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Abstract
Higher-order topological insulators (HOTIs) are unique materials hosting topologically protected states, whose
dimensionality is at least by 2 lower than that of the bulk. Topological states in such insulators may be strongly
confined in their corners which leads to considerable enhancement of nonlinear processes involving such states.
However, all nonlinear HOTIs demonstrated so far were built on periodic bulk lattice materials. Here, we demonstrate
the first nonlinear photonic HOTI with the fractal origin. Despite their fractional effective dimensionality, the HOTIs
constructed here on two different types of the Sierpiński gasket waveguide arrays, may support topological corner
states for unexpectedly wide range of coupling strengths, even in parameter regions where conventional HOTIs
become trivial. We demonstrate thresholdless spatial solitons bifurcating from corner states in nonlinear fractal HOTIs
and show that their localization can be efficiently controlled by the input beam power. We observe sharp differences
in nonlinear light localization on outer and multiple inner corners and edges representative for these fractal materials.
Our findings not only represent a new paradigm for nonlinear topological insulators, but also open new avenues for
potential applications of fractal materials to control the light flow.

Introduction
Fractals are self-similar structures (i.e., next genera-

tion of a fractal can be constructed by combining copies
of its previous generation) widely represented in uni-
verse1, whose unusual internal composition finds its
manifestation in new physical phenomena observed in
solid-state physics, acoustics, and photonics, to mention
just a few areas2–19. One of the distinguishing char-
acteristics of a fractal is its fractional dimension, which
can be described by the non-integer effective Hausdorff
dimension df ¼ log‘m, where m is the number of
previous-generation elements required to construct
next-generation fractal, while ℓ is the factor, by which

length of the fractal edge would increase in the next
generation. Thus, the famous Sierpiński carpet and
gasket fractals have Hausdorff dimensions df ¼ log38
and df ¼ log23, respectively, which reflects their differ-
ent composition. Fractal systems are aperiodic, but
regular—they are sometimes considered as lacking
“bulk” due to the presence of multiple holes, inner edges
and corners. In photonics, such unusual composition of
fractal structures may open new prospects for manip-
ulation and localization of the light fields in them,
including realization of quantum anomalous transport8

and flat-band systems20,21. Particularly, intriguing pro-
blem is the possibility of realization of topological
phases in fractal structures, since the appearance of
topological edge states is tightly connected with the
dimensionality of the system and usually stems from
topological properties of its bulk, which can be very
specific in fractal systems.
Photonic systems offer a unique testbed for the reali-

zation of topologically nontrivial structures22–24, includ-
ing various types of Chern25, Floquet26, valley-Hall27, and
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higher order28–33 topological insulators. Most of these
systems, including HOTIs, were constructed on structures
with periodic bulk. However, very recently it was shown
that unidirectional traveling topological edge states can
form in fractal waveguide arrays with helical channels12,13

and in fractal Haldane model34 implying that formal
absence of insulating bulk in fractals is not an obstacle for
realization of topological phase, and bulk-edge corre-
spondence35 is still meaningful for these systems. While
fractal HOTIs were proposed in electronic systems36,37

and recently realized in acoustics14,15, and in circuits19,
higher order topological states in photonic fractals were
never observed so far. At the same time, the first experi-
ments in acoustics hint at a very unusual manifestation of
topological effects in fractal systems14,15, connected with
the possibility of localization in their multiple inner cor-
ners, and strong dependence of the parameter range,
where fractal system is topological on fractal generation
order, making them clearly distinct from conventional
HOTIs.
Among the advantages of photonic systems in com-

parison with the electronic and acoustic ones, is that the
former systems can be strongly nonlinear. Nonlinearity
not only offers a convenient knob for controlling loca-
lization and propagation dynamics of the topological
excitations, but it is often crucial for the effects that
determine practical applications of such systems38,
ranging from lasing and harmonic generation to bist-
ability, nonlinearity-controlled switching and routing
with the topologically protected states. In addition,
nonlinearity gives rise to a broad spectrum of topolo-
gical edge solitons, inheriting topological protection
from their linear counterparts39–45 as demonstrated
in46–50, and it may create the self-induced topological
phases51–53. Nonlinear effects and formation of the
unique corner solitons in HOTIs were recently reported
too54–56. It is also demonstrated that the nonlinearity
may result in the mobility control around the Fermi
level57 and geometrical frustration58.
Nowadays, there is considerable interest in the investi-

gation of nonlinear effects in aperiodic topological pho-
tonic systems, with only a few theoretical predictions
available so far59. Fractal topological photonic systems
may provide a unique platform for investigation of such
effects, since the behavior of nonlinear modes in fractal
lattices with increasing nonlinearity can be surprising and
their topological protection is not guaranteed a priori. For
example, in topological systems focusing nonlinearity
does not necessarily lead to localization enhancement.
Nonlinearity allows to tune propagation constants of
nonlinear modes within the spectrum of the system,
thereby opening the way to tune also the internal struc-
ture of excitations depending on their power, which
introduces tunability in fabricated topological structures.

Thus, topological mode can shift from one gap to another
or enter the band under the effect of nonlinearity and this
leads to qualitative and complex changes of its internal
structure, beyond simple localization or delocalization.
The investigation of nonlinear effects in aperiodic topo-
logical systems is interesting also from purely funda-
mental point of view, since this behavior may sharply
contrast (due to a much richer spectrum of fractal systems
giving rise to richer soliton families and dynamics, see
below) with behavior of nonlinear modes in periodic
structures.
In this article, we describe the first experimental rea-

lization of photonic fractal HOTI and study the interplay
between topological and nonlinear effects in this aper-
iodic system, which gives rise to topological corner
solitons. To demonstrate such states we utilize fractal
Sierpiński gasket waveguide arrays of two different types
inscribed in fused silica using fs laser writing techni-
que17,26,50,54,56,59–61. Higher order topological phase is
realized due to the controllable shift of the waveguides
that adjusts coupling strengths between sites in the first
and subsequent generations of fractals and is manifested
in the appearance of the corner states of the topological
origin. The remarkable distinctive property of this pho-
tonic system is that topological states can appear not
only in the outer, but also in the inner corners of the
structure. Moreover, topological corner states in fractals
can exist even in parameter regions, where some of
conventional HOTIs with periodic bulk become trivial.
To characterize topological properties of this aperiodic
system we employ real-space polarization index62,63.
Finally, we demonstrate thresholdless fractal topological
corner solitons bifurcating from their linear counterparts
and existing in the forbidden spectral gaps. Notice that in
the system considered in this article the Laplacian gov-
erning diffraction of light is two-dimensional, while the
main unusual properties of the linear spectrum of the
system and solitons stem namely from the internal
structure of the fractal array. This is in contrast to
recently considered lattice systems with fractional
Laplacian that affects the very balance between diffrac-
tion and nonlinearity that is reflected in properties of
solitons in the latter systems64.

