPI and the feature-extracting ability
of ANN. Results prove that the species-related cellular
morphologies captured by 3D QPI are robustly recognized
by the trained ANN, remarkably reducing the sample
quantity required for identification. Recent studies lever-
aged ANNs to extract clinically relevant or biologically
important information from QPI measurements26,29–41.
Despite these encouraging results, the capability of 3D QPI
and ANN has not been assessed in diagnostic microbiology
over a wide variety of species thus far.
We believe that this framework consisting of 3D QPI

and ANN can effectively refine the initial antibiotic
treatment. The accuracy of species identification using
our framework is comparable to that of MALDI-TOF
MS25, even though the quantity of bacteria involved in the
two approaches are single to several cells and over 105

colony-forming units, respectively42. In addition, the risk
of misidentification based on single tomograms can be
strategically suppressed at the cost of specificity. Our
framework also shows high single-measurement perfor-
mance in distinguishing between subgroups of bacteria
such as Gram-positive and negative groups. Furthermore,
it achieves a nearly perfect identification within the
19 species using only seven tomograms of the bacteria,
suggesting that accuracy higher than the single-
measurement baseline is viable depending on the situa-
tion. Finally, we stress that our framework can be
implemented along with the routine microbial identifi-
cation, including MALDI-TOF MS. That is, the non-
invasive property of 3D QPI allows our framework to be
added to the existing identification routine without
exhausting the initially obtained sample.
Future studies on sample processing will propel our

framework towards a more immediate use. In practice, the
enrichment of bacteria will be required for 3D QPI mea-
surement when the ratio of bacteria in the given material is
extremely small. The concentration of bacteria present in a
urine sample is high, and thus the present method can be
readily applicable in diagnosing urinary tract infection. On
the other hand, bacteria may be scarce in blood samples as
well as surrounded by a great number of blood cells. Lysis
centrifugation is the common approach to enrich the
bacteria from a positive blood culture43. However, our
sensitive framework can operate before the time-
consuming blood culture, if high-throughput sample
processing is introduced. A prominent and practical
technique is the selective collection of particles utilizing
advanced fluidic systems44–46, which has successfully
demonstrated enrichment of bacteria in laboratory47,48.

In addition, validations on a larger diversity of patho-
gens will expand the scope of application for our method.
We expect the proposed framework to be applicable to
pathogens causing other classes of infections, such as
urinary tract infections and lower respiratory infections,
which are partially covered in this study. Moreover,
achieving to screen antibiotics-resistant strains will be a
crucial step in introducing this framework as a diagnostic
routine. It is yet to be assessed whether this framework
can distinguish resistant strains, while the need to screen
out resistant strains has been highlighted over time6,49,50.
From a practical point of view, studying and improving
ANN’s capability to tolerate the physiological difference is
also required to further generalize our method. Although
we cultured each species with a fixed protocol and a single
type of growth media in this study, each species of bac-
teria can be cultured or found in various environments.
An extreme case would be applying our framework on
dead bacterial cells; while our database was collected with
live and active bacteria, dead bacterial cells in clinical
samples may serve as diagnostic evidence.
Further reducing the cost will encourage extensive

studies based on our framework. Even though our fra-
mework does not entail an expense as large as MALDI-
TOF MS, common hardware implementations of 3D QPI
still involve advanced components including a coherent
light source, a beam steering device, two microscopic
objective lenses, and an imaging sensor with a high space-
bandwidth product. Recent studies including Fourier
ptychographic tomography51 or reference-free intensity-
based tomography52, have achieved 3D QPI using rela-
tively low-cost and simple optical systems. Despite the
differences in the reconstruction process and imaging
resolution, these techniques provide sufficient imaging
quality for our framework.
The present bacterial species identification framework

based on 3D QPI and ANN can also be combined with
recently developed techniques of artificial intelligence for
image processing, leading to various synergistic studies. For
example, an automatic segmentation algorithm34 may
enable the species identification from densely distributed
bacterial samples, such as biofilms53 or colonies54. Infer-
ence of molecular- or chemical-specific information31–33,55

can also be exploited for correlative label-free analysis at
single-cell or subcellular levels.
Lastly, we expect that the proposed framework will

benefit from recent and future advances elucidating the
working principle of ANNs. Investigations on ANN archi-
tectures have improved the performance of ANNs and
expanded the applicability of ANNs over recent years,
along with the rapid growth in the hardware capacity. On
the other hand, techniques including Bayesian deep learn-
ing56 have contributed to enhancing the interpretability, as
well as offering a guideline for effective optimization.
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Fostering interpretability will render the proposed method
more approachable for the medical industry.

