Table 1 Nonlinearity of different substances

From: Giant Kerr nonlinearity of terahertz waves mediated by stimulated phonon polaritons in a microcavity chip

Frequency

Substances

Nonlinear susceptibility

\({\boldsymbol{n}}_{\boldsymbol{2}}\) (c\({{\mathbf{m}}}^{\boldsymbol{2}}\cdot {{\mathbf{W}}}^{\boldsymbol{-1}}\))

\({\boldsymbol{\chi }}^{({\boldsymbol{3}})}\,({\mathbf{m}}^{\boldsymbol{2}}\cdot {\mathbf{V}}^{\boldsymbol{-2}})\)

Visible/IR frequencies

800 nm

air (g)

\(2.4\times {10}^{-19}\)

\(8.5\times {10}^{-26}\)

MgO (s)

\(7\times {10}^{-17}\)

\(7.42\times {10}^{-23}\)

Al2O3 (s)

\(2.93\times {10}^{-16}\)

\(3.21\times {10}^{-22}\)

1030 nm

fused silica (s)

\(2.19\times {10}^{-16}\)

\(1.63\times {10}^{-22}\)

CaF2 (s)

\(1.71\times {10}^{-16}\)

\(1.24\times {10}^{-22}\)

530 nm

LN (s)

\(5.3\times {10}^{-15}\)

\(1.02\times {10}^{-20}\)

Optical frequency & THz (pump: THz & probe: 800 nm) \({{{\chi}}^{(3)}}\left({\omega }_{{\rm{THz}}},{\omega }_{{\rm{THz}}},{\omega }_{{\rm{opt}}}\right)\)

air (g)

\(1.3\times {10}^{-19}\)

\(4.6\times {10}^{-26}\)

CS2 (l)

\(7\times {10}^{-14}\)

\(2.08\times {10}^{-20}\)

CCl4 (l)

\(2.7\times {10}^{-15}\)

\(1\times {10}^{-21}\)

MgO (s)

\(5\times {10}^{-17}\)

\(5.3\times {10}^{-23}\)

Al2O3 (s)

\(7\times {10}^{-17}\)

\(7.68\times {10}^{-23}\)

As2S3 (s)

\(1.75\times {10}^{-14}\)

\(4.84\times {10}^{-20}\)

As2Se3 (s)

\(3.44\times {10}^{-14}\)

\(9.96\times {10}^{-20}\)

THz

water (l)

\(7\times {10}^{-10}\)

\(1.31\times {10}^{-15}\)

ethanol (l)

\(6\times {10}^{-9}\)

\(5.10\times {10}^{-15}\)

\(\alpha -{\rm{pinene}}\) (l)

\(3\times {10}^{-9}\)

\(2.39\times {10}^{-15}\)

lactose (s)

\(-1.49\times {10}^{-12}\)

\(-1.81\times {10}^{-18}\)

silicon (s)

\(3.51\times {10}^{-12}\)

\(1.44\times {10}^{-17}\)

quartz (s)

\(7.5\times {10}^{-10}\)

\(1.14\times {10}^{-15}\)

ZnSe (s)

\(4\times {10}^{-11}\)

–

LN (s, this work)

\(> 7.09\times {10}^{-10}\) @ 0.63 THz

\(> 2.21\times {10}^{-15}\) @ 0.63 THz

  1. s solid, l liquid, g gas, Optical frequency & THz the refractive index at optical frequencies is perturbed by THz pulses, and the nonlinear susceptibility is \({\chi }^{\left(3\right)}({\omega }_{{\rm{THz}}},{\omega }_{{\rm{THz}}},{\omega }_{{\rm{opt}}})\)