Results
Fractal arrays, their linear spectra and eigenmodes
We consider two different types of Sierpiński gasket

arrays in this Article, which are further termed case-1 and
case-2 arrays. Both arrays are produced using identical
first-generation triangular element G1 highlighted with
the blue color in the schematic representation in Fig. 1a,
where we show third generation G3 of case-2 structure
(for more details of fractal array construction and results
on case-1 structure see Supporting Information). Gn
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generation of the Sierpiński gasket fractal array is formed
by three Gn−1 generation structures (for instance, G2

elements in Fig. 1a are highlighted with orange color)—on
this reason fractal arrays are self-similar. In case-2 arrays
these previous generations share three common sites,
while in case-1 array there are no such common sites.
Consequently, Gn generation includes 3n+1 sites in case-1
array, and 3n+1 − (3n − 3)/2 sites in case-2 array. Due to
the method of their construction, fractal arrays posses
multiple holes, inner corners and edges. They are char-
acterized by the effective Hausdorff dimension df ¼ log23
that is lower than 2. Further we focus on newly designed
case-2 arrays, discussing solitons in the case-1 arrays in
Supporting Information. To realize fractal HOTI, we
introduce controllable distortion (via the parameter r)
into the structure by shifting the neighboring waveguides
in the opposite directions, while keeping spacing a
between the next-nearest-neighbor waveguides constant,
as indicated in Fig. 1a. The examples of undistorted
(r = 0.5a) and distorted (r = 0.3a and r = 0.6a) arrays are

shown in Fig. 1a with the photographs of such fs-laser
written entities in fused silica.
Propagation of light beams in fractal arrays inscribed in

focusing cubic medium can be described by the nonlinear
Schrödinger equation:

i
∂ψ

∂z
¼ � 1

2
∂2

∂x2
þ ∂2

∂y2

� �
ψ �Rðx; yÞψ � jψj2ψ ð1Þ

where ψ is the dimensionless complex amplitude of the
light field; x, y, and z are the normalized transverse
coordinates and propagation distance, respectively; the
function Rðx; yÞ ¼ p

P
mne

�ðx�xmÞ2=d2
x�ðy�ynÞ2=d2y describes

the fractal case-2 waveguide array composed of single-
mode elliptical (due to writing process) waveguides with
the depth p and widths dx,y placed in the nodes (xm, yn) of
the Sierpiński gasket grid. Further, we use arrays with p =
5.7, a = 6.0, and dx = 0.25, dy = 0.75 corresponding to the
parameters of the experimental structures (see Materials
and Methods for details of normalization). Among the
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Fig. 1 Fractal higher-order topological insulators and their linear spectra. a Schematic representation of the third generation G3 of the
Sierpiński gasket waveguide arrays with r = 0.3a, 0.5a, and 0.6a. Blue and orange sectors of these arrays represent the first-generation G1 and second-
generation G2 structures, respectively. Microphotographs of the corresponding fs-laser written waveguide arrays are presented in the insets. The
orange, green, blue, and magenta ellipses in microphotographs indicate the representative sites 1, 2, 3, and 4 that will be used below for probing of
excitation dynamics. b Eigenvalues b of the stationary linear states of the G3 fractal array vs distortion parameter r. Colored curves represent localized
states, while black ones correspond to the delocalized states. c Intensity distributions shown within −23 ≤ x, y ≤ 23 window for four representative
eigenstates corresponding to the colored circles in (b). d Eigenvalues b of the stationary linear modes of the G4 fractal array vs distortion parameter r.
For comparison, in panel (e) we show eigenvalues of linear modes of non-fractal array of the same size as fractal G4 structure. f Intensity distributions
shown within −45 ≤ x, y ≤ 45 window for eigenmodes of G4 fractal array corresponding to the colored circles 5–6 in (d), and for eigenmodes of non-
fractal array corresponding to the colored circles 9-12 in (e). Here and in figures below the array depth is p = 5.7
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advantages of continuous model Eq. (1) is that it takes
into account the exact shapes of the waveguides (sites of
the array), accounts for coupling between all waveguides
of the structure, even very distant ones, possible
radiation from waveguides, and it even describes the
variation of modal shapes inside the waveguides that can
be caused by the nonlinearity and that may affect
stability (for example, in tight-binding model operating
with modal amplitudes, the dynamics of field inside
waveguides is not considered). At the same time, tight-
binding Hamiltonian that can be derived from contin-
uous model (1) sometimes allows analytical treatment of
the system and is particularly helpful for the character-
ization of its topological properties. Therefore, we
further mainly use the continuous model to reproduce
experimental results and to accurately describe the main
distinctive features of linear spectrum of the system and
use its tight-binding version as an auxiliary tool for the
characterization of topological properties. Notice that
model (1) possesses time-reversal symmetry, while if one
disregards the ellipticity of the waveguides, the corre-
sponding array is characterized also by C3 discrete
rotational symmetry.
We first characterize the linear spectrum of such arrays

by omitting nonlinearity in Eq. (1) and calculating the
linear eigenmodes of the form ψ = u(x, y)eibz using plane-
wave expansion method (see Materials and Methods),
where u describes the modal shape, and b is the propa-
gation constant (eigenvalue). The linear spectrum of the
fractal array of third generation G3 in the form of
dependence of eigenvalues of all supported modes b on
distortion parameter r is presented in Fig. 1b, where
colored curves correspond to the localized states, while
black curves correspond to the extended states. Remark-
ably, in fractal arrays localized in-gap states are encoun-
tered in both r > 0.5a and r < 0.5a regimes, in sharp
contrast with some HOTIs with periodic bulk (like
kagome or square SSH lattices), where localized states
appear only for one of these types of distortion leading to
dominance of the inter-cell coupling over the intra-cell
one. Notice that the state shown with magenta curve can
exist even at r = 0.5a. Intensity distributions of four
typical localized states corresponding to circles in Fig. 1b
are shown in Fig. 1c. Magenta, green, and cyan branches
correspond to the co-existing outer corner states with
different internal structure, representative namely for the
case-2 fractal array (notice that corner modes should not
necessarily have light in the very corner waveguide, see for
example mode 3 that has two out-of-phase spots in
nearest to corner waveguides and that coexists with mode
4, whose main maximum is located in the corner).
Co-existence of several corner modes is also known in
non-fractal systems29. In contrast, red branch corresponds
to the states, where strongly localized spots appear

