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Abstract

Endowed with the superior computing speed and energy efficiency, optical neural networks (ONNs) have attracted
ever-growing attention in recent years. Existing optical computing architectures are mainly single-channel due to the
lack of advanced optical connection and interaction operators, solving simple tasks such as hand-written digit
classification, saliency detection, etc. The limited computing capacity and scalability of single-channel ONNs restrict
the optical implementation of advanced machine vision. Herein, we develop Monet: a multichannel optical neural
network architecture for a universal multiple-input multiple-channel optical computing based on a novel projection-
interference-prediction framework where the inter- and intra- channel connections are mapped to optical interference
and diffraction. In our Monet, optical interference patterns are generated by projecting and interfering the
multichannel inputs in a shared domain. These patterns encoding the correspondences together with feature
embeddings are iteratively produced through the projection-interference process to predict the final output optically.
For the first time, Monet validates that multichannel processing properties can be optically implemented with high-
efficiency, enabling real-world intelligent multichannel-processing tasks solved via optical computing, including 3D/
motion detections. Extensive experiments on different scenarios demonstrate the effectiveness of Monet in handling
advanced machine vision tasks with comparative accuracy as the electronic counterparts yet achieving a ten-fold
improvement in computing efficiency. For intelligent computing, the trends of dealing with real-world advanced tasks
are irreversible. Breaking the capacity and scalability limitations of single-channel ONN and further exploring the
multichannel processing potential of wave optics, we anticipate that the proposed technique will accelerate the
development of more powerful optical Al as critical support for modern advanced machine vision.

Introduction e.g, multiview stereo® and video processing'®'!. While

The artificial neural network (ANN) technique has greatly
promoted the broad impact of visual computing solutions™>
for machine vision, intelligent robots, autonomous driving,
smart city etc. With the extraordinary performance in terms
of accuracy and robustness, ANN-based approaches have
successfully resolved all sorts of tasks, from fundamental
visual processing tasks, e.g., hand-written digit classification®
and saliency detection®”, to complex machine vision tasks,
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developing more and more powerful ANN-based approa-
ches seems never ending, a critical question rises, can
existing computing resources support the insatiable com-
puting demand from the ANN? Despite the rapid develop-
ment of neural processing units (NPUs) in recent years'>™"?,
the performance and energy efficiency of conventional
silicon-based computing devices are restricted by the pla-
teauing of Moore’s law'®, leading to the limited scaling of
electronic transistors in silicon computing hardware
platforms.

As an emerging technology for high-performance com-
puting, all-optical and optoelectronic neural networks
(ONNSs) have attracted increasing attention in recent years,
due to their inherent high speed and high energy efficiency
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characteristics'’~?°. Fundamental simple visual processing
tasks such as hand-written digit recognition'’ >**” and sal-
iency detection®®, have been effectively validated using
wave-optics simulations or small-scale optical computing
systems. Meanwhile, some works combine the optical
computing units with a variety of electronic neural networks
to enlarge the scale and flexibility of ONNs, e.g., deep
optics”™?°, amplitude-only Fourier NNs*%, and hybrid
optical-electronic CNN?*, Essentially, these architectures
regard optical processing as part of electronic networks,
resulting in a failure to fully take advantages of optical
computing. Recently, researchers start to multiplex optical
computing units*>*’, achieving a much higher proportion of
optical computing and better computing performance, e.g.,
diffractive processing unit (DPU)® reaches superior com-
puting performance compared to the state-of-the-art elec-
tronic computing platforms in specific neural network
inference.

