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Abstract
A major challenge in neuroscience is visualizing the structure of the human brain at different scales. Traditional
histology reveals micro- and meso-scale brain features but suffers from staining variability, tissue damage, and
distortion, which impedes accurate 3D reconstructions. The emerging label-free serial sectioning optical coherence
tomography (S-OCT) technique offers uniform 3D imaging capability across samples but has poor histological
interpretability despite its sensitivity to cortical features. Here, we present a novel 3D imaging framework that
combines S-OCT with a deep-learning digital staining (DS) model. This enhanced imaging modality integrates high-
throughput 3D imaging, low sample variability and high interpretability, making it suitable for 3D histology studies. We
develop a novel semi-supervised learning technique to facilitate DS model training on weakly paired images for
translating S-OCT to Gallyas silver staining. We demonstrate DS on various human cerebral cortex samples, achieving
consistent staining quality and enhancing contrast across cortical layer boundaries. Additionally, we show that DS
preserves geometry in 3D on cubic-centimeter tissue blocks, allowing for visualization of meso-scale vessel networks in
the white matter. We believe that our technique has the potential for high-throughput, multiscale imaging of brain
tissues and may facilitate studies of brain structures.

Introduction
The human brain consists of an estimated 86 billion

neurons1, which form intricate connections and networks
that underlie the complex functions. To gain new insights
into the brain, major efforts have recently been made to
develop multiscale imaging technologies for visualizing
anatomical structures with microscopic resolution across
cubic centimeters of tissue. The most widely used tech-
niques for visualizing anatomical and neuronal structures
are based on histological staining. Gallyas silver staining is
used to characterize myelin content and neuronal struc-
tures, as well as to identify pathological features of

neurodegenerative diseases in human brain tissue2,3. To
create a high-resolution 3D model of the cytoarchitecture,
the BigBrain project4 reconstructed a whole human brain
with more than 7000 histological sections, which involves
slicing the tissue into 20-μm sections, staining with silver
halide to reveal cellular and fiber structures, and regis-
tering the slices in 3D. However, these histological
staining processes are generally complex, labor-intensive,
time-consuming, and prone to experimental error and
staining variability. Furthermore, the slicing, mounting,
dehydration, and staining inevitably cause tissue damage
and slice-specific distortions, which can limit the accuracy
of 3D alignment and reconstruction of structures at the
micron scale5,6. Therefore, there is a growing need for
developing 3D pathology imaging techniques, especially
label-free techniques that can provide high-resolution 3D
visualizations of brain tissues with minimal tissue damage
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and distortion, and that can reduce the need for physical
staining (PS)7–10.
Optical coherence tomography (OCT) is a label-free

imaging technique that allows high-resolution 3D visua-
lization and quantification of intrinsic optical properties
of tissue, such as the scattering coefficient and back-
scattering coefficient11,12. Recently, OCT has shown great
promise in brain imaging applications, such as visualizing
single neurons13, fiber tracts14, and the laminar structure
of the cerebral cortex in the human brain15,16. While
traditionally limited by light penetration, serial sectioning
OCT (S-OCT) integrates OCT with a vibratome slicer to
enable 3D imaging of cubic centimeters of tissue17.
S-OCT permits straightforward and accurate 3D high-
resolution reconstruction of large-scale brain anatomy,
microstructures, and tractography17–19 with minimal tis-
sue distortion. This is achieved through the use of a serial
imaging protocol20, where OCT imaging of the top
~150 µm thick tissue is alternated with the slicing off of
the superficial tissue, thus reducing cutting-induced dis-
tortion after imaging. This enables accurate reconstruc-
tion of the complex 3D structures of brain tissues without
requiring sophisticated inter-slice registration algorithms.
Despite its ability to routinely generate large-scale volu-
metric brain imaging data, S-OCT still requires con-
siderable expertise to identify and annotate anatomical
and neuronal features for further analysis11,14,17,21. Our
goal is to augment S-OCT with a digital staining (DS)
technique that enables 3D histology on large-scale human
brain tissues.
In recent years, deep learning methods have revolutio-