simultaneously in multiple inner and outer corners, so
one can call them hybrid corner states, as they reflect
unique internal composition of the fractal array (there are
several such branches in spectrum with spots only in the
corners that become nearly degenerate for small r values,
see mode 1 in Fig. 1c). Outer corner states are all three-
fold degenerate, while their number is not affected by the
fractal generation order n. According to the definition of
the effective dimensionality de ¼ limn!1ðlnN= lnNlÞ,
where N is the number of sites occupied by the corner
state and Nl = 3 ⋅ 2n−1 + 1 is the total number of sites on
one outer edge14,15, outer corner states are zero-dimen-
sional, as de → 0 with increase of the fractal generation
order n. In contrast, the number of spots in hybrid corner
states N = (3n + 3)/2 increases with n, so that de for
hybrid state approaches effective Hausdorff dimension-
ality df ¼ log23 of the structure. Thus, fractal HOTIs
offer, in principle, the opportunity to observe linear
photonic corner states of different effective dimension-
ality. However, while excitation of outer corner states with
de → 0 is technically simple because it can be achieved by
focusing light into several corner waveguides only, the
observation of truly stationary linear hybrid corner states
with de → df may be more challenging and would require
simultaneous excitation of many sites, including inner
corners, as in mode 1 from Fig. 1c, to avoid slow switching
of light into non-excited sites. Notice that such switching
can be suppressed even by very weak nonlinearity that
allows us to observe even strongly localized hybrid corner
solitons.
To illustrate that the spectrum of the system remains

qualitatively similar for fractals of different generations
and to prove that corner states in fractal topological
insulators are indeed well-localized, in Fig. 1d we present
a linear spectrum of the fourth generation G4 of the
Sierpiński gasket waveguide array. Remarkably, while the
density of lines in bands of delocalized states has
increased in Fig. 1d in comparison with spectrum Fig. 1b
of G3 system, the structure of the spectrum did not
change, and all corner states associated with magenta,
cyan, green lines, and hybrid corner states associated with
red line are clearly visible in the spectrum. The examples
of such corner states are presented in the top row of
Fig. 1f. One can clearly see that states 6-8 are localized in
the outer corner of the structure, while hybrid state 5 has
intensity maxima also in all inner corners. This confirms
that the formation of corner states in fractal structure is a
robust effect that persists in all generations. For the sake
of comparison, in Fig. 1e we present also linear spectrum
of non-fractal waveguide array of the same size as G4

structure. One can observe that multiple additional bands
appear in the spectrum of this system (particularly at r >
0.5a) in comparison with the fractal structure. While
states associated with red and magenta curves remain
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practically unaffected, green and cyan corner state bran-
ches strongly overlap with newly emerged bands, i.e. the
existence domains of associated corner states in r are
strongly reduced. Indeed, profiles of corresponding modes
in points 11 and 12 at r = 0.6a presented in the bottom
row of Fig. 1f reveal coupling with bulk modes, while in
fractal system similar states 7 and 8 are strongly localized
in the corner. This hints on the fact that fractality of the
structure not only preserves nontrivial topology (as was
concluded for Chern insulators supporting unidirectional
edge states12,13), but even substantially expands the
domain of existence of certain topological states. It should
also be mentioned that even though the counterpart of
hybrid red branch in the fractal array exists in non-fractal
system (due to the very structure of G1 element), the
effective dimensionality of the latter state is 2 as opposed
to the effective Hausdorff dimensionality df ¼ log23 of
this state in fractal system.
We also compared the results of dynamical single-site

excitation (in linear case) of representative sites in fractal
and non-fractal G4 structures (see Supporting Informa-
tion). It was found at r < 0.5a the output patterns for
corner excitations are similar as in both cases strongly
localized corner states are excited. The largest differences
between diffraction patterns in fractal and non-fractal
geometries are observed at r = 0.5a, where diffraction in
the non-fractal system is usually stronger. Finally, at r >
0.5a the excitation of outer corners in both geometries
leads to the formation of topological corner modes, but
dynamics in the bulk can be different. These results
illustrate that the fractality of the structure does not
destroy the HOTI phase.
To characterize the topological properties of fractal

Sierpiński gasket waveguide arrays one can employ the
real-space polarization index62,63. This is because fractal
structure considered here is aperiodic and lacks transla-
tional symmetry65. The nonzero quantized polarization
index together with the rotational crystalline symmetry is
used to predict the appearance of the corner states32. The
remarkable prediction of this analysis (to calculate real-
space polarization index we glue two Sierpiński gaskets to
form a rhombic structure, and then set to zero couplings
with “missing” sites to reproduce fractal system—see
Materials and Methods and Supporting Information for
details) is that this index for both hybrid and outer corner
states is 0.5 in their respective existence domains within
the gap, meaning that all such corner states are of topo-
logical origin. Similar conclusions can be drawn for the
case-1 fractal arrays, as we also discuss in Supporting
Information. Thus, fractal Sierpiński gasket arrays allow
to realize HOTIs in a broader range of distortion para-
meters r in comparison with HOTIs based on the periodic
kagome and Su-Schrieffer-Heeger arrays54,55, where in
our notations corner states are possible only at r < 0.5a.