Materials and methods
Preparation of bacteria
The bacterial samples were cultured in vitro from fro-

zen glycerol stocks. The frozen stock of each species was
stored at −80 °C and thawed at room temperature (25 °C)
before use. After thawing, the stock was inoculated into a
liquid medium and stabilized for over an hour in a
shaking incubator at 35 °C. The stabilized bacteria were
seeded in an agar plate containing a suitable medium. The
agar plates were incubated at 35 °C for 12−24 h until
colony formation was visible. A liquid subculture seeded
from the agar plate was incubated at 35 °C for over 8 h in a
shaking incubator. The subculture solution was diluted
with a liquid medium to a concentration suitable for
imaging, then sandwiched between cover glasses. Each
species was inoculated in one of the following media:
nutrient agar, brain heart infusion agar, tryptic soy agar,
and chocolate agar. The glycerol stock or subculture was
grown in nutrient broth, brain heart infusion broth,
tryptic soy broth, or Giolitti-Cantoni broth.
The specimens were measured alive with no fixation nor

any other chemical process; the sample can be immedi-
ately measured in the absence of a trained biologist and
this is one of the main advantages of this method. A
sample slide was prepared by simply sandwiching the
solution of bacteria between two cover glasses, after
diluting into a concentration suitable for imaging. Before
optical measurement, we reduced the turbulent motion in
the sample-loaded slides by placing them still on the
sample stage for 5–10 min. All of the measurement was
carried out within the time window of 8−24 h after
inoculating the subculture in order to secure a database of
active and live bacteria.

3D QPI measurement
We measured each 3D RI tomogram utilizing the 3D

QPI as briefly introduced in the Results section. The
DMD located on the sample illumination path can alter
the illumination angle, by serving as a controllable binary
grating57,58. Using the DMD, a sinogram of 2D QPI
measurements was obtained for each sample by scanning
the illumination angle (Fig. 1b). The sinogram covered a
total of 49 illumination angles, including a normal angle
and 48 oblique angles equally spaced in the azimuthal
direction. The 3D RI tomogram was reconstructed from
the sinogram under the principle of optical diffraction
tomography, which inversely solves the Helmholtz equa-
tion23,59, then went through an iterative regularization to
mitigate the missing cone problem60 (Fig. 1c). The
detailed procedure for the field retrieval and tomographic
reconstruction can be found elsewhere59,61.

A continuous-wave laser with a wavelength of 532 nm
served as the light source. Two water-immersion objective
lenses with 1.2 numerical aperture magnified and de-
magnified the light, whereas the polar angle of the oblique
illumination was equivalent to a numerical aperture of 0.9.
The theoretical resolution of the tomograms was 110 nm
in the horizontal direction and 330 nm in the vertical
direction, considering the spatial frequency range of the
imaging system62. The measurement of an entire sino-
gram required ~0.4 s, which was mainly limited by the
camera frame rate.
Each tomogram was cropped into a field of view of

12.8 × 12.8 × 12.8 μm, and sampled at a voxel resolution of
100 × 100 × 200 nm. As a result, each tomogram con-
tained a single bacterium or several bacteria adhering to
each other, which considerably depended on the species-
related physiology. For instance, specimens of the genus
Streptococcus were commonly found in chains of multiple
bacteria due to their nature.
A manual inspection and curation of tomograms

ensured the quality of the database. The quality criteria
reflected in this process included the noise level, motion
artifact, and location of the specimens. Noisy tomograms,
which mostly originated from objects in the oblique illu-
mination path, were removed. Tomograms displaying
motion artifacts were also excluded, as turbulent motion
faster than the image acquisition rate causes distinctly
blurred boundaries. The tomograms were shifted and
cropped to place at least one bacterial cell in the central
region of the tomogram.