nized the field of DS, which aims to transform label-free
images into histological staining-like images using com-
putational models22,23. DS offers a fast and low-cost
alternative to conventional PS methods. Several DS
models have been developed to perform transformations
between various input-output imaging modality pairs.
Most existing DS methods are based on supervised
learning, necessitating paired images of tissue slices with
and without staining for model training. To ensure
accurate DS results, pixel-level cross-modal registration
between the image pairs is crucial24–27. However,
acquiring such paired images is challenging and often
involves sophisticated image registration procedures22,25.
To overcome these challenges, recent studies have
explored unsupervised image translation models for DS,
which only need unpaired collections of images from the
two modalities for training8,23,28–31. The most widely used
unsupervised method is CycleGAN32, which employs two
sets of generators and discriminators to enforce cycle
consistency and content preservation in the image
translation task. Another method, Contrastive Unpaired
Translation (CUT)33, uses contrastive learning to main-
tain structural and content preservation with only one set

of generator and discriminator, demonstrating improved
training efficiency in DS tasks29. Despite these advance-
ments, unsupervised models generally still lag behind
their supervised counterparts in terms of accuracy22.
Recent work has also explored formulating loss regular-
izations by incorporating properties of misaligned medical
images. Reg-GAN introduced loss-correction theory to
integrate unsupervised registration into the training pro-
cess, showing improvements in simulated single-modality
data34. Additionally, DS methods have been found useful
in enhancing multi-modal deformable registration per-
formance35,36. However, these unsupervised methods,
while leveraging geometric similarities, often overlook
essential content mismatches in realistic multi-modal
data, making them susceptible to generating artifacts or
hallucinations.
In this study, we introduce a novel semi-supervised

learning model specifically designed for DS using limited
and weakly paired image data, addressing the complex
challenge of aligning essentially unpairable multi-modal
imaging modalities. We define this challenge as “weakly
paired DS” and propose a robust training framework
featuring two novel semi-supervision augmentation
modules aimed at mitigating hallucination effects inher-
ent in the unsupervised backbone network. To rigorously
evaluate our approach, we have developed a novel eva-
luation pipeline that allows for the application of widely
used metrics for paired images to our weakly paired
images. To demonstrate the practical utility of our model,
we apply it to translate S-OCT images into Gallyas silver
staining, with the goal of enhancing volumetric human
brain imaging. This application not only showcases our
model’s ability to reduce staining variability but also its
effectiveness in preserving the 3D geometry of large-scale
human brain tissue blocks. Furthermore, we have con-
ducted extensive quantitative analyses using pathology-
feature-based metrics to underscore the advantages of our
DS model over traditional physical staining methods,
highlighting its potential for 3D histology applications.
Our model backbone is based on the unsupervised CUT

framework, enabling DS using unpaired training data.
This module combines contrastive learning and adver-
sarial learning to address the lack of paired imaging data,
as the physically stained images were obtained from
unordered adjacent brain tissue sections to the OCT-
imaged sections, and were confounded by tissue damage
and distortion during the staining process. To improve
the accuracy of the unsupervised model, we introduce
semi-supervision through two auxiliary tasks. First, we
devise a pseudo-supervised learning module that trains
the DS network on a pseudo-paired training dataset
generated using our previously established biophysical
model. Our prior work has revealed a statistically sig-
nificant linear correlation between the OCT scattering
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coefficients (SC) and the optical density (OD) derived
from the Gallyas silver stained images21. However, this
relationship, while indicative of a general trend, is subject
to considerable variability across individual samples due
to biological differences and other factors. Leveraging this
similarity prior, our pseudo-supervised learning module
learns to translate the generated OD back to the Gallyas
silver stain, serving as a proxy for supervising the trans-
lation from OCT-SC to Gallyas silver stain. This naturally
pixel-aligned pseudo-supervision effectively augments the
training data, enabling the DS model to be trained despite
the limited availability of human brain samples. Moreover,
when combined with the adversarial learning component
in the CUT backbone, the domain gap between the OCT-
SC images and OD maps is effectively mitigated by
domain-adversarial training37. Second, we develop an
unsupervised cross-modality image registration module
that aligns the adjacent Gallyas image with the OCT-SC
image. This module enables the DS model to utilize the
geometric similarity information provided by adjacent
slices, thereby guiding the image translation process. To
train the registration network effectively, we introduce a
novel two-stage, multiscale training strategy. This strategy
enables the network to learn image registration at the
“global” whole slide image (WSI) scale while simulta-
neously learning image translation at the “local” image
patch scale. Furthermore, this collaborative training
approach between the DS model and the registration
model results in more effective enforcement of high-
quality DS results.
We present our DS pipeline for data acquisition and