Despite the aforementioned ONN progresses, many
widely existing complex machine vision tasks such as 3D
detection or video processing, which are thirsty for network
scaling and computing resources, have not been solved
with ONNs'®*3! Due to the lack of advanced optical
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connection and interaction operators, existing ONNs
mainly remain single-channel feedforward architectures,
solving primary single-image processing tasks. However, as
widely verified by ANNs from task-specific multiple-input
neural networks**~>* to general convolutional neural net-
works?*~*°, multichannel and multi-input processing ability
lays the foundation of advanced machine vision. Simply
enlarging the scale (number of neurons) within the single-
channel-based architectures can hardly increase the com-
puting capacity to meet the demand of advanced machine
vision tasks, as “quantitative change does not necessarily
cause qualitative change”. Directly combining optical
computing units with a large proportion of electronic
computing units may deal with complex tasks***’, how-
ever, such straightforward and compromising solution
cannot fully exploit the physical nature of the light, either
failing to maintain high efficiency of the optical computing,
or sacrificing the abundant optical information carried by
the intrinsic properties of light, e.g. phase. Undoubtedly,
developing fundamental multichannel processing methods
for realizing more powerful ONNs remains elusive.
Herein, we report a multichannel optical computing
architecture for advanced machine vision (Fig. 1), in
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Fig. 1 A multichannel optical neural network (Monet) architecture for advanced machine vision tasks. a Network architecture of Monet and
the projection-interference-prediction framework. Multiple observations are projected to a shared domain and encoded into optical fields, processed
by interference units (IUs) for correspondence constructions and diffractive units (DUs) for feature embeddings. A regression module composed of
iteratively connected IUs and DUs is adopted to predict the results for 3D perception or moving object detection. b Schematic and physical
implementation of the IU (two-input). Multiple optical fields encoding multiple images are projected by task-specific function, propagate, and
interfere to generate interference patterns. Different colours (red, green, blue) denote different visual inputs. In the physical implementation, two
spatial light modulators are used to generate and project the optical fields, and a sensor is used to capture the interference pattern. ¢ Schematic of
the DU. A coherent light beam is modulated by SLM-1 to encode the input image, propagates to the SLM-2 for modulation, and propagates to the
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which optical interference and diffraction are utilized to
establish inter- and intra- channel connections, respec-
tively. Considering the physical propagation of coherent
optical fields, constructive and destructive patterns arise
from spatial interference. These patterns, in turn, carry
rich information of inter-channel connections. Mean-
while, wavefront modulations are adopted during the
diffraction of optical field propagation for the intra-
channel connections. On the basis of these connections,
we innovatively develop a projection-interference-
prediction framework with iteratively deployed optical
interference units (IUs) and optical diffractive units (DUs)
to establish Monet: a multichannel optical neural net-
work. In this framework, multichannel inputs are pro-
jected to a shared spatial domain, aligned with a series of
predefined overlapping strategies and interfered to form
patterns containing rich correspondence encodings in
IUs. Subsequent DUs perform optical diffraction com-
puting for feature embeddings from these interference
patterns. As novel optical connection and interaction
operators, the collaborated IUs and DUs produce patterns
encoding the correspondences together with feature
embeddings layer by layer through the projection-
interference process to predict the final output. It is
worth noting that unlike existing ONNs trying to inherit
ANN  architectures, the  projection-interference-
prediction framework of Monet is initially designed fol-
lowing the innate characters of light propagation and
interaction, to further explore the multichannel proces-
sing potential of wave optics in optical computing.

In the experiments, for the first time we validate that
multichannel processing properties can be effectively
implemented in intelligent optical computing, enabling
advanced machine vision tasks such as 3D detection
(Fig. 2) and moving objection detection (Fig. 3) can be
accomplished using Monet with excellent performance.
Moreover, we develop the optical prototype system of
Monet using off-the-shelf optical modulation devices.
The physical implementation of Monet’s multichannel
architecture demonstrated its motion detection ability
(Fig. 3e) and 3D detection ability (Fig. 4) in real-world
scenarios. Oriented from the wave properties of light
itself, our Monet gets rid of the common practices in
conventional electronic or optical neural network
architectures, leading to a more natural and practical
way for optical computing to achieve multichannel
processing abilities and thus overcome the insufficient-
capacity problem of previous ONNs in complex
machine visions.

Collectively, the experiments of Monet imply the great
potential of ONN in processing complex visual inputs and
tasks, e.g., given several video sequences captured by
multiple drones, ONNs may intellectually infer depth
information and detect moving objects with advantageous
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speed and energy efficiency compared with commercial
GPUs. (See Supplementary Note 3 for detailed energy
efficiency analysis). We expect that our study will pave a
new way for optical computing from the early stage of
simulations to a new era of solving real-world complex
tasks practically, leveraging the rapid growth of comput-
ing resources demand.

Results
The multichannel optical neural network (Monet)

