Table 5 Summary of “DL-post-preprocessing for phase recovery”

From: On the use of deep learning for phase recovery

Task

Reference

Input

Output

Network

Training dataset

Loss function

Noise reduction

Jeon et al.208

Noisy hologram

Noise-free hologram

U-Net

Sim.: 384,000 pairs

l2-norm and Edge

Choi et al.209

Noisy tomogram

Noise-free tomogram

U-Net

Expt.: 455 and 5,057 (unpaired)

Cycle-GAN loss

Zhang et al.210

Noisy wrapped phase

Noise-free wrapped phase

CNN

Sim.: 500 pairs

---

Yan et al.211,212

Noisy sine and cosine

Noise-free sine and cosine

ResNet

Sim.: 40,000 and 30,000 pairs

l2-norm

Montresor et al.213

Noisy sine and cosine

Noise-free sine and cosine

DnCNN

Sim.: 40 pairs (15,360 patches)

l2-norm

Tahon et al.214,215

Noisy sine and cosine

Noise-free sine and cosine

DnCNN

Sim.: 25 pairs and 128 pairs

l2-norm

Fang et al.216

Noisy real, imaginary

Noise-free real, imaginary

U-Net

Sim.: 4000 pairs

GAN loss

Murdaca et al.217

Noisy real, imaginary, and amplitude

Noise-free real, imaginary, and amplitude

U-Net

Sim.: 5400 pairs

l2-norm

Tang et al.219

Fixed noise matrix

Noise-free phase

U-Net (untrained)

Expt.: 1

l2-norm, gradient, and variance

Resolution enhancement

Liu et al.220

LR phase and amplitude

HR phase and amplitude

U-Net

Expt.: >50,000 pairs

GAN loss

Jiao et al.221

LR phase from DPM

HR phase from SLIM

U-Net

Expt.: >1200 pairs (>100 cells)

l2-norm

Butola et al.223

LR phase

HR phase

U-Net

Expt.: 2355 pairs and 2279 pairs

GAN loss

Meng et al.224

LR phase from SI-DHM

HR phase from SI-DHM

U-Net

Expt.: 3800 pairs

l2-norm

Li et al.226

LR phase

HR phase

U-Net

Expt.: 1680 pairs

l2-norm

Gupta et al.227

LR phase

HR phase

U-Net

Expt.: 700–2000 (unpaired)

Cycle-GAN loss

Lim et al.228

LR 3D RI tomogram

HR 3D RI tomogram

Residual 3D U-Net

Sim.: 1600 pairs

l2-norm

Ryu et al.229

LR 3D RI tomogram

HR 3D RI tomogram

3D U-Net

Expt.: 217 and 614 pairs

l2-norm

Aberration correction

Nguyen et al.234

Phase

Binary segmentation

U-Net

Expt.: 1836 pairs

Cross entropy

Ma et al.235

Hologram

Binary segmentation

U-Net

Expt.: 1000 pairs

Cross entropy

Lin et al.236

Phase and its gradient

Binary segmentation

U-Net and ResNet

Expt.: 1800 pairs

Dice loss

Xiao et al.237

Phase

Zernike coefficient

CNN

Expt.: 10,000 pairs

l2-norm

Zhang et al.238

Aberrated intensity and phase

Phase

U-Net

Sim.: >10,000 groups

l2-norm or l1-norm

Tang et al.239

Fixed vector

Zernike coefficient

MLP (untrained)

Expt. and Sim.: 1

l2-norm and sparse constraints

Phase unwrapping

Dardikman et al.243,244

Wrapped phase

Unwrapped phase

ResNet

Sim.: 7936 pairs

l2-norm

Wang et al.245

Wrapped phase

Unwrapped phase

U-Net and ResNet

Sim.: 30,000 pairs

l2-norm

He et al.246

Wrapped phase

Unwrapped phase

3D-ResNet

Expt.: ---

---

Ryu et al.247

Wrapped phase

Unwrapped phase

ReNet

Expt. and Sim.: ---

Total variation and variance

Dardikman et al.248

Wrapped phase

Unwrapped phase

ResNet

Expt.: 7500 pairs

l2-norm

Qin et al.249

Wrapped phase

Unwrapped phase

U-Net and ResNet

Sim.: 30,000 pairs

L1-norm

Perera et al.250

Wrapped phase

Unwrapped phase

U-Net and LSTM

Sim.: 6000 pairs

Total variation and variance

Park et al.251

Wrapped phase

Unwrapped phase

U-Net

Expt.: 5200 pairs

GAN loss

Zhou et al.252

Wrapped phase and wrap count

Unwrapped phase

U-Net and EfficientNet

Sim.: 6000 pairs

l1-norm and residual

Xu et al.253

Wrapped phase

Unwrapped phase

U-Net

Sim.: 6000 pairs

SSIM

Zhou et al.254

Wrapped phase

Unwrapped phase

U-Net

Sim.: 158 and 1036 pairs

GAN loss

Xie et al.255

Wrapped phase

Unwrapped phase

U-Net

Sim.: 17,000 pairs

l2-norm

Zhao et al.256

Wrapped phase and weighted map

Unwrapped phase

U-Net and ResNet

Sim.: 22,500 pairs

l1-norm

Liang et al.257

Wrapped phase

Wrap count

---

---

---

Spoorthi et al.258

Wrapped phase

Wrap count

SegNet

Sim.: 10,000 pairs

Cross entropy

Spoorthi et al.259

Wrapped phase

Wrap count

SegNet and DenseNet

Sim.: 30,000 pairs

Cross entropy and residue and l1-norm

Zhang and Liang et al.210,260

Wrapped phase

Wrap count

U-Net

Sim.: 9500 pairs

Cross entropy

Zhang et al.261

Wrapped phase

Wrap count

DeepLab-V3+

Sim.: 25,000 pairs

Cross entropy

Zhu et al.262

Wrapped phase

Wrap count

DeepLab-V3+

Sim.: 20,000 pairs

Cross entropy

Wu et al.263

Wrapped phase

Wrap count

U-Net and FRRNet

Sim.: 12,000 pairs

Cross entropy

Zhao et al.264

Wrapped phase

Wrap count

ResNet

Sim.: 22,000 pairs

Cross entropy

Vengala et al.265,266

Wrapped phase

Wrap count and denoised wrapped phase

Y-Net

Sim.: 2000 pairs

Cross entropy and l2-norm

Zhang et al.267

Wrapped phase

Wrap count

U-Net and ASPP and PSA

Sim.: 10,000 pairs

Weighted cross entropy

Huang et al.278

Wrapped phase

Wrap count

HRNet

Sim.: 30,000 pairs

Cross entropy

Wang et al.279

Wrapped phase

Wrap count

U-Net, ASPP and EEB

Sim.: ---

Cross entropy

Zhou et al.270

Wrapped count

Wrap count gradient

CNN

Sim.: 52,391 pairs

Cross entropy

Wang et al.271

Wrapped count and quality map

Wrap count gradient

U-Net

Sim.: 164,726 pairs

Cross entropy and dice loss

Sica et al.268

Wrapped count

Wrap count gradient

U-Net

Sim.: >70,000 pairs

Cross entropy, Jaccard distance, and l1-norm

Li et al.269

Wrapped count

Wrap count gradient

U-Net and ResNet

Sim.: 14,100 pairs

Cross entropy

Wu et al.272,273

Wrapped count

Discontinuity map

CNN and ASPP

Sim.: 8000 pairs

l2-norm, cross entropy, and dice loss

Zhou et al.274

Residue image

Branch-cut map

CNN

Sim.: 26,928 pairs

Cross entropy

  1. “---” indicates not available