deep learning model training in Fig. 1a. We use S-OCT to
obtain label-free volumetric data of human brain samples.
We then process the OCT data to calculate the SC maps11

(see details in Methods). Next, we develop a deep learning
DS model that transforms OCT-SC images into Gallyas
silver stain images. We choose OCT-SC as the input for
the DS model instead of the raw OCT measurements
because SC measures the intrinsic optical properties of
the tissue and eliminates the inhomogeneity in the raw
OCT intensity by using a nonlinear model-fitting pro-
cess11. Moreover, a biophysical model from our previous
work showed that OCT-SC mainly depends on the con-
tribution of myelin content, which is captured by the OD
of the Gallyas silver staining21. We hypothesize that the
statistical correlation between these two modalities can be
leveraged to create a more accurate image-to-image
mapping using a deep learning model. During S-OCT,
we also collect a few unordered tissue slices that are
physically stained for DS model training and evaluation.
The deep learning model is trained on a few weakly-
aligned pairs of OCT-SC and Gallyas silver stained WSIs.
The inference stage of the DS model is shown in Fig. 1b.
After the model is trained, it can be applied on any OCT-

SC maps to enable 3D neurohistology on cubic cen-
timeters of brain tissue and visualize mesoscopic brain
structures.
First, we present the OCT DS results on single-section

tissues from various cerebral cortex samples and compare
them with PS results from adjacent sections. We
demonstrate that DS exploits the quantitative nature of
OCT-SC and thus can produce consistent staining quality
across different samples. Compared to PS, DS reveals
comparable mesoscopic (~10 µm) structures in different
tissue regions without introducing staining variability
across samples and experiments. In addition, we show
that DS enhances contrast across cortical layer boundaries
and can consistently differentiate cortical layers IV, V and
VI. Next, we show a 3D-rendered volumetric DS result on
a cubic centimeter-scale tissue block that was not used for
training the DS model. The result shows geometry-
preserving 3D staining on large-scale brain tissue and
visualization of vessel structure in the white matter
region. Finally, we showcase a pilot study on the gen-
eralization performance of our method - we apply the DS
model trained on cortex regions to samples from other
anatomical regions acquired from different OCT setups.
In summary, we present a novel deep learning techni-

que for DS of OCT images for large-scale human brain
imaging. Our method allows direct visualization of
important mesoscopic 3D brain features, including mye-
loarchitecture of the cerebral cortex and main 3D blood
vessel network in the white matter, with contrast that
closely resembles Gallyas-silver staining. Our method has
several advantages over traditional PS, including reducing
staining variability, preserving complex brain 3D geo-
metry, and facilitating volume generation across cubic
centimeters of tissue. Additionally, our method enhances
the interpretability of the label-free OCT modality for
brain imaging. This unique combination, as highlighted in
Fig. S1, makes our method appealing to high-throughput
3D neuropathology applications. However, our method
faces some limitations originating from our current
S-OCT system, such as artifacts from image stitching12,14,
uneven tissue sectioning, speckle noise, and limited lateral
and axial resolution due to the SC model fitting. Although
our technique is sensitive to fiber structures in the gray
matter, the speckle noise and limited resolution resulted
in discontinuities and grainy artifacts in the DS results.
We expect that these issues will likely be overcome by
future generations of high-resolution S-OCT systems38,39

