Table 1 Comparison of Rabi splitting and operating temperature of exciton polariton based on different TMD materials
From: Strong light-matter coupling in van der Waals materials
Platform | Materials | Description | Quality factor/photonic linewidths | Rabi splitting (meV) | Research contentRef. |
---|---|---|---|---|---|
Fabry-Pérot cavity | WS2 | DBR + DBR | 400 | 40 (monolayer, 110 K) | Formation of exciton polariton52 |
2000 | 37 (monolayer, RT) | Polariton condensate43 | |||
 | 42 (monolayer, 20 K) | Polariton parametric emission48 | |||
3000 | 25 (monolayer, RT) | Polariton propagation42 | |||
 |  | DBR+Ag | 120 | 80 (monolayer, RT) | Macroscopic valley-polarized polaritons35 |
 |  | Ag+Ag | 25–30 | 70–100 (monolayer, RT) | Optical control of valley polaritons34 |
 | WSe2 | DBR+metal | 110 | 23.5 (monolayer, RT) | Formation of Tamm-plasmon-exciton polariton60 |
220 | 7.7 (multiple layers, 15 K, 2 s exciton state) | Enhanced nonlinear interaction of Rydberg polaritons47 | |||
 |  | DBR + DBR |  | ~26 (monolayer, 4.2 K) | Valley coherent exciton-polaritons30 |
240 | 11.4 (monolayer, RT) | Room temperature valley coherence53 | |||
4300 ± 400 | 30 (monolayer, RT) | Spatial coherence of exciton polariton41 | |||
 | MoSe2 | DBR + DBR | 4600 | 46 (monolayer, 5 K) | Optical Valley Hall effect59 |
 |  | Open cavity | ~850 | ~4.4 (monolayer, 50 K, trion) | Valley-addressable exciton/trion- polaritons62 |
 | 20 (monolayer, 4.2 K) | Exciton-polaritons in van der Waals heterostructures64 | |||
 | MoS2 | DBR + DBR | ħΓcav = 9 meV | 46 ± 3 (monolayer, RT) | Formation of exciton polariton24 |
ħΓcav = 10 meV | 39 ± 5 (monolayer, RT) | Valley-polarized exciton-polaritons31 | |||
 |  | DBR+Ag | 130 | 54 (monolayer, RT) | Formation of Tamm-plasmon exciton-polaritons61 |
Photonic crystal | WS2 | BSW | 924 (at 650 nm) 795 (at 645 nm) | 43 (monolayer, RT) | Interacting polariton fluids36 |
 |  | 1D PC | ħΓcav = 6.5 meV | 22.2 (monolayer, RT) | Photonic-crystal exciton-polaritons37 |
 |  | Topological polariton | ħΓcav = 6.5 meV | 38 ± 1 (monolayer, 160 K) | Generation of helical topological exciton-polaritons69 |
 |  | BIC-BSW | ħΓcav << 4.5 meV | >70 (monolayer, RT) | Strongly enhanced light-matter coupling70 |
 | WSe2 | Metasurface | 143 | 18 (monolayer, RT) | Metasurface integrated exciton-polaritons54 |
 |  | BSW | 641 | 56.8 (monolayer, RT) 111.13 (4 L, RT) | Boosting exciton transport66 |
 | MoSe2 | BIC | >900 | 27 (monolayer, RT) | The formation of BIC-like polaritons67 |
Plasmonic Nanocavity | WS2 | Plasmonic arrays | ħΓcav = 247.8 meV | 138 (monolayer, RT) | Formation of strong plasmon–exciton couplings55 |
 |  | Single nanoparticle | ħΓcav = 130 meV | 150 (monolayer, 6 K, trion) | Tunable charged exciton polaritons76 |
ħΓcav = 149 meV | 91–133 (monolayer, RT) | Formation of strong plasmon–exciton couplings77 | |||
 | Nanoparticle-on-mirror | ħΓcav = 180 meV | ~163 (monolayer, RT) | Revealing Strong Plasmon-Exciton Coupling73 | |
ħΓcav = 220 meV | ~240 (monolayer, RT) | Greatly Enhanced Plasmon-Exciton Coupling56 | |||
MoS2 | Nanoparticle-on-mirror | ħΓcav = 45 meV | ~130 (monolayer, RT) | Nonlinear valley phonon scattering74 | |
ħΓcav = 280 meV | 190 (monolayer, RT) | Manipulating coherent light-matter interaction57 | |||
 | Plasmonic arrays | ħΓcav = 90–116 meV | 58 (monolayer, 77 K) | Formation of strong plasmon–exciton couplings80 | |
WSe2 | Nanoparticle-on-mirror | ħΓcav ≈ 66 meV | >135 (multiple layers, RT) | Formation of strong plasmon–exciton couplings75 | |
 |  | Single nanoparticle | ħΓcav = 110 meV | ~100 (multiple layers, RT) | Formation of strong plasmon–exciton couplings79 |
Self-hybridized cavities | WS2 | Bulk TMDCs on a glass substrate |  | ~235 (thickness > 60 nm, RT) | Formation of self-hybridized exciton-polaritons84 |
 |  | Patterned bulk TMDCs | ħΓgrating = 133 meV ħΓexciton-cavity = 50 meV | 410 (multiple layers, RT) | Nanopatterned multilayer WS2 grating resonators86 |
ħΓcav = 30 meV | ~116 (thickness = 45 nm, RT) | BIC-driven intrinsic strong coupling85 |