Figure 1la illustrates the network architecture of Monet,
including interference units (IUs, Fig. 1b) for inter-channel
processing and diffractive units (DUs, Fig. 1c) for intra-
channel processing. Regarded as novel optical connection
and interaction operators, the IUs and DUs further colla-
borate in the projection-interference-prediction framework:
multiple observations are encoded to coherent optical fields,
projected to a shared domain for feature embeddings
through DUs, and for correspondence constructions
through IUs. A regression module composed of iteratively
connected IUs and DUs is followed to predict the results
from the interference patterns for 3D perception or moving
object detection. Figure 1b illustrates the schematic and
physical implementation (dual-input) of the interference
unit. Y!,Y5,....Y. are the m inputs of layer /, and Y},
Y5H,..Y.! are the n output interference patterns. The
inputs are encoded into optical fields, projected to a shared
domain, and propagate to generate interference patterns. In
the physical implementation, SLMs are used to encode and
project the optical fields, and a sensor is used to capture the
interference patterns. Projection can be achieved by adding
phase shifts on the encoded optical fields or directly chan-
ging the modulation patterns of the SLMs. P;_(-) denotes
the projection function from the i-th input channel to the k-
th interference pattern, c(-) denote the encoding function of
the SLM, and W, is the diffractive propagation matrix from
the SLM plane to the sensor pattern. denotes the element-
wise product, and - denotes the matrix multiplication. f,(-) is
the activation function of the sensor (conversion from
complex optical field to intensity). The encoding method ¢()
can map the inputs to the amplitude or phase domain of the
optical field by tuning the polarization of the light beam (see
Supplementary Fig. S11), aiming for image fusion or corre-
spondence construction, respectively.

More specifically, in image-fusion IU, amplitude encoding
is used, and the optical intensity captured by the sensor
reflects the weighted sum results of the input images. The
weights can be adjusted using polarizers or optical
attenuators. The image-fusion IU is mainly used in the
regression module to achieve inter-channel processing (see
Supplementary Figs. S1, S2 and S3, fusion module). It
increases the width (number of neurons) in a single layer,
which is as important as the depth of the neural net-

work®®*, " In  correspondence-construction IU, phase
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encoding is used and the interference patterns are captured
by the sensor to accumulate the differences among all the
inputs (see Supplementary Note 1 for detailed derivation):

Yinter = |er1 + eﬂ?z + ... + erN|2
N N v v
=25 Z].H cos(Yi — Y/) + N

Yinter(N - 2) = |31Y1 + 31Y2|2 = 2COS(Y1 — Yz) +2

where Yy, Ya,....Yy denote the projected optical fields
encoding the multiple inputs, and Y., denotes the
captured interference pattern. Thus, by appropriately
designing the projection function, the correspondences
among multiple inputs can be converted to per-pixel
differences, encoded to interference patterns, and utilized
by the followed regression module. Correspondence
construction aims to find the similarity among multiple
inputs, serving as a critical step for advanced multichannel
machine vision tasks. For the stereo depth estimation task
(Fig. 2), we fix the spatial position of the left-view image
and shift the right image horizontally multiple times to
generate the interference patterns which encode the
stereo matching cost. For the moving object detection
task (Fig. 3), we fix the spatial position of the current-
frame image, and shift the previous- and next-frame
images along with multiple directions to generate
interference patterns for finding objects with certain
moving directions.

Figure 1c shows the implementation of DU. Y' is the input
of layer /, ¢(-) maps the input to optical fields using a spatial
light modulator (SLM-1), W represents the diffractive
propagation matrix from SLM-1 to SLM-2, X denotes the
optical field before SLM-2, and f,(-) denotes the polarizer
to align the optical polarization of X with the fast axis of
SLM-2. X is modulated and propagates to the sensor as the
output of the DU. ¥ denotes the trainable phase shifts
introduced by SLM-2, W, represents the diffractive propa-
gation matrix from SLM-2 to the sensor, and f,(-) denotes
the activation function of the sensor. The DU can be treated
as a neural network layer and the modulation phase ¥ can
be optimized by back-propagation.

Stereo depth estimation

Stereo depth estimation is the most fundamental and
important task of 3D perception*>**, We design a dual-input
Monet architecture for stereo depth estimation (Fig. 2a) and
verify it on the WHU Stereo dataset™ (see Methods for
dataset preparation). The network can be divided into two
modules: interference pattern generation and depth regres-
sion. In the former module, two sets of DUs with shared
weights are first used to extract features from the left-view
and right-view images, and IUs are followed to generate the
interference patterns. The projection function is presented
in Fig. 2b: We fix the position of the left-view image and

Page 4 of 13

shift the right-view image d pixels to the right. Here, we
uniformly sample 8 shift distances in the range from the
farthest disparity dj to the nearest disparity dg, and generate
8 interference patterns. These patterns are then input to the
depth regression module, which adopts a U-net-like struc-
ture® composed of iteratively connected IUs and DUs. See
Supplementary Fig. S1 and S2 for more details.