Note that although the topological nature of corner
modes in tight-binding triangular and kagome-like
structures has been discussed66,67, recent theoretical and
experimental studies in various fields of physics32,54,68–73

show that in the presence of disorder such structures
provide absolutely the same degree of topological pro-
tection as systems based on square or honeycomb lattices.
In the presence of a small disorder in the depths and
positions of the waveguides, the eigenvalues of the corner
modes may fluctuate slightly, but they remain in the
topological gap and the topological protection (localiza-
tion and absence of coupling with bulk modes) is pre-
served as long as the introduced disorder is not strong
enough to close/completely destroy the topological gap.
The topological modes in our fractal system also show
this resilience to disorder. Taking into account that our
system features time-reversal symmetry, while the array
profile possesses C3 discrete rotational symmetry (if one
disregards non-crucial ellipticity of the waveguides), one
can conclude that our system can be classified as a higher
order topological crystalline insulator32,74–78, which
shows the absence of quantized multipole moments but is
topologically protected by the C3 rotational symmetry.
Thus, summarizing the above properties of the spec-

trum of fractal structures in comparison with other types
of lattices already used for the construction of HOTIs
(including SSH and kagome ones) one can conclude that
(i) the fractal arrays can be topological in both regimes r <
0.5a and r > 0.5a, and that topological states in them can
appear with much richer shapes allowing to create topo-
logical corner solitons with multipole internal structure
(see modes 6–8 in Fig. 1); (ii) several topological states can
co-exist in spectrum of fractal arrays for the same value of
parameter r and give rise to different stable soliton
families; (iii) hybrid topological states can appear in any
internal corner of the structure that can be important for
potential practical applications (see modes 5 and 9 in
Fig. 1); and finally, lack of insulating bulk in fractal system
may even broaden the range of existence of some topo-
logical states existing in non-fractal geometry.

Topological soliton families
In the presence of nonlinearity localized corner states in

fractal arrays give rise to the families of bifurcating from
them thresholdless topological corner solitons. Because in
our experimental system that we model here temporal
dynamics can be neglected due to the long pulses used, we
consider only the competition between diffraction,
refraction in inhomogeneous landscape R, and focusing
nonlinearity. Thus, solitons that we consider here are
spatial solitons. They can emerge in the gaps of the linear
spectrum from different topological corner states and they
actually represent nonlinear deformations of these states,
but this deformation may be strong, because sufficiently
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strong nonlinearity can lead to contraction, or instead to
strong expansion of the corner soliton. Such spatial soli-
tons also have the form ψ = u(x, y)eibz, whose substitution
into Eq. (1) yields the equation bu ¼ 1

2 ð∂2x þ ∂2yÞuþRuþ
u3 that was solved using Newton method (see Materials
and Methods). Now propagation constant b parameterizes
the family of spatial solitons, determining their power U=
∫∫∣ψ∣2dxdy. In the bifurcation point from linear topolo-
gical corner state the propagation constant of spatial
soliton b coincides with the eigenvalue of corresponding
linear state blin. The amplitude max juj and power U of
soliton vanish as b → blin, i.e. in the bifurcation point the
soliton transforms into a corresponding linear state with
vanishing amplitude. On this reason, the solitons naturally
inherit the internal structure of linear corner states from
which they emerge. This also means that such solitons are
thresholdless, i.e. they exist even at low powers. When b
increases away from the bifurcation point, the amplitude
and power of soliton increase indicating on progressively
growing impact of nonlinearity that of course con-
siderably affects the shapes of spatial solitons.
The families of corner solitons in fractal insulators can

be very rich. In Fig. 2 we show representative U(b)
dependencies in G3 structures. At r = 0.3a, when a set of
practically degenerate linear topological modes with spots
localized only on the inner and outer corners exist,
topological solitons can form in any corner of the fractal
array, see red (outer corner) and blue (inner corner)
families in Fig. 2a bifurcating from corresponding linear
modes (or their linear combination, because for this r
there exist a set of practically degenerate hybrid corner
states). Propagation constants blin ≈ 0.59 of such linear
hybrid corner states from which soliton bifurcation occurs
are indicated in Fig. 2a by a narrow gray region. Notice
that red and blue U(b) soliton branches may be very close,
especially at b → blin, but they correspond to different
soliton solutions located in outer and inner corners of the
array, respectively, as seen from profiles in Fig. 2c, d. For
selected r value such spatial solitons are strongly localized
at the low and intermediate powers (see profiles in Fig. 2c,
d corresponding to points 1 and 3 in Fig. 2a). For illus-
trative purposes here we superimpose ∣ψ∣ distribution for
spatial soliton on array profile R shown by white ellipses.
Importantly, because nonlinearity leads to shift of the
propagation constant within the gap of the linear spec-
trum, one can control the localization degree of corner
solitons by increasing their power. The transformation of
spatial soliton shape substantially depends on where the
propagation constant of the linear corner state giving rise
to the soliton family is located in the gap. If it is located
close to the bottom of the gap, the spatial soliton may first
contract and then expand, when its propagation constant
approaches the band of extended states. If the linear
corner state is located close to the center of the gap and is

already sufficiently well localized, the soliton tends to
broaden under the action of focusing nonlinearity when
its propagation constant approaches the band. When b
enters into the band occupied by extended states (and
even crosses it), the spatial soliton couples with bulk
modes and looses localization (as illustrated by profiles in
points 2 and 4 of Fig. 2a, where soliton clearly couples
with bulk states). It should be stressed though, that such
spatial solitons coupled to bulk modes are still self-
sustained nonlinear modes, and even though they extend
across the array, they can still be dynamically stable. It
should be stressed that in focusing nonlinear medium
considered here hybridization of solitons with extended
states can occur only for linear bands of extended states
(shown in Fig. 2a, b with wider gray domains) laying to the
right of the propagation constant blin of linear corner
state, from which soliton bifurcates. This is because
focusing nonlinearity tends to increase b. Bands of
extended states laying to the left of blin are therefore not
excited, as nonlinearity shifts the propagation constant of
soliton further away from these bands.
Fractal HOTI with r = 0.6a supports multiple families

