Table 1 Comparison of chiral forces in a linearly polarised evanescent wave and the centre of a linearly polarised vortex and their relation to the spin decomposition

From: A decomposition of light’s spin angular momentum density

 

Evanescent wave from linearly polarised illumination

Centre of linearly polarised vortex beam

Chiral force \({{\bf{F}}}_{\text{chiral}}\)

\({\mathbf{F}}_{\text{chiral}}\neq{\mathbf{0}}\) (transverse)

\({\mathbf{F}}_{\text{chiral}}\neq{\mathbf{0}}\) (longitudinal)

Type of chiral force

Spin recoil force \({{\bf{F}}}_{\text{chiral}}\propto {\bf{S}}\)

negligible in small particles

Chiral pressure force \({{\bf{F}}}_{\text{chiral}}\propto {{\bf{s}}}_{\text{c}}\)

dominant in small particles

Total spin \({\bf{S}}={{\bf{s}}}_{\text{c}}+{{\bf{s}}}_{\text{p}}\)

\(\mathbf{S}\neq\mathbf{0}\)

\(\mathbf{S}=\mathbf{0}\)

Canonical spin \({{\bf{s}}}_{\text{c}}\)

\({\mathbf{s}}_{\text{c}}={\mathbf{0}}\)

\({\mathbf{s}}_{\text{c}}\neq{\mathbf{0}}\) (longitudinal)

Poynting spin \({{\bf{s}}}_{\text{p}}\)

\({\mathbf{s}}_{\text{p}}\neq{\mathbf{0}}\) (transverse)

\({{\bf{s}}}_{\text{p}}=-{{\bf{s}}}_{\text{c}}\)