ANN and optimization
The structure of the ANN in our framework was

inspired by a design that outperformed most of the other
designs in the benchmark tasks of 2D image analysis24.
This structure ensures that the feature maps in hidden
layers of various depths and scales are utilized for image
recognition, by concatenations of the feature maps (Fig.
2a). The elementary units composing our ANN are dense
blocks. Each dense block repeats two 3D convolution
operations followed by a concatenation (Fig. 2b). The
feature maps are re-scaled between two adjacent dense
blocks through a transition unit (Fig. 2c). Our ANN
included four dense blocks containing 12, 24, 64, and 64
convolution operations, respectively. The number of fea-
ture maps after the initial convolution is set to 64, while
the number of the feature maps increases by 32 through
every convolution operation.
The ANN was optimized to classify the 3D RI tomo-

grams, by minimization of the cross-entropy loss between
the ground truth and the prediction. For each species, 40
tomograms were randomly chosen as the blind test dataset
and another 40 tomograms were randomly chosen as the
validation dataset. The remaining tomograms composed
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the training dataset, which was directly reflected in the loss
minimization process. The loss that occurred in the
training dataset was reduced using the stochastic gradient
descent algorithm, at a mini-batch size of 48. The step size
of the stochastic gradient descent algorithm was scheduled
according to the cosine annealing method at an initial step
size of 0.001 and a period of 64 epochs63. During training,
data augmentation took place for each tomogram, once
every epoch, to prevent overfitting of the trained model.
The augmentation included random processes of a hor-
izontal crop, horizontal rotation, and Gaussian noise.
During the blind test, each input tomogram was hor-
izontally cropped around the center to provide an identical
dimension. These processes resulted in an input tomo-
gram with a field of view of 9.6 × 9.6 × 12.8 μm to be fed
into the ANN. The ANN and the optimization were
implemented using PyTorch 1.0.0.
The ANN was trained for ~290 h to obtain the models

involved in our results. Two runs of training the ANN
from scratch were carried out for ~1000 epochs each.
Each training epoch required 504.3 ± 8.3 s in a server
equipped with eight graphics processing units (GPUs) of
GeForce GTX 1080 Ti and a central processing unit of
Xeon E5–2600. The time required to infer a tomogram to
a trained ANN model was 28.9 ± 2.9 ms.
Training the ANN with the identical setting can also run

on a personal desktop computer, although we utilized an
8-GPU server for training at a higher rate. For instance, a
single device of GeForce GTX 1080 Ti is sufficient for
training the ANN under our setting, which requires 11,181
MB of graphics memory. When utilizing only a single
device of GeForce GTX 1080ti in our server, each training
epoch required 516.0 ± 9.6 s. In principle, an ANN of the
identical design can be trained with only 1161MB of
graphics memory, by reducing the mini-batch size to 1.
However, this minimal setting accompanies 3770.5 ± 67.4 s
of duration for a single epoch of training, and altering the
mini-batch size may cause the parameters to follow a dif-
ferent path of optimization. For inference using a trained
ANN model, 945MB of graphics memory are sufficient.
The final classifier for the blind test involved the predic-

tions of multiple best-performing ANN models. The
models with the highest accuracies for the training and
validation datasets were chosen and integrated, to exploit a
wider variety of features and prevent model-by-model var-
iance. In search of the optimal strategy for choosing and
integrating multiple models, four relevant parameters were
explored. These parameters included the number of inte-
grated models, weighting between the accuracies for the
training and validation dataset, whether or not to normalize
the output, and the method to integrate the predictions by
the chosen models. Four options were considered as the
method to integrate the predictions: taking the average,
taking the exponential average, voting, and taking the

maximum projection of the output. The combination of the
parameters, which yielded the highest validation accuracy
established the algorithm for the blind test.
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