Table 2 Comparison of time-averaged energy, momentum and spin densities between time-harmonic waves in theories of linearised acoustics, electromagnetism and linearised gravity

From: A decomposition of light’s spin angular momentum density

 

Linearised acoustics

Electromagnetism

Linearised gravity

Field phasors

\(P=-i\omega \rho \varphi\)

\({\bf{E}}=i\omega {\bf{A}}\)

\({{\bf{E}}}^{i}=i\omega \left({h}^{{ij}}{\hat{{\bf{e}}}}_{j}\right)\)

\({\bf{v}}=\nabla \varphi\)

\({\bf{H}}=\frac{1}{{\mu }_{0}}\nabla \times {\bf{A}}\)

\({{\bf{H}}}^{i}=\frac{1}{{\mu }_{0}}\nabla \times \left({h}^{{ij}}{\hat{{\bf{e}}}}_{j}\right)\)

Energy density

\(\frac{1}{4}\left(\beta {{|P|}}^{2}+\rho {|{\bf{v}}|}^{2}\right)\)

\(\frac{1}{4}\left({\epsilon }_{0}{\left|{\bf{E}}\right|}^{2}+{\mu }_{0}{\left|{\bf{H}}\right|}^{2}\right)\)

\(\frac{1}{4}\left({\epsilon }_{0}{{\bf{E}}}_{i}^{* }\cdot {{\bf{E}}}^{i}+{\mu }_{0}{{\bf{H}}}_{i}^{* }\cdot {{\bf{H}}}^{i}\right)\)

Helicity density

\(0\)

\(-\frac{1}{2\omega c}{\rm{Im}}\{{{\bf{E}}}^{{\boldsymbol{* }}}\,{{\cdot}}\,{\bf{H}}\}\)

\(-\frac{1}{\omega c}{\rm{Im}}\{{{\bf{E}}}_{i}^{* }\cdot {{\bf{H}}}^{i}\}\)

Poynting vector

\(\frac{1}{2}{\mathrm{Re}}\{{P}^{* }{\bf{v}}\}\)

\(\frac{1}{2}{\mathrm{Re}}\{{{\bf{E}}}^{{\boldsymbol{* }}}\times{\bf{H}}\}\)

\(\frac{1}{2}{\mathrm{Re}}\{{{\bf{E}}}_{i}^{{\boldsymbol{* }}}\times{{\bf{H}}}^{i}\}\)

SAM density

\(\frac{1}{2\omega }{\rm{Im}}\{\rho {{\bf{v}}}^{{\boldsymbol{* }}}\times {\bf{v}}\}\)

\(\frac{1}{4\omega }{\rm{Im}}\{{\epsilon }_{0}{{\bf{E}}}^{* }\times {\bf{E}}+{\mu }_{0}{{\bf{H}}}^{{\boldsymbol{* }}}\times{\bf{H}}\}\)

\(\frac{1}{2\omega }{\rm{Im}}\{{\epsilon }_{0}{{\bf{E}}}_{i}^{* }\times {{\bf{E}}}^{i}+{\mu }_{0}{{\bf{H}}}_{i}^{* }\times {{\bf{H}}}^{i}\}\)

Canonical spin

\(\mathbf{0}\)

\(\frac{1}{4{\omega }^{2}}\mathrm{Re}\{{{\bf{E}}}^{{\boldsymbol{* }}}\cdot \left(\nabla \right){\bf{H}}-{{\bf{H}}}^{{\boldsymbol{* }}}\cdot (\nabla ){\bf{E}}\}\)

\(\frac{1}{2{\omega }^{2}}{\mathrm{Re}}\{{{\bf{E}}}_{i}^{* }\cdot \left(\nabla \right){{\bf{H}}}^{i}-{{\bf{H}}}_{i}^{* }\cdot \left(\nabla \right){{\bf{E}}}^{i}\}\)

Poynting spin

\(\frac{1}{2{\omega }^{2}}\nabla \times \frac{1}{2}{\mathrm{Re}}\{{P}^{* }{\bf{v}}\}\)

\(\frac{1}{2{\omega }^{2}}\nabla \times \frac{1}{2}\mathrm{Re}\{{{\bf{E}}}^{{\boldsymbol{* }}}\times {\bf{H}}\}\)

\(\frac{1}{{\omega }^{2}}\nabla \times \frac{1}{2}{\mathrm{Re}}\{{{\bf{E}}}_{i}^{* }\times {{\bf{H}}}^{i}\}\)

  1. Table inspired by refs. 48,49,53. For electromagnetism, the potential is considered to be in the Coulomb gauge. For linearised gravity, \({h}_{ij}\) are spatial components of the metric perturbation in the transverse-traceless gauge, \({\hat{{\bf{e}}}}_{i}\) are basis vectors, and any repeated indices are summed over (Einstein’s convention). Parameters \({\epsilon }_{0}=1/({c}^{2}{\mu }_{0})={c}^{2}/(32\pi G)\) were chosen such that the time-averaged energy density takes the same form as the expression for the electromagnetic field. A larger version of this table using the index notation introduced in Sec 4.2 is given in the supplementary material