of topological solitons with different symmetries forming
in the outer corners. They are shown in Fig. 2b with
magenta, cyan, and green lines. When the power U for
these families of solitons shown by different colored lines
vanishes, their propagation constants approach different
vertical gray lines or narrow regions corresponding to
propagation constants blin of linear corner states. These
propagation constants are also indicated in Fig. 1b by lines
of the same color as for soliton families. Solitons inherit
the symmetry of the corresponding linear states. Thus, in
the green family (Fig. 2f, points 7 and 8) corner maximum
is out-of-phase with maxima in two nearest-neighbor
sites; solitons from blue family have empty outer corner
site, while fields in nearest-neighbor sites are out-of-phase
(Fig. 2g, points 9 and 10); while most localized solitons
from magenta branch have nearly equal intensities in
three close sites in the corner (Fig. 2h, points 11 and 12).
While the internal structure of soliton solutions is
determined by the structure of linear modes giving rise to
corresponding nonlinear families (making them looking
as dipoles as in Fig. 2g or combinations of in-phase humps
as in Fig. 2h), such states cannot be represented as non-
linear combinations of several simpler (single-hump)
solitons, because there are no such more localized and
thresholdless states in corresponding topological gaps
that would occupy only one of involved waveguides. For
selected r value such solitons typically gradually broaden
with increase of power and strongly expand into array
when coupling with extended states occurs upon entering
their propagation constant b into different bands of the
linear spectrum. This coupling dramatically changes the
structure of nonlinear modes. Interestingly, for most of
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these solutions one can find in the next gap (lying above
the gap where bifurcation from linear corner mode
occurs) a family that looks like a “continuation” of the
family in lower gap. Corresponding solutions usually have

different symmetries of tails. Notice also that extended
linear states occupying multiple sites can also produce
nonlinear families, as illustrated by the orange branch
in Fig. 2b, see corresponding nonlinear modes in Fig. 2e.
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As shown in Fig. 2b, this branch bifurcates from the top of
the band of extended states. While this branch does not
cross with branches of corner solitons (green or cyan
curves), with increase of its power one can see certain
growth of intensity in the corners of the structure in such
extended states (point 6, Fig. 2e).
Notice that nonlinearity, whose impact increases with

increase of soliton power U, affects the symmetry of the
total refractive index landscape Rðx; yÞ þ jψj2 in a way
determined by the shape of particular nonlinear topo-
logical state ψ. When the nonlinear state is in the gap, it
is still topologically protected, but when nonlinearity
becomes strong enough to shift its propagation con-
stant into the band, one may conclude that the per-
turbation induced by nonlinearity became sufficiently
strong to destroy the protection. It is thus reasonable to
consider the power at which nonlinear family enters
into the band of extended states as a critical power for
this particular type of solution at which it looses
protection.
It should be stressed that the properties of topological

solitons do not change qualitatively in larger fractal sys-
tems, i.e. our results remain valid for any fractal genera-
tion (this is also the consequence of the fact, that the
linear spectrum of the fractal array remains qualitatively
similar in next generation, see Fig. 1d). To illustrate this,
we obtained all soliton families presented in Fig. 2a, b for
G3 structure, also in larger G4 array, see Fig. 2i, j and
Supporting Information. One can see that the behavior of
soliton families U(b) in larger structure is qualitatively
similar: Increasing power results in reshaping of the
nonlinear states and eventually drives them into the band
(different families feature different degree of localization,
but inside the gap they all are localized near respective
corners). Stability properties also remain similar in G4

array, see solid branches in Fig. 2i, j corresponding to
stable solitons, and the only dashed green branch corre-
sponding to unstable states.
We also note that families of topological corner solitons

can exist in non-fractal HOTIs. This becomes clear from a
comparison of linear spectra of fractal and non-fractal
arrays in Fig. 1d, e. Thus, soliton families bifurcating from
red and magenta curves in Fig. 1e will share similar
properties for all values of parameter r with fractal soliton
families (of course, there will be some differences in
soliton shapes dictated by different internal structures of
corresponding arrays). At the same time, some other
families of localized corner states will actually disappear
because corresponding linear modes in non-fractal geo-
metry couple with bulk modes (as it happens for green
and cyan curves in Fig. 1e that at least for r = 0.6a overlap
with bulk band). We found that solitons bifurcating from
a red branch at r = 0.3a and from a magenta branch at r=
0.6a are stable in non-fractal geometry.

Despite a large variety of corner solitons appearing in
fractal HOTI, nearly all of them are dynamically stable.
Their stability was verified by adding small-scale random
perturbation (up to 5% in the amplitude) into input field
distributions and propagating them in the frames of Eq.
(1) over a very long distance z ~ 104 exceeding length of
our sample z = 88 (that corresponds to 10 cm) by two
orders of magnitude. This is sufficient for the detection of
all possible, even very weak instabilities. For all branches
shown in Fig. 2a, b with solid lines, such perturbations
resulted only in small-amplitude oscillations signalizing
on their stability, while decay was observed only for a
small part of the green branch shown with the dashed
line. To provide even more rigorous proof of existence of
stable corner solitons in fractal HOTI, we performed
linear stability analysis for all obtained soliton branches.
The results of the stability analysis described in Sup-
porting Information are fully consistent with results
obtained by direct propagation of perturbed states.

Observation of the corner solitons in fractal HOTI
To demonstrate corner solitons in fractal HOTIs we

fabricated a set of case-2 G3 structures with various dis-
tortion parameters r = 0.3a, r = 0.5a, and r = 0.6a using
fs-laser inscription technique (for experiments with case-1
array see Supporting Information). Arrays were inscribed
in 10 cm-long fused silica samples (see Materials and
Methods for details of fabrication). Exemplary photo-
graphs of the inscribed arrays are presented as insets in
Fig. 1a. We selected four representative locations to study
excitation dynamics, as indicated with colored ellipses
with numbers 1 (outer corner site), 2 (site on the outer
edge), 3 (site on the inner edge site) and 4 (inner corner
site). For excitation we used pulses with a duration of
about 280 fs of variable energy E derived from 1 kHz
Ti:sapphire laser to achieve strong nonlinear response
(see Materials and Methods).
First, we investigate the structure with r = 0.3a that