and improved processing algorithms. Despite these cur-
rent limitations, we believe that our semi-supervised
learning-based DS framework holds broad applicability
for other bioimaging modalities and DS applications.
Furthermore, our work has significant implications for
quantitative volumetric neuropathology. The integration
of DS techniques with S-OCT has great potential for high-
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throughput, multiscale human brain imaging. The data
generated from this technique could help better under-
stand the meso- and micro-structure of brain tissues and
their role in disease development, and ultimately enhance
our knowledge of the brain structure and function.

Results
Digital staining by semi-supervised learning using weakly-
paired images
We formulate the DS task as a weakly-paired image

translation problem because we do not have access to
pixel-aligned image pairs of OCT-SC and PS images. To
achieve better performance than fully unsupervised
methods, we exploit the side information provided by the
structural and content similarity between the adjacent
sections in the imaging data, as well as a biophysical
model for linking OCT-SC and the contrast in Gallyas
silver stain in a semi-supervised deep learning framework.
The training framework of our DS network consists of

several novel learning components, as shown in Fig. 2. Based
on the CUT framework as the backbone33, the DS model
uses a mix of adversarial loss and contrastive loss in the
unpaired image setting, as shown in Fig. 2a. The adversarial
learning measures the perceptual similarity of the generated
DS images and the PS images. It tries to reduce the gap
between the high-dimensional distributions of the DS and PS
images such that the generated DS images are perceptually
indistinguishable from the PS images. The contrastive loss
uses self-supervised patch-wise learning to ensure structural
consistency between the OCT-SC and DS images. It max-
imizes mutual information and provides self-guidance for

content preservation. The combination of contrastive loss
and adversarial loss enables high-quality DS images that
preserve the content and structures of the OCT-SC images.
To improve upon the unsupervised CUT framework, we

propose a semi-supervised learning method. Our method
leverages augmented pseudo pairs generated by a bio-
physical model and registered cross-modality image pairs
that are dynamically adjusted by a learnable registration
network. The intuition is that using additional auxiliary
supervision enhances the learnability, efficiency and
accuracy of the model compared to unsupervised learn-
ing. Crucially, our semi-supervised method does not
require any exact paired PS and OCT-SC images during
training.
In Fig. 2b, we introduce the pseudo-supervised learning

auxiliary task to enhance the unpaired image translation
for DS of OCT-SC images. We first compute the OD
maps from the PS images and then utilize the OD - PS
image pairs to train the DS model in a pseudo-supervised
manner. This approach proves effective because the OD
image exhibits similar image contrast and feature dis-
tribution as the OCT-SC across various cortical regions.
Additionally, the OCT-SC demonstrates an approximate
linear relationship with the OD of the Gallyas silver
stain21. Furthermore, since the OD map is naturally pixel-
aligned with the PS image, it facilitates supervised learn-
ing and provides additional semi-supervision and align-
ment constraints for the main DS model. However, the
inherent disparities in image features and intensity value
distributions between the OD map and the OCT-SC
image result in a domain gap, which limits the accuracy of
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few-shot learning

