Table 1 Comparison of Rabi splitting and operating temperature of exciton polariton based on different TMD materials

From: Strong light-matter coupling in van der Waals materials

Platform

Materials

Description

Quality factor/photonic linewidths

Rabi splitting (meV)

Research contentRef.

Fabry-Pérot cavity

WS2

DBR + DBR

400

40 (monolayer, 110 K)

Formation of exciton polariton52

2000

37 (monolayer, RT)

Polariton condensate43

 

42 (monolayer, 20 K)

Polariton parametric emission48

3000

25 (monolayer, RT)

Polariton propagation42

  

DBR+Ag

120

80 (monolayer, RT)

Macroscopic valley-polarized polaritons35

  

Ag+Ag

25–30

70–100 (monolayer, RT)

Optical control of valley polaritons34

 

WSe2

DBR+metal

110

23.5 (monolayer, RT)

Formation of Tamm-plasmon-exciton polariton60

220

7.7 (multiple layers, 15 K, 2 s exciton state)

Enhanced nonlinear interaction of Rydberg polaritons47

  

DBR + DBR

 

~26 (monolayer, 4.2 K)

Valley coherent exciton-polaritons30

240

11.4 (monolayer, RT)

Room temperature valley coherence53

4300 ± 400

30 (monolayer, RT)

Spatial coherence of exciton polariton41

 

MoSe2

DBR + DBR

4600

46 (monolayer, 5 K)

Optical Valley Hall effect59

  

Open cavity

~850

~4.4 (monolayer, 50 K, trion)

Valley-addressable exciton/trion- polaritons62

 

20 (monolayer, 4.2 K)

Exciton-polaritons in van der Waals heterostructures64

 

MoS2

DBR + DBR

ħΓcav = 9 meV

46 ± 3 (monolayer, RT)

Formation of exciton polariton24

ħΓcav = 10 meV

39 ± 5 (monolayer, RT)

Valley-polarized exciton-polaritons31

  

DBR+Ag

130

54 (monolayer, RT)

Formation of Tamm-plasmon exciton-polaritons61

Photonic crystal

WS2

BSW

924 (at 650 nm)

795 (at 645 nm)

43 (monolayer, RT)

Interacting polariton fluids36

  

1D PC

ħΓcav = 6.5 meV

22.2 (monolayer, RT)

Photonic-crystal exciton-polaritons37

  

Topological polariton

ħΓcav = 6.5 meV

38 ± 1 (monolayer, 160 K)

Generation of helical topological exciton-polaritons69

  

BIC-BSW

ħΓcav << 4.5 meV

>70 (monolayer, RT)

Strongly enhanced light-matter coupling70

 

WSe2

Metasurface

143

18 (monolayer, RT)

Metasurface integrated exciton-polaritons54

  

BSW

641

56.8 (monolayer, RT)

111.13 (4 L, RT)

Boosting exciton transport66

 

MoSe2

BIC

>900

27 (monolayer, RT)

The formation of BIC-like polaritons67

Plasmonic Nanocavity

WS2

Plasmonic arrays

ħΓcav = 247.8 meV

138 (monolayer, RT)

Formation of strong plasmon–exciton couplings55

  

Single nanoparticle

ħΓcav = 130 meV

150 (monolayer, 6 K, trion)

Tunable charged exciton polaritons76

ħΓcav = 149 meV

91–133 (monolayer, RT)

Formation of strong plasmon–exciton couplings77

 

Nanoparticle-on-mirror

ħΓcav = 180 meV

~163 (monolayer, RT)

Revealing Strong Plasmon-Exciton Coupling73

ħΓcav = 220 meV

~240 (monolayer, RT)

Greatly Enhanced Plasmon-Exciton Coupling56

MoS2

Nanoparticle-on-mirror

ħΓcav = 45 meV

~130 (monolayer, RT)

Nonlinear valley phonon scattering74

ħΓcav = 280 meV

190 (monolayer, RT)

Manipulating coherent light-matter interaction57

 

Plasmonic arrays

ħΓcav = 90–116 meV

58 (monolayer, 77 K)

Formation of strong plasmon–exciton couplings80

WSe2

Nanoparticle-on-mirror

ħΓcav ≈ 66 meV

>135 (multiple layers, RT)

Formation of strong plasmon–exciton couplings75

  

Single nanoparticle

ħΓcav = 110 meV

~100 (multiple layers, RT)

Formation of strong plasmon–exciton couplings79

Self-hybridized cavities

WS2

Bulk TMDCs on a glass substrate

 

~235 (thickness > 60 nm, RT)

Formation of self-hybridized exciton-polaritons84

  

Patterned bulk TMDCs

ħΓgrating = 133 meV

ħΓexciton-cavity = 50 meV

410 (multiple layers, RT)

Nanopatterned multilayer WS2 grating resonators86

ħΓcav = 30 meV

~116 (thickness = 45 nm, RT)

BIC-driven intrinsic strong coupling85

  1. RT room temperature, ħΓcav the linewidth of a cavity mode, ħΓgrating the linewidth of the dielectric gating mode, ħΓexciton-cavity the linewidth of the exciton-cavity hybrid mode