supports hybrid corner states. In Fig. 3a–d, we compare
experimental output intensity distributions (images with
maroon background) obtained at the different pulse
energies E for the excitation of the four above-mentioned
sites of the array (in each case, the excited sites are
indicated by white arrows) with theoretical distributions
for the different powers U obtained by solving Eq. (1)
(images with white background) Here, we utilize the split-
step Fourier method for solving Eq. (1) with a given input
(see Materials and Methods). Notice that because pulsed
excitations are used, output experimental intensity dis-
tributions represent averaged patterns containing con-
tributions from regions around pulse peak, propagating in
the strongly nonlinear regime, and contributions from
linearly diffracting tails, that usually make the averaged
pattern less localized, slightly washing out transitions
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from delocalized to localized patterns upon variation of
pulse energy E. Also, the output may slightly vary
depending on the efficiency of coupling of focused light
beam into the selected waveguide. Thus, when experi-
ments are compared with the results of modeling, the
power level U in simulations is selected for each case to
produce the best agreement with the experimental dis-
tribution. Since well-localized thresholdless solitons at
r = 0.3a can form in any inner or outer corner of this
structure, the excitation of sites 1 and 4 (Fig. 3a, d) yields
strongly localized, practically single-site patterns in both
linear (E = 10 nJ) and nonlinear (e.g., E = 750 nJ)
regimes, confirming the formation of thresholdless cor-
ner solitons. In contrast, when exciting edge sites 2 and 3
(Fig. 3b, c), we observe diffraction and dynamic oscilla-
tions of power between close pairs of waveguides even at
pulse energies E ~ 800 nJ, indicating that inner and outer
edges do not support well-localized thresholdless in-gap
states and significant power levels are needed to achieve
localization at such edges. It should also be stressed that
while theory predicts soliton expansion due to coupling
with bulk modes at sufficiently large power levels, it is
hard to achieve corresponding pulse energies at which
this coupling is visible in the experiment without pro-
ducing optical damage to the material, especially at the
input facet. In this system, where the width of the
topological gap is not small (especially at r = 0.3a),

crossing of the gap requires pulse energies about E ~
1000 nJ and this is already very close to the optical
damage threshold. We thus present the results for pulse
energies, at which material and waveguiding structure
cannot be damaged.
Turning to an array with r = 0.5a, where spacing

between nearest sites is the same in the entire array, one
should take into account that even though the magenta
branch of outer corner states already exists in this bor-
derline case, its localization is rather weak (see state 2 in
Fig. 1c), thus the efficiency of its excitation with single-site
input is low. On this reason, in Fig. 4a showing experi-
mental patterns for this structure, the beam with E =
10 nJ launched into site 1 experiences diffraction, even
though some fraction of power clearly remains in the
corner waveguide. Since the width of the gap for r = 0.5a
case is rather narrow, even moderate variations of pulse
energy may cause considerable variations of the width of
the output intensity distribution. Thus, diffraction
becomes nearly suppressed when the pulse energy
increases to the moderate value of E = 450 nJ, while
further increase of E results in the excitation of the outer
corner soliton. For excitation of sites 2, 3, and 4 shown in
Fig. 4b–d, respectively, one needs substantially higher
pulse energies to achieve comparable degree of localiza-
tion, while particularly for sites 3 and 4 localization
remains weak even for the energies of E ~ 750 nJ.
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Fractal case-2 array with r = 0.6a supports three types
of outer corner solitons with different symmetries, as
shown in Fig. 2b. Among them, the soliton belonging to
cyan branch cannot be excited by focusing beam into site
1, because this site is empty for such nonlinear states (due
to their parity). Therefore, excitation of site 1 is supposed
to yield nonlinear combination of states from magenta
and green branches of Fig. 2b. This is what we observe in
Fig. 5a, where for all pulse energies from 10 to 750 nJ light
remains practically confined in three closely spaced outer
corner waveguides, closely resembling the profile of the
outer corner soliton and confirming that in this case it is
also thresholdless. Notice that in this case, as in the r =
0.3a case, it was also impossible to reach pulse energies at
which coupling with bulk modes becomes pronounced
without optical damage of the material. For r = 0.6a no
localized linear states exist in the array, except for states in
outer corners. Consequently, excitations of sites 2 and 3 at
all pulse energies yield broad output distributions, where
power oscillates between five waveguides, and where
intensity maximum may not be located in the excited
waveguide (Fig. 5b, c). Similarly, excitation of site 4 yields
nonlinear state akin to nontopological state from orange
branch of Fig. 2b. Interestingly, with increase of E this
state initially slightly contracts, but then expands as seen
in Fig. 5d (compare this state with well-localized inner
corner soliton obtained in the same location at r = 0.3a).
To quantitatively characterize the localization of all

output intensity distributions presented in Figs. 3–5 in

Fig. 6 we show the dependence of the experimentally
measured form-factor χ as a function of input pulse
energy E for all considered values of r and excitation

positions. Here the form factor is calculated as χ ¼
½RR I2dxdy=ðRR IdxdyÞ2�1=2, where I(x,y) is the measured
output intensity distribution. Large χ ~ 1 implies good
localization, while low χ values correspond to delocalized
outputs, since this quantity is approximately inversely
proportional to the width of the pattern. In Fig. 6a at r =
0.3a one clearly sees that for excitation of sites 1 and 4
hosting hybrid corner modes χ remains close to 1 for all
energy levels indicating on very strong localization of the
beam. When sites 2 and 3 are excited, no topological
modes form and form-factor is notably reduced, but
because at this distance the light beam oscillates mainly
between two waveguides, χ drops down only to ~ 0.6. In
Fig. 6b at r = 0.5a the excitation efficiency of corner state
at site 1 is very low, hence χ is small (~ 0.2) in linear
regime, but it substantially increases with E reflecting the
fact of nonlinearity-induced contraction of state to corner
waveguide observed in Fig. 4a. Similar nonlinearity-
induced localization is observed for excitation at site 2,
but for all other excitation positions we do not observe
pronounced localization at available energy levels. Finally,
in Fig. 6c at r = 0.6a excitation at site 1 yields combina-
tion of two topological corner states that is reflected in
moderate form-factor χ ~ 0.55 because light remains
concentrated approximately on three waveguides at all
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energy levels. For excitation of sites 2-4, when light
oscillates between five closely spaced waveguides and no
topological states form, one again observes relatively low χ
values for all power levels, with the only exception for site
4, where around E ~ 200 nJ nonlinearity does cause cer-
tain contraction of the output, visible also in Fig. 5d in
both experiments and simulations. These results are in
full agreement with theoretical simulations of dynamical
excitation of selected sites.