a b

Unseen 3D 
tissue block

Rendered 
DS volume

Weakly paired
OCT-SC map

Model output

Registration
OD

DS model

Brain tissue block
DS model

Non-linear 
fitting

Gradient 
descent

UPlanFLN
4x/0.13 AIR

LCUT + Lpseudo + Lreg

Fig. 1 Overview of the proposed OCT DS technique. a Data acquisition and DS model. S-OCT alternates between imaging and tissue sectioning to
acquire a stack of block-face OCT images, which are then processed to compute the scattering coefficient (OCT-SC) map stack. Sectioned sample
slices are physically stained and imaged. The DS neural network is trained from a few weakly-aligned pairs of OCT-SC and Gallyas silver-stained
images. b After the DS model is trained, it can perform inference on completely new slices of OCT-SC images for volumetric DS
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the trained DS model when relying solely on this auxiliary
task. Our insight is that when this task is combined with
the adversarial learning component in the CUT backbone,
it enables domain adaptation similar to the domain-
adversarial training framework37. The performance on the
OCT-SC image is ensured by penalizing the perceptual
differences between the DS images generated from the
OCT-SC image and the OD map using the adversarial
loss. By leveraging both the pseudo-supervised learning
and adversarial learning components, we effectively
bridge the domain gap and improve the accuracy of the
DS model for OCT-SC image translation.

In Fig. 2c, we illustrate the second auxiliary task for
aligning the PS image, the OCT-SC image, and the DS
image using a registration network. This registration
module undergoes two training stages: pre-training and
fine-tuning. During the pre-training stage, the registration
module operates on the WSI scale. It predicts a defor-
mation field that indicates the pixel-wise displacement
vectors required for non-rigid transformation. To facil-
itate cross-modal self-supervised registration, we utilize
the OD map as a surrogate for the OCT-SC image and
learn a deformation field between the OD map and the
input OCT-SC image. This result is used as an initial
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φ ° Y

Y

G(X )

Ltotal = LPatchNCE + LGAN + Lpseudo + Lreg

Registration learning

Resampling
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Concatenation Patch-wise loss WSI loss
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OCT-SC map

Physical stained image Deformed physical
stained image

Digital stained image

Digital stained
OD

Physical stained imageDigital stained image
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Fig. 2 The training framework of our DS neural network model. a The backbone of the DS network G is built on the CUT framework, which
combines contrastive learning and adversarial learning. The input is a 2D OCT-SC map X and the output is a digitally stained image G(X) that is
compared with a PS image Y from an adjacent slice. b Auxiliary pseudo-supervised learning task. The biophysical module computes the optical
density OD(Y) of the PS image Y, which is fed as an input to G. The digitally stained OD image G(OD(Y)) is compared with the original PS image Y
during training. c Auxiliary unsupervised cross-modality image registration task. We alternate between optimizing G and a registration network R
under different image scales. We fix R while updating G, which provides more informative supervision for R in the next iteration. We use patch-wise
losses for training G, and whole slide image (WSI) losses for training R. The red and green channels of the deformation field represent the vertical and
horizontal displacement vectors, respectively
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estimate for the deformation between the PS image and
the matching OCT-SC image. By leveraging our biophy-
sical model, we bootstrap the challenging self-supervised
cross-modality image registration problem in this pre-
training stage. The subsequent fine-tuning of the regis-
tration model aims to provide pixel-wise weak-super-
vision for the DS model. In this stage, we employ an
alternate training approach that involves collaborative
learning between the DS model and the registration
model. When the DS model is fixed, the registration
model is trained at the WSI scale to address global geo-
metry correction. When the registration model is fixed,
the DS model is trained at the image patch scale to pro-
vide sufficient samples for local translation learning. This
unsupervised cross-modality image registration module
enables the DS model to learn improved local color tone
mapping from unaligned imaging modalities without the
need for explicit supervision.
Overall, our DS framework enhances unpaired image

translation through pseudo supervised learning and
unsupervised cross-modality image registration. The
total loss function used for training is the weighted
sum of the four objectives derived from the main image
translation task and two auxiliary tasks. Our method
demonstrates superior performance compared to
baseline methods, including CycleGAN, CUT and
FastCUT, in terms of DS quality and accuracy, as
detailed in Supplementary Sections 2 and 3, and illu-
strated in Figs. S2, S4, and S5.
Detailed information on the network structure, training