Figure 2c illustrates 5 representative interference pat-
terns. Image regions whose ground-true disparity is close
to the shift distance are boosted in the interference pat-
terns, while the remaining regions are suppressed. The
roof (disparity = 60 px) in Fig. 2c is boosted in the
interference pattern with a 62-px shift (labelled red) and
suppressed in that with 30-px and other shift values
(labelled yellow). Figure 2d illustrates a large area
(1406 x 1052) in the test set, which is divided into 30 ste-
reo blocks with 350 x 350 for Monet processing (see
Methods). The depth estimation results of 4 representa-
tive blocks are shown on the right, and their positions are
labelled using yellow boxes on the left-view image. Monet
successfully predicts depth variation among the buildings,
trees, and roads, and the estimated depth maps show very
similar structures to the ground-truth. Figure 2e shows
the stitched depth map of the whole large area. Bilateral
solver® is used to suppress the block effects between the
adjacent blocks. The ground is approximately 550 m from
the drone. We convert the depth value to the height
relative to the ground for a more intuitive understanding,
and plot the height along two lines L; and L, in the
middle. These two curves correlate well, with errors of
2.6 +24m (L;, meants.d.) and 2.8 + 2.7 m (L,, mean *
s.d.), respectively. The depth-value error of the whole area
is 4.2 + 3.9 m (mean * s.d.), and the error distribution is
shown on the right: 73.2% of pixels lie in (—6 m, 6 m), and
92.4% of pixels lie in (—11m, 11 m). The quantitative
evaluation results prove the depth estimation ability of
Monet. We further design an extra-shift experiment to
show that Monet predicts the depth information from the
disparity of the stereo images, not just learning a style
transferring or monocular depth estimation model. In
particular, we fix the spatial position of the left-view
images (test set only), and apply a series of extrashifts on
the corresponding right-view images to form a new test
set. The output on the new test set shows that Monet can
predict the correct disparity values with extrashifts (see
Supplementary Fig. S5). The height-coloured 3D model of
this area is presented in Fig. 2f The structures of the
buildings are well reconstructed. See Supplementary Fig.
S4 and Supplementary Video 1 for more results.

Moving object detection

Moving object detection tasks are widely existed in
various machine vision applications, e.g., smart city and
road condition monitoring®’~*°, We implement moving
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object detection using Monet to show that our archi-
tecture can process image series and extract temporal
semantic information. Figure 3a illustrates the network
architecture and the projection function. Similar to stereo
depth estimation, the whole network also consists of an
interference pattern generation module and an object
regression module.

To detect the moving objects in the current frame, three
channels (previous, current, and next frames of a video)
are used as the inputs. We remove the skip connection
from the input image to the regression module as this task
does not require sharp-edge outputs. The projection
function is extended to 2 directions to detect the moving
objects in both directions. As shown in Fig. 3a, we fix the
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simulation results, original and bilateral filtered physical experimental results, and ground-truth of a representative frame in the test sequences. The
object-level PR curve and AUC are illustrated on the right. The outputs of Monet simulation and optical Monet experiments show a high correlation
in the final distribution. The optical output shows acceptable performance loss compared with simulations. With a simple bilateral solver applied in
the final results, the speckles are removed for better visualization. Prev previous, Curr current, Seq sequence, Inter interference, Pat pattern, Norm
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spatial position of the current frame, and shift the
previous frame and next frame for d,,,., and d,,,, pixels,
respectively. Three encoded optical fields then propa-
gate and interfere on the sensor plane to generate
patterns. To compensate for the movement of the
camera/drone, images are registered before input to
Monet (see Methods). The object regression module

also adopts a U-net-like structure to predict the moving
object distribution maps from the interference patterns.
See Supplementary Figs. S1 and S3 for network archi-
tecture details.

We validate our Monet on the VisDrone dataset™ (see
Methods for dataset preparation). Figure 3b demonstrates
3 representative interference patterns with stopped
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(dprev = dyexr = (0,0)), down-left (dprev = (7r7) P% Bext =
(=7,—7) px) and down-right (dprer = (=7,7) PX, dyexr =
(7,—7) px) projection directions. The top-left image in
Fig. 3b shows the moving directions of the objects. Objects
with moving directions close to the projection directions are
boosted in the interference pattern (labelled using red
boxes), while the objects with orthogonal moving directions
are suppressed (labelled using yellow boxes). Figure 3c
demonstrates 2 representative sequences in the test set with
both moving and stopped objects. The stopped objects
(labelled using orange boxes) are suppressed in the outputs
of Monet, while the moving objects are successfully pre-
served (see Supplementary Video 2 for more results). We
compare our Monet with an electronic convolution neural
network with a similar network architecture®>*? (denoted as
CNN, see Supplementary Fig. S3). The object-level preci-
sion-recall (PR) curves of these 2 sequences are presented in
Fig. 3c (see Methods for curve computation). Both Monet
and CNN achieve high AUCs.