Discussions
In summary, we have reported the first example of

nonlinear photonic fractal HOTI that supports a rich
variety of topological corner states. The remarkable new
feature of fractal structures considered here is that they
possess corner states (that may have different effective
dimensionality) for a very broad range of distortion
parameters, substantially exceeding the range, where
higher order topological phase emerges in HOTIs built on
periodic lattices. The presence of such states facilitates
nonlinear light localization and resulted in observation of
thresholdless corner solitons, in both outer and inner
corners of these structures. Our results extend the class of
HOTIs and highlight new prospects for exploration and
practical utilization of nonlinear phenomena in photonic
fractals. They may be used in new designs of topological
lasers or on-chip lasers79 that can potentially emit in
richer set of states than conventional higher order topo-
logical lasers (for example, depending on gain landscape

and amplitude, lasing can occur either in outer or in inner
corners of the structure, or in corner states with different
parity), in shaping of higher harmonic fields in various
parametric processes, design of fractal microresonator
networks and quantum interfaces of fractal structures,
control of condensation in light-matter systems with
strong coupling, like polariton condensates in fractal
microcavities under resonant or nonresonant pump, and
in many other settings. Last but not least, the results are
not limited to the optical waveguide array systems; they
may inspire related investigations in metasurfaces80 or
thermal photonic systems81.

Materials and methods
Normalization of parameters in theoretical model
The transverse coordinates x, y in Eq. (1) are normal-

ized to the characteristic scale r0 = 10 μm, the propa-
gation distance z is normalized to the diffraction length
kr20 � 1:14mm (corresponding to z = 1), where k = 2πn/
λ is the wavenumber in the medium with unperturbed
refractive index n (for fused silica n ≈ 1.45 and the
nonlinear refractive index n2 ≈ 2.7 × 10−20 m2/W), and
λ = 800 nm is the working wavelength. The array depth
p ¼ k2r20δn=n is proportional to the refractive index
contrast δn of the waveguides. Thus, in our arrays next-
nearest-waveguide distance a = 6.0 corresponds to
60 μm, waveguide widths dx = 0.25, dy = 0.75 corre-
spond to 2.5 μm × 7.5 μm wide elliptical waveguides,
sample length of 10 cm corresponds to z ≈ 88, while array
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depth p = 5.7 corresponds to refractive index contrast
δn ≈ 6.4 × 10−4.

The plane-wave expansion method for calculation of linear
spectrum
By inserting the ansatz ψ = ueibz into Eq. (1), one

obtains the equation

bu ¼ 1
2

∂2

∂x2
þ ∂2

∂y2

� �
uþRuþ u3 ð2Þ

Here, we choose the fractal array R shown in Fig. 1a as a
supercell for the plane-wave expansion method. We
expand u and R into the Fourier series with the sufficient

number of harmonics:

u ¼
X
m;n

cm;ne
iKmxþiKny; R ¼

X
l;s

vl;se
iKlxþiK sy ð3Þ

where cm,n and vl,s are the Fourier coefficients, Km,l = 2
(m, l)π/Dx, Kn,s = 2(n, s)π/Dy, Dx,y are the sizes of the
supercell along the x, y axes, and (m, n, l, s) are integers.
Plugging Eq. (3) into the linear version of Eq. (2), after
simple algebraic transformations one obtains a series of
linear equations with different (m, n, l, s):

� 1
2

K2
m þ K2

n

� �
cm;n þ

X
l;s

vl;scm�l;n�s ¼ bcm;n ð4Þ
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Rewriting Eq. (4) in matrix format and diagonalizing the
matrix, one obtains the eigenvalues b (i.e. the spectrum)
and the corresponding eigenvectors cm,n that allow to
construct the eigenmodes u of the array according to
Eq. (3).

The Newton method for calculation of nonlinear states
To obtain topological corner solitons we transform Eq.

(2) with included nonlinear term into a series of nonlinear
equations fm,n = 0 using the finite-difference approx-
imation of derivatives:

f m;n ðuÞ ¼ 1
2

umþ1;n � 2um;n þ um�1;n

dx2 þ
um;nþ1 � 2um;n þ um;n�1

dy2

 !
þ

Rm;num;n þ u3m;n � bum;n

ð5Þ

where u is a vector containing the values of the function
um,n on the numerical grid, and (dx, dy) are the transverse
steps. For each nonlinear equation, one finds the
corresponding elements of the Jacobi matrix J through

J ðm;nÞ;ðp;qÞ ¼
∂f m;nðuÞ
∂up;q

ð6Þ

The method consists in generating solution of corre-
sponding system of nonlinear equations using the iterative
procedure

unew ¼ uold � J�1f ð7Þ
where f is the vector with the elements given by Eq. (5).
The iterations are stopped when the difference between
solutions unew and uold reduces below the required level,
typically below 10−16.

The split-step Fourier method for solving the nonlinear
Schrödinger equation
We rewrite Eq. (1) into

∂ψ

∂z
¼ Lψ þNψ ð8Þ

with L ¼ i
2 ð∂2x þ ∂2yÞ and N ¼ iðR þ jψj2Þ being linear

diffraction and nonlinear operators, respectively. For
small propagation steps one can treat/apply linear and
nonlinear operators successively at each propagation
step82. For instance, applying the Fourier transform to
Lψ one obtains FfLψg ¼ � i

2 ðω2
x þ ω2

yÞψ̂, where ψ̂ is the
Fourier transform of ψ, ωx,y are the frequencies. This
allows to obtain complex field amplitude in Fourier
domain on the next step dz as

ψ̂ðz þ dzÞ ¼ e�
i
2ðω2

xþω2
yÞdzψ̂ðzÞ ð9Þ

By taking inverse Fourier transform and applying the
nonlinear operator one eventually obtains

ψðz þ dzÞ ¼ eNdzF�1fe� i
2ðω2

xþω2
y Þdzψ̂ðzÞg ð10Þ

where F�1 is the inverse Fourier transform operator.

Fs-laser inscription of the waveguide arrays
Fractal waveguide arrays were written in 10 cm long

fused silica glass substrate (JGS1). The individual wave-
guides were inscribed by circularly polarized beam with
central wavelength of 515 nm, with pulse duration of
230 fs, repetition rate 1MHz, and pulse energy 270 nJ,
focused with an aspheric lens (NA = 0.3) under the
sample surface in the depth range from 600 to 1000 μm
near the preselected optimal depth of 800 μm. Translation
of the sample with respect to the focus was performed by
a high-precision positioner (Aerotech) with a scanning
velocity of 1 mm/s. Waveguides demonstrate propagation
losses less than 0.3 dB/cm at λ = 800 nm. During writing
process we keep the values of the distortion parameter
within the range 0.2a < r < 0.8a to avoid overlap between
neighboring elliptical waveguides. This guarantees the
absence of uncontrollable distortions and excellent
reproducibility of laser-written arrays.