procedures, and quantitative evaluations is provided in
the Methods section and Supplementary Sections 4, 5, 10,
and 11. Beyond improvements in quantitative metrics, our
new model training strategy offers several advantages over
previous unsupervised approaches. We compare and
analyze these advantages in Supplementary Table S1.
Additionally, we perform a quantitative evaluation of
network hallucination using a customized fidelity score, as
shown in Supplementary Fig. S5.
Furthermore, we present several ablation study results

to justify the inclusion of each training component in our
DS model, as detailed in Supplementary Section 12 and
Fig. S13. These comprehensive evaluations underscore the
robustness and effectiveness of our proposed framework
in achieving high-quality DS for unpaired image
translation.

Digital staining enhances mesoscopic brain structures and
provides high staining uniformity
We present the ability of our DS technique to preserve

the mesoscopic brain structures and achieve uniform
staining of cerebral cortex sections from post-mortem
human brains. We use two groups of PS imaging results
as comparative references: one group consists of WSIs of

well-stained sections, and the other group consists of
WSIs of less-ideally-stained sections.
In Fig. 3a, we present the OCT-SC, DS, and well-stained

PS images of adjacent sections from the human cerebral
cortex, arranged from left to right. The DS images show
that our technique can accurately capture various brain
structures that match the PS images, such as cortical
layers, myelin fibers, and vessel blobs. Here myelin fibers
refer to myelinated axon bundles that consist of multiple
axons, which can be resolved with 12 µm resolution in our
S-OCT system. This is validated in Supplementary Fig.
S15. The DS and PS images share similar contrast, with
white matter regions appearing as dark brown or black
and gray matter regions appearing as white, while the
OCT-SC image has the opposite contrast. Within the gray
matter, the infra layers also appear to be darker than supra
layers, consistent with the PS images. These correspon-
dence in mesoscale structures validate that our DS model
can reliably and accurately learn this general inverse
mapping between OCT-SC and PS images.
In the zoom-in regions, we present the images on dif-

ferent types of cortex regions, including gyral crest
regions marked as 1 and 3 and sulcal fundus regions
marked as 2 and 4, from the three modalities: OCT-SC,
DS and PS. In region 1, the structures of radial myelin
fiber bundles at scales of about 10–20 µm are shown as
dark brown tubular features in both DS and PS images,
especially in the gray matter region. By comparing OCT-
SC and DS images, we can see that the image content is
consistent, which indicates that the ability of resolving
fine features is primarily limited by the input OCT-SC
data. Despite the limitations of resolution and speckle
noise in the OCT data, the orientation of fiber bundle
traces and the intensity distribution according to cortical
layers can still be discerned in the DS results. Similar
patterns are also evident in zoom-in regions 3 and 4,
where the local intensity variation is visible in the gray
matter regions, although the fiber bundles are less distinct
in OCT-SC and DS images than in the PS images. In
region 2, the supra cortical layers (I–III), infra layers (IV,
V, VI) and white matter are clearly distinguished by the
white, light brown, and dark brown bands, respectively.
The black line structure near the top of the PS image
indicates smaller vessels, which are also visible in the DS
image at the same locations. The zoom-in regions 1, 2,
and 3 in PS show small white blob or tubeness features
especially in the white matter regions. In PS, these white
blobs represent the empty space previously occupied by
vessels which are lost due to slicing and washing steps
during staining. In contrast, the white blobs in DS images
primarily represent the space within vascular walls and
perivascular space which appear smaller since no thin
slicing or physical staining is performed on OCT-SC
images. Those features are generally referred to as VS
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(“vessel space”) in Fig. 3. These visualizations demonstrate
that our DS model can faithfully preserve ~20 µm scale
brain structures captured by S-OCT17,19,38.
A major advantage of DS over PS is stain uniformity.