To validate the moving object detection ability of Monet
in real optical system, we build a prototype physical sys-
tem using off-the-shelf optical components, including
spatial light modulators (SLM), beam splitters, laser
source, and sensors (see Methods for system construc-
tions). To reduce the influences caused by the imper-
fectness of optical components in the real optical system,
we reduce the scale of dataset in network training and
simplify the network scale from 8 layers to 5 layers (see
Supplementary Fig. S3 for detailed network structure).
Although the output regression part is simplified for the
ease of experiment, the core innovation, the shifting
interference part remained unchanged. Figure 3e shows
the Monet simulation results, original and filtered Monet
physical experimental results of a representative
sequence. Due to the laser properties and the imperfect-
ness of optical components, we can find noise in the
original physical outputs. The noise does not affect the
performance much as the object level PR curve and the
AUC metrics show close accuracies. We further apply a
bilateral solver for better visualization (bilateral solver
only takes very little computing resource, see Supple-
mentary Fig. S8 for detailed results in physical experi-
ments and Supplementary Fig. S9 for the comparison of
pixel-level PR curves and pixel-level AUCs). To suppress
the noise and match the spatial resolution of the inter-
mediate optical computing results, we apply pixel binning
operation provided by the sensor and then warp the
down-sampled sensor images to the SLM patterns using
precalibrated homography matrix (see Supplementary Fig.
S12 for detail in sensor-SLM calibration). In this way, we
could achieve similar results in both computational
simulation results and optical system outputs (see
“Optical regularization methods” in the Methods section
for more details).
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Figure 3d compares our Monet with f-D>NN, an pre-
viously published ONN for saliency detection®'. Restricted
by its single-channel processing framework, it fails to
distinguish stopped objects from moving objects. The
difference between the next-frame and previous-frame
saliency map (Saliency diff.) shows that simple subtraction
cannot filter out the moving objects well. Although the
stopped objects (orange box) are suppressed, the objects
with relatively small movements are also mistakenly sup-
pressed (red box). Moreover, the shapes and numbers of
the moving objects become almost unrecognizable in the
difference map (red box). While our Monet can effectively
detect moving objects and maintain their shapes very well.

Prototype system of Monet for real-world experiment

We develop the Monet prototype system using off-the-
shelf optical modulation devices (Fig. 4b) and test its 3D
perception capability on a customized indoor scene with 3
character-shaped objects ‘T, H, U (Fig. 4c). The network
architecture implemented by our prototype system is pre-
sented in Figs. 4a (see Supplementary Fig. S1 and S2 for
detailed network architecture). An online training frame-
work is applied to overcome the non-ideal characteristics of
the laser and optical modulation devices (see Methods and
Supplementary Fig. S10). Figure 4b illustrates our prototype
system. A 532-nm continuous-wave laser is used to generate
the flat wavefront. The IU (red light path) consists of two
SLMs and the IU camera. Two SLMs (SLM-1 and SLM-2)
are used to encode the dual inputs into optical fields. The
DU (blue light path) is composed of two SLMs and the DU
camera. SLM-2 is used to encode the input, and SLM-3 is
used to apply the phase modulation. See Supplementary
Figs. S12, S13 and S14 for the configuration of the polarizers
and the calibration of the SLMs. A hybrid camera system
composed of a stereo camera and an RGBD camera is
designed to capture the stereo images and the ground-truth
depth maps of the dataset (Fig. 4c bottom; see Methods and
Supplementary Fig. 15 for more details).

The optical (prototype system) and simulated inter-
ference patterns are presented in Fig. 4d. Due to the
unavoidable physical error in the prototype system, the
small interference fringes of the optical results are dif-
ferent from the simulated ones, but the edges of the three
character-shaped objects and the overall changes with
increasing shifts are very similar. For example, the edges
of ‘U’ are blurry in the interference pattern of the 120-px
shift but become focused and clear in the interference
pattern of the 140-px shift. Figure 4e illustrates the
simulation results, optical results (prototype system), fil-
tered optical results (bilateral solver*® is used to remove
the speckles) and ground-truth depth maps. Our proto-
type system successfully estimates the depth differences
within and among the character-shaped objects. “T” and
‘U’ are placed at the same depth while ‘H’ is placed behind
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them. The upper part of the character-shaped object is
closer to the camera than the bottom part. The depth-
value changes along three lines L;, L,, and L3 are plotted
in Fig. 4f. Three curves of the filtered optical depth maps
correlate well with the ground-truth, with errors of
0.017 + 0.025m (L, mean + s.d), 0.011 + 0.013m (L,,
mean * s.d.) and 0.018 + 0.021m (L,, mean * s.d.),
respectively. The error distribution of the whole image is
illustrated on the right. 74.2% of pixels have errors less
than 0.045 m, and 91.6% of pixels have errors less than
0.095 m. We further back-project the depth maps to 3D
point clouds for better visualization (Fig. 4g). More results
including the intermediate feature maps and the 3D
rendering of the point clouds are displayed in Supple-
mentary Fig. S11 and Supplementary Video 3.