Experimental excitation of the waveguide arrays
In experiments, we employed single-waveguide excita-

tions using fs pulses of variable energy E from 1 kHz
Ti:sapphire laser at 800 nm central wavelength. Initially,
short pulses with a 40 fs duration and wide spectrum from
a regenerative amplifier system Spitfire HP (Spectra
Physics) first pass through an active beam position sta-
bilization system (Avesta) and an attenuator, and after-
wards are launched into a 4f single-grating stretcher-
compressor with a variable slit. Spectra of such pulses are
narrowed by a slit down to 5 nm, which corresponds to
the pulse duration of 280 fs. This increase in the pulse
duration allows to prevent optical collapse and strong
spectral broadening during pulse propagation in the
waveguides, i.e. it allows to neglect the temporal effects.
The pulses after stretcher compressor were focused into
selected waveguides and the output intensity distributions
after propagation in 10 cm sample were recorded using a
Kiralux CMOS camera (Thorlabs). The input peak power
in the waveguide (for each pulse in the 1 kHz sequence)
was defined as a ratio of the input pulse energy E to the
pulse duration τ = 280 fs. Taking into account the losses
for the matching with the focusing lens the input power
can be evaluated as 2.5 kW for each 1 nJ. For example,
maximal excitation energy of E = 800 nJ in experimental

Zhong et al. Light: Science & Applications          (2024) 13:264 Page 13 of 16



patterns presented here corresponds to the peak power of
2.0MW. Note that the waveguide array may be also
manufactured in other materials60,83.

Real-space polarization index
Fractal waveguide arrays are aperiodic structures that

are sometimes considered as structures without bulk due
to the method of their construction. In such structures the
appearance of topological corner states can be associated
with the nonzero real-space polarization index36,62,63,
allowing to characterize topological properties of this
system: P ¼ � i

2π ln½detðSÞ�, where Sm;n ¼ Qy
me

i2πq̂=LQn, L
is the length of the fractal array along the q direction, q̂ is
the position operator, Qn is the eigenfunction of nth state
of the fractal array obtained with the periodic boundary
conditions in the q direction (that is usually selected along
the outer edge of the array) that lies below the corner state
for which polarization index is calculated. Real-space
polarization index for states in our system can be calcu-
lated using tight-binding approximation. In this approx-
imation the fractal array, like G3 generation of the
Sierpiński gasket, whose sites are depicted in Fig. 7, is
described by the tight-binding Hamiltonian that accounts
only for nearest-neighbor couplings of two types: the
“intra-cell” coupling with coupling strength labeled as t1,
and “inter-cell” coupling labeled as t2 (see Fig. 7, where
these couplings are denoted by lines of different color).
These coupling strengths are determined by the distortion
parameter r, for r = 0.5a one has t1 = t2. To be able to
apply periodic boundary conditions upon calculation of
eigenfunctions Qn, we construct the rhombic structure
from two stacked Sierpiński gasket arrays (shown in
Fig. 7), real and virtual ones, neglecting coupling with the

virtual and missing sites (see the image and description of
corresponding structure in Supporting Information).
A detailed description of this approach and additional

details can be found in Supporting Information, while
here we show the results of the calculation. The linear
spectrum of the fractal array obtained with the aid of the
tight-binding approximation is shown in Fig. 8a. For
consistency with the spectrum of Fig. 1b, obtained using a
continuous model, we marked corner and all other loca-
lized states with the same colors as in Fig. 1b. As men-
tioned above, the calculation of the real-space polarization
index for a given r requires knowledge of profiles of all
eigenstates of the fractal array. In particular, for calcula-
tion of the real-space polarization index P for the magenta
corner state laying in the gap of spectrum in Fig. 8a, one
has to consider all eigenstates Qn of array laying in the
linear spectrum below this magenta curve, in accordance
with formula for P provided above. The real-space
polarization index for the magenta corner state is shown
in Fig. 8b, and its value is 0.5 (i.e. quantized) exactly in the
region where the corner state exists in the gap. This
indicates on the topological nature of this state. However,
magenta curve associated with corner state exists in the
gap only within a finite range of distortion coefficients r in
Fig. 1b (intra-cell coupling constants t1 in Fig. 8a). Outside
this range the gap closes, corner state delocalizes and
transforms into extended state in the band. The calcula-
tion of P for such extended eigenstate with the same index

t1
t2

Fig. 7 Schematic illustration of third generation G3 of the
Sierpiński gasket. The intra-cell couplings between sites (gray circles)
are indicated in this plot with thin red lines, while inter-cell couplings
are indicated with thick blue lines. The intra-cell and inter-cell
coupling strengths are given by t1 and t2, respectively

3
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Fig. 8 Real-space polarization index. a Spectrum of the G4 fractal
lattice versus intra-cell coupling strength t1 obtained from tight-
binding model. b–d) Real-space polarization index corresponding to
the corner state indicated by magenta color, red and cyan colors, and
green color in (a)
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n as for the magenta curve yields rapidly changing with t1
non-quantized value of P. It is nonzero only because the
state n, for which calculation is performed is taken in the
depth of the band. Similar results are obtained for other
corner state branches. Red and cyan branches from Fig. 8a
formally belong to the same curve that exist in different
parameter regions, so one can calculate the real-space
polarization index P assuming that the bands below this
curve are filled. The calculated P value is indeed 0.5 in two
parameter regions that correspond to the red and cyan
curves laying within corresponding gaps, as shown in
Fig. 8c. Finally, the calculation of polarization index for
the green corner state again demonstrates that this state is
topologically nontrivial, see Fig. 8d. Just as in the case of a
magenta branch, for all other corner states real-space
polarization index is quantized in the gap, but becomes
non-quantized if calculation is continued in the band for
the extended eigenstate with the same index n as gap
eigenstate. Thus, case-2 fractal structure can support
topologically nontrivial modes in both domains t1 > 0.5
and t1 < 0.5 (i.e., domains r < 0.5a and r > 0.5a in Fig. 1).
Note that if all the bands in Fig. 8 are filled (i.e. if the index
is calculated for the extended state that has largest pro-
pagation constant among all modes), the real-space
polarization is zero throughout the region 0 < t1 < 1.
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