To demonstrate this, we present three types of images
in Fig. 3b from the less-ideal PS group that comprises
most of our PS data. One inherent limitation of tradi-
tional histological staining is the variability across
different sample regions and experiments. Despite our
careful sample preparation and staining procedures,
the staining result is influenced by many confounding
factors of the chemical reaction, and uniformity of the
staining quality is challenging to ensure. In Fig. 3b, the
rightmost column of the first row shows a PS example
with over- and non-uniform staining (in particular
along the vertical directions); the second row shows a
PS example with under-staining.
We select two gyral crest regions (marked as 5 and 7)

and two sulcal fundus regions (marked as 6 and 8) to
provide in-depth analysis. The PS images in regions 5 and
6 are over-stained, while the PS images in regions 7 and 8
are under-stained. In region 5, the DS and OCT-SC
images show clear ridges corresponding to cortical layer
V, but the PS image shows a dark brown shade due to
over-staining. In region 6, which is a sulcal fundus region
with less visible cortical layers, the DS image shows a clear
boundary between white matter and gray matter regions,
but the PS image shows an ambiguous boundary. Small
vessel blobs are also more visible in the DS image than in
the PS image. In region 7, which is a gyral crest region, the
DS image shows dark ridge features corresponding to
cortical layer IV and V, but the PS image does not show
these features due to under-staining. Additional examples
are shown in Supplementary Section 6 and Fig. S6.
The superior stain uniformity demonstrated by our DS

results across different sections is facilitated by the OCT-
SC, which extracts a normalized quantity based on a
physics model reflecting the intrinsic properties of brain
tissue. This uniformity offers significant advantages for
anatomical and pathological evaluations. To highlight the
improved staining uniformity compared to traditional
physical staining methods, we performed a detailed
quantitative analysis, as described in Supplementary Sec-
tion 16 and illustrated in Fig. S18. A limitation of our
current OCT-SC curve fitting model is that it reduces the
spatial resolution (lateral: 6 µm raw OCT measurement,
12 µm fitted SC map; axial: 6 µm raw OCT measurement,
150 µm fitted SC map), which limits the ability to resolve
fine fiber structures.

Digital staining enables reliable cortical layer
differentiation and layer thickness quantification
We demonstrate the capability of DS-OCT to reliably

distinguish cortical layers with comparable or even better

sensitivity than PS, thanks to the uniform DS quality as
discussed before. We identify cortical layers IV, V, and VI
by the displayed fiber density40,41, since these layers are
more prominent than layers I, II, and III in most of our
samples. We provide additional examples of DS layer
visualization and compare them with well-stained and
less-ideal stained PS samples in Supplementary Section 7
and Fig. S7. We also show how the layer thickness can be
consistently quantified in our DS images.
Figure 4a shows the WSIs of the DS result and the

reference PS of an adjacent brain slice. The DS image
clearly reveals the curved double-band structures above
the white matter region, which are stained in dark brown.
These features indicate higher myelin fiber density that
are characteristic in cortical layer IV and V41. Consistent
image contrast variations for the laminar structures are
observed in the DS result. In contrast, the double-band
structures are less visible around some of the gyral
regions, and the contrast is less distinct in the PS image.
Figure 4b shows zoom-ins from a gyral crest region and a
sulcus region of the three modalities, corresponding to the
regions marked by the green box and red box in Fig. 4a,
respectively. The OCT-SC and DS images have a strong
correlation in their intensity variations. The DS image
consistently shows the double-band features in the gray
matter region, while the PS image often fails to reveal
them due to over- or under-staining.
Next, we demonstrate the improved contrast between