Discussion

This work innovatively develops a multichannel optical
neural network (Monet) for advanced machine vision
tasks. The proposed projection-interference-prediction
framework is built by multiplexing the optical inter-
ference units and diffractive units, which can be con-
structed using off-the-shelf optical modulation devices
and sensors. SLMs are used to modulate the phase of
optical fields to implement intra- and inter-channel
optical computing. Sensors combined with the multiplex
strategy act as nonlinear activation functions. Note that all
the computations are conducted using optics except
nonlinear activation. At present, the speed of our proto-
type system may be restricted by the multiplexing of the
SLM (HDMl-interface, maximum 60 fps) and the sensor
(USB 3.1 interface, maximum 75 fps). It is promising to
further integrate Monet into optical Al chips by replacing
the off-the-shelf devices, e.g. SLMs and sensors, with
fabricated phase masks and non-linear optical materials
such as SBN:60°27>°, which would not only overcome the
delay caused by the multiplexing of SLMs and sensors but
also dramatically reduce the volume of the system.

Correspondence construction among multiple inputs is
the foundation of multi-channel processing tasks espe-
cially in advanced machine vision, such as multiview
stereo, video processing, and volume data processing.
Monet implements the inter-channel correspondence for
stereo images and video sequences through phase-
modulation interference units. Unlike conventional elec-
tronic neural networks which commonly adopt the ‘con-
catenate’ operation to merge information from multiple
channels, interference among multiple phase-modulated
optical fields has the innate ability to encode the corre-
spondence directly and optically. Thus, by designing task-
specific projection strategy and taking advantage of this
inherit characters of light propagation and interaction,
our Monet architecture paves its own way to fully explore
the potential of wave optics for optical computing.

Page 9 of 13

For ease of demonstration, the presented tasks take two-
or three-images as input. However, the proposed Monet
with projection-interference-prediction framework can be
directly extended to support more inputs and more
complex visual computing tasks by designing appropriate
projection functions. E.g., besides the used projection
functions of image shifts, more advanced projection
functions, including homography transformation and
feature embedding, can be completed using customized
optics or configurable optical modulation devices.

For intelligent computing, the trends of dealing with
more advanced tasks are irreversible. As a novel techni-
que, Monet implies great potential of ONNs in processing
complex visual inputs and tasks, enabling the real-life
applications of optical computing, e.g., given a number of
video sequences captured by unmanned system, ONNs
may directly infer the 3D depth map and detect moving
objects with high speed and low power consumption. We
anticipate that the proposed technique will accelerate the
development of more powerful optical AI as critical
support for modern advanced machine vision and towards
beginning a new era of Al

Methods
Monet prototype system design

A continuous 532-nm laser (MGL-FN-532, Changchun
New Industries Optoelectronics Technology Co., Ltd) was
adopted as the light source. A 4-f-system-based 10x optical
beam expander (25-mm and 250-mm lenses) was used to
generate the flat wavefront. Liquid-crystal-on-silicon
(LCOS) SLMs (E-Series 1920 x 1200, Meadowlark Optics
Inc., USA) were used to modulate the phase of the wave-
fronts. The SLMs were calibrated at 532-nm wavelength,
with an 8-um pixel size and 1920 x 1200 resolution, and
controlled by the HDMI port. Two grayscale CMOS cam-
eras (Blackfly S BFS-U3-51S5M-C, FLIR LLC, USA) were
used to capture the outputs of the IUs and DUs. The camera
resolution is 2448 x 2048 with a pixel size of 3.45 pm. The
small pixel size ensures that the high-frequency content on
the sensor plane can be captured without aliasing. The
camera was set to a 27-ps exposure time and 0-dB gain, and
the gamma correction was set to 1. For the IU, the propa-
gation distance from the SLM to the sensor plane was set to
200 mm. For the DU, the propagation distance from the first
SLM (input encoding) to the second SLM (modulation) was
set to 400 mm, and the distance from the second SLM to the
sensor was set to 200 mm. A regular pattern was trained to
calibrate the relative spatial position of the two SLMs and
the sensor (Supplementary Fig. S12). All the SLMs and
sensors were controlled using self-developed Python scripts.

