Table 6 Summary of “Deep learning for phase processing”

From: On the use of deep learning for phase recovery

Task

Reference

Input

Output

Network

Training dataset

Loss function

Segmentation

Yi et al.282

Phase of red blood cells

Segmentation map

FCN

Expt.: 35 pairs

---

Ahmadzadeh et al.284

Phase of cardiomyocyte

Segmentation map

FCN

Expt.: 2000 pairs

---

Kandel et al.285

Phase of sperm cells

Segmentation map

U-Net

Expt.: ---

Cross entropy

Goswami et al.286

Phase of virus particles

Segmentation map

U-Net

Expt.: 1000 pairs

Cross entropy

Hu et al.287

Phase of ovary cells

Segmentation map

U-Net and EfficientNet

Expt.: 1536 pairs

Focal loss and dice loss

He et al.288

Phase of HeLa cells

Segmentation map

U-Net and EfficientNet

Expt.: 2046 pairs

focal loss and dice loss

Zhang et al.289

Phase of tissue slices

Segmentation map

mask R-CNN

Expt.: 196 pairs

Cross entropy

Jiang et al.290

Phase and amplitude

Segmentation map

DeepLab-V3+

Expt.: 1500 pairs

Cross entropy

Lee et al.291

2D RI tomogram

Segmentation map

U-Net

Expt.: 934 pairs

Cross entropy

Choi et al.292

3D RI tomogram

Segmentation map

3D U-Net

Expt.: 105 pairs

Cross entropy and dice loss

Classification

Jo et al.293

Phase of cells

Classification

CNN

Expt.: ---

Cross entropy

Karandikar et al.314

Phase of cells

Classification

CNN

Expt.: 300

Cross entropy

Zhang et al.315

Phase of tissue slices

Classification

VGG

Expt.: 1660

Cross entropy

Butola et al.316

Phase of sperm cells

Classification

CNN

Expt.: 10,163

Cross entropy

Li et al.317

Phase of cells

Classification

AlexNet

Expt.: 272

Cross entropy

Shu et al.318

Phase of cells

Classification

Cascaded ResNet

Expt.: 1521

Cross entropy

Pitkäaho et al.319

Phase and manual feature

Classification

CNN

Expt.: 2451

---

O’Connor et al.320

Transfer-learning and manual feature from phase

Classification

LSTM

Expt.: 303

---

O’Connor et al.321

Transfer-learning and manual feature from phase

Classification for COVID-19

LSTM

Expt.: 1474

---

Ryu et al.322

3D RI tomogram

Classification (2 and 5 types)

3D CNN

Expt.: 1782

Cross entropy

Kim et al.323

3D RI tomogram

Classification (19 types)

3D CNN

Expt.: 10,556

Cross entropy

Wang et al.324

Time-lapse amplitude and phase

Classification (3 types)

Pseudo-3D DensNet

Expt.: 16,309

Cross entropy

Liu et al.325

Time-lapse phase

Classification

Pseudo-3D DensNet

Expt.: 5622

Cross entropy

Ben Baruch et al.326

Phase and spatio-temporal fluctuation map

Classification

ResNet

Expt.: 216 videos

Cross entropy

Singla et al.327

Phase of three wavelengths

Classification

CNN

Expt.: 16,200

---

Işıl et al.328

Phase and amplitude of three wavelengths

Classification

DensNet

Expt.: 33,768

Cross entropy

Pitkäaho et al.329

Phase and amplitude

Classification

CNN

Expt.: ---

---

Lam et al.330,331,332

Phase and amplitude

Classification

CNN

Sim.: >1000

Expt.: 4000

---

Terbe et al.333

Phase and amplitude in different defocus distances

Classification (7 types)

3D ResNet

Expt.: >9000

Cross entropy

Wu et al.334

Real and imaginary

Classification (5 types)

ResNet

Expt.: 7000

Cross entropy

Imaging modal transformation

Wu et al.342

Real and imaginary

Bright-field image

U-Net

Expt.: 30,000 pairs

GAN loss

Terbe et al.343

Amplitude and phase

Bright-field image

U-Net

Expt.: 3000 unpaired

Cycle-GAN loss

Rivenson et al.344

Phase of tissue slices

Stained bright-field image

U-Net

Expt.: >2000 pairs

GAN loss

Wang et al.345

Phase of tissue slices

Stained bright-field or fluorescence image

U-Net

Expt.: 1000 unpaired

Cycle-GAN loss

Jiang et al.49

Amplitude and phase of tissue slices

Stained bright-field or fluorescence image

Y-Net with phase attention

Expt.: ---unpaired

Cycle-GAN loss

Liu et al.346

Amplitude and phase of three wavelength

Stained bright-field image

U-Net

Expt.: 8928 pairs

GAN loss

Nygate et al.347

Phase and gradiences of sperm cells

Stained bright-field image

U-Net

Expt.: 1100 pairs

GAN loss

Guo et al.348

Phase, retardance and Orientation

Fluorescence image

2.5D U-Net

Expt.: 200 full brain sections

l1-norm

Kandel et al.349,350

Phase

Fluorescence image

U-Net

Expt.: 30–3000 pairs

l2-norm

Guo et al.351

Phase at different depths

Fluorescence images at different depths

U-Net

Expt.: 200 pairs

l2-norm

Chen et al.352

Three neighboring phase

Corresponding central fluorescence image

U-Net and EfficientNet

Expt.: 20 z-stacks

l2-norm

Jo et al.353

3D RI tomogram

3D fluorescence image

3D U-Net

Expt.: 1600 pairs

l2-norm and gradient difference

  1. “---” indicates not available