Hybrid camera system and THU dataset capturing
The THU dataset was captured by a hybrid camera
system composed of an RGBD camera (Azure Kinect,
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Microsoft Corp., USA) and a stereo camera (ZED 2, Ste-
reoLabs Inc., USA). The RGB camera inside the Azure
Kinect was calibrated with the two RGB cameras of ZED
2. The ToF depth camera inside the Azure Kinect was
pre-calibrated to its RGB camera before leaving the fac-
tory. Thus, the accurate depth maps captured by the ToF
camera inside Azure Kinect can be mapped to the ZED 2
cameras and used as the ground-truth. See Supplementary
Fig S15 for calibration details. Due to the viewpoint dif-
ference between the two cameras and the imperfect
reflection of the scene objects, there were holes in the
remapped depth maps. An inpainting algorithm®® was
used to fill the holes. Both the ‘T, H, U’ character-shaped
objects and the background box were made of wood. The
character-shaped objects were painted blue, and the
bottom of the box was covered with woodgrain wallpaper.

Neural network modelling and training

Our network implementation consists of four main
basic layers: free-space propagation, SLM modulation,
sensor, and remapping. The IUs and DUs are built with
these basic layers. The simulation pixel size is set to 8 um
(same as the physical pixel size of the SLM). The free-
space diffraction propagation layer is modelled using the
angular spectrum method, and the x-y plane size is set to
800 x 800. Zero padding is implemented to guarantee the
boundary condition of the free-space propagation. The
SLM modulation layer adds phase shifts to the input
optical field. The trainable neuron number is also set to
800 x 800 (6.4 x 6.4 mm, 0.64 million parameters). The
sigmoid function is used to constrain the phase-
modulation range to 0-2m for training. As the polarizer
after SLM changes the amplitude of the optical field, the
phase-to-intensity mapping curve of SLM is calibrated
and fitted using 10”-order polynomial functions (see
Supplementary Fig. S14). Thus, the phase-to-intensity
mapping can be modelled as a differentiable function for
back-propagation. The sensor layer converts the complex
optical field (amplitude and phase) to the intensity field.
As we set the gamma correction to 1, the intensity-to-
pixel-value mapping is linear. The remapping layer con-
verts the normalized intensity field (divided by the max-
imum intensity) back to the complex optical field as the
inputs for the IUs or DUs. Two kinds of remapping layers,
phase remapping and amplitude remapping, modulate the
information to the phase and amplitude domains of the
output optical field for correspondence construction and
image fusion, respectively.

The total parameters and layers of our network archi-
tectures are 26.2 million (10 layers), 26.2 million (10 lay-
ers), and 4 million (6 layers) for stereo depth estimation of
aerial images (Fig. 2), moving object detection (Fig. 3) and
the prototype system (Fig. 4). As the input image and the
ground-truth sizes are smaller than 800, zero padding is
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implemented. For stereo depth estimation (Figs. 2 and 4), a
mixed mean squared error (MSE) and structural similarity
index metric (SSIM) loss is used:

L =0.8%MSE+ 0.2 % (1 — SSIM)

Both the output and groundtruth are normalized to 0-1,
so that the output ranges of MSE and SSIM are also 0-1.
The SSIM loss here is to suppress the speckles and noise.
For moving object detection, soft-intersection-over-union
(soft-IoU) loss is adopted®”. Compared with the MSE loss
that was used by all-optical saliency detection®’, soft-loU
loss can achieve a faster convergence speed and better
performance.

The network model is implemented using TensorFlow
V2.4 (Google LLC) running on a desktop computer
(Nvidia GTX 1080 Ti 11 G, Intel i7-6800K CPU with 6
cores, 128 GB RAM and the Microsoft Windows 10
operating system). The network parameters were opti-
mized using the Adam optimizer®®., Due to the physical
errors introduced in the prototype system, the neural
network parameters need to be fine-tuned online. We
experimentally recorded the outputs of the previous layers
(DUs and IUs) and took the physically captured results to
train the followed-by layers (Supplementary Fig. S10). We
also calibrated the energy distribution of the input laser
illumination to compensate for the background non-
uniformity of the sensor-captured images (Supplementary
Fig. S13).

Dataset preparation

We use the WHU Stereo dataset™ for the aerial-image
stereo depth estimation task (Fig. 2). The original dataset
was re-rendered from a 3D digital surface model pro-
duced from thousands of real aerial images, covering an
area of 6.7 x 2.2 km?, containing buildings, factories, riv-
ers, roads, and trees. As the image sizes of the original
dataset are too large to be directly processed, we selected
several large images (5736 x 5736) as our new dataset and
cropped them into tiles of 350 x 350 to match the input
size of Monet. We further deleted the images with few
textures or incorrect depth labels, and finally, we had 340
training samples and 120 testing samples. The testing
images cover 4 representative large areas with a size of
1406 x 1052, and each area was divided into 30 350 x 350
blocks. The testing stereo images were sampled densely
with large overlaps, so that the estimated depth maps
could be stitched back to the large area. The training
images were cropped from the remaining regions with
small overlaps.

The VisDrone detection dataset™ is used for moving
object detection (Fig. 3). This dataset contains aerial-view
videos captured by a drone with no or slow motion.
Bounding boxes of all the objects (mainly persons and
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vehicles) are given in the ground-truth labels. To find the
moving objects, we first registered the video frames using
SIFT feature points™ extracted from the background, and
used the centers of the bounding boxes to track the
moving distance of all the objects. Feature points on the
moving objects were removed before estimating the
homography matrices between consecutive frames.
Objects with moving distances smaller than the threshold
were treated as static objects. After determining all the
moving objects, we applied the Grabcut® algorithm to
generate the masks from the bounding boxes. We also
manually refined the regions in which Grabcut failed to
estimate reasonable masks. As the aspect ratio of Vis-
Drone videos is 16:9 while our network prefers square
inputs, we split each sequence into a left sequence and a
right sequence to make full use of the dataset.

The last dataset used is the THU dataset we captured
(Fig. 4). Sixty-five stereo images with different ‘“T’, ‘H’, ‘U’
positions were captured in total, 56 for training and 9 for
testing. Similarly, the stereo images and depth maps were
resized to 700 x 700 to match the network input.

Precision-recall curve

The PR curve was computed from the moving object
distribution maps output by Monet. Two kinds of PR
curves were computed: pixel level and object level. In
pixel-level PR curve computing, each pixel was considered
as an instance. The absolute pixel value was used to
determine if the pixel was positive or negative (see Sup-
plementary Fig. S7 for pixel-level PR curves). In object-
level PR curve computing, each object was considered as
an instance. For each instance, we computed the mean
pixel value of the pixels inside the groundtruth object
mask (both moving and static objects). If the mean pixel
value exceeded the threshold, the object was considered
positive; otherwise, it was considered negative.

Optical regularization methods

In our optical Monet experiment, the visual noise in the
results is not only caused by the laser properties, but also
resulted by the little mismatch between SLMs and other
optical devices. The pixel size of the SLM display is
micrometer level and such alignment accuracy is difficult
to achieve manually. Once mismatch exists, the noise
emerged. Our method to handle it is to regularize the
smoothness of the SLM patterns by employing binning
and Gaussian filter (see Supplementary Note 2 for more
detail).

Both binning and Gaussian filtering are differentiable in
network training, so the ONN weights (phase patterns of
the SLMs) could be adaptive to these regularizations
during training. Even though the performance in com-
putational results may degrade a little bit because of the
regularizations, the difference between simulation results
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and optical output is decreased. As the pixel sizes of
sensors and SLMs were not the same (3.45 pm and 8 pm
respectively), we use a homography transformation and
linear interpolation (see Supplementary Fig. S12 for cali-
bration details) to warp the sensor images to SLM phase
patterns.

Online training framework for Monet prototype system
In the prototype system, we used two input images of
different views and four phase-modulation interference
units to generate interference patterns, while eight dif-
fractive units and interference units were iteratively
appended for regressing the depth of objects. Due to the
non-ideal characteristics of the laser and small misalign-
ments in optical modulation devices, a hybrid optical-
electronic online training framework is necessary for
Monet to overcome the severe distortion in output depth
map. To guarantee that our Monet can work well in
physical systems, two adjustments were deployed in this
physical system compared with the network we used in
Fig. 2: (1) Simplifying the network architecture with fewer
feature maps (smaller width) and network layers (smaller
depth) to avoid overfitting. (2) Adding one more DU
before output to suppress the speckles by regularizing the
smoothness of the SLM phase-modulation pattern (see
Supplementary Fig. S10 for details). Our Monet prototype
system successfully predicted the depth differences of
intra-object and among objects physically with proposed
online training framework and these network adjustments.
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