cortical layers in DS by plotting the average intensity
(across the three color-channels) along the white dotted
lines in Fig. 4b. The right panel shows the normalized
profiles over a 3.5-mm depth range, where blue, green and
red represent OCT-SC, DS and PS modalities, respec-
tively. We manually marked the boundaries of layer IV, V,
and VI with dotted vertical lines in four different colors.
In both gyrus and sulcus regions, the DS profiles show the
highest contrast (measured by the difference between the
maximum and minimum values) in layer IV and V among
the three modalities, which facilitates identifying the layer
boundaries. When comparing OCT-SC and PS with DS,
the DS enhances the intensity variations at the boundary
between layer IV and V. This reduces any confusion when
distinguishing between these two layers. Comparing the
profiles between OCT-SC and DS in different layers
suggests that our DS model works beyond our approx-
imate linear biophysical model21 and increases the local
contrast by a nonlinear mapping function expressed by
our neural network. This argument is further supported
by a color-intensity correlation analysis detailed in Sup-
plementary Section 14 and Fig. S16.
In Fig. 4c, we further demonstrate straightforward seg-

mentation and thickness quantification of cortical layers
IV, V, and VI using our DS result (see details in Methods),
which can provide valuable information for many
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neuropathological studies17,42,43. The top panel shows the
zoom-in region of the dotted blue box in Fig. 4a, where we
manually labeled the boundaries of the three cortical
layers. We estimated the layer thicknesses from the binary
mask obtained from cortical layer segmentation using an
algorithm from our previous work17. We chose two gyral
crest regions and a sulcus region indicated by the white
boxes in the binary mask image. The bottom panel dis-
plays the box plot of the local layer thickness statistics in
gyrus and sulcus regions. We observed a similar pattern of
variation in layer thickness for layer IV, V, and VI in the
sulcus, gyrus and the entire cortical regions. The median
local thickness of layer IV, V, and VI were 300 µm,
540 µm, and 480 µm respectively. We also observed a
significant reduction in layer thickness in all three layers
in the sulcus regions compared to the gyrus regions, in
agreement with the literature44,45. The median thickness

of layer IV, V, and VI were 410 µm, 630 µm, and 580 µm
respectively in the gyrus regions, and were 250 µm,
370 µm, and 310 µm respectively in the sulcus regions.

Volumetric digital staining on cubic centimeter-scale
brain tissue
Next, we showcase volumetric staining on cubic

centimeter-scale brain tissue enabled by our technique
that combines S-OCT and DS. Our technique sig-
nificantly reduces tissue distortion and misalignment
during the 3D reconstruction process suffered by the
traditional 3D pathology technique. We demonstrate 3D
DS on a 4 cm × 5 cm × 1.2 cm brain tissue block that was
not used for training our DS model. We show that our
method can preserve the intricate 3D brain structures in
both gray matter and white matter regions. Moreover, we
visualize the 3D vessel network in the white matter.
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In Fig. 5a, we present a 3D visualization of the DS
output on the whole tissue block in the top panel. The DS
model takes as input a z-stack of around a hundred slices
of OCT-SC images. Each OCT-SC slice, which has a size
of 4 cm × 5 cm, is processed separately and fed to the DS
model. The DS output images are then directly stacked
along the z-axis to create the digitally stained volume.
Consistent with the 2D results, the 3D DS volume gen-
erates white and dark-brown colors that correspond to
gray matter and white matter regions respectively. We can
also observe a smooth transition of these gray matter and
white matter boundaries along the z direction, which
reflects the preservation of 3D geometries of the brain
structures. In Fig. 5b, we display several orthogonal cross-
sectional views of the DS volume. The overall color tone
and contrast variations match with the 2D results in Fig.
3. Small white blobs and tubes within the white matter
region indicate the vessel space. These results are con-
sistent with 2D DS results that have been verified with PS
references, and partly confirm the generalization ability of
our DS model on unseen large-scale brain samples.
Moreover, the X-Z cross section also shows several con-
tinuous features along the depth, such as intricate brain
folding structures, double-band cortical layers, and small
tubular vessels. This again illustrates the 3D geometry
preservation feature of our DS technique.

To further illustrate the ability of our DS technique to
preserve the 3D geometry of mesoscale brain structures,
we present a 3D visualization of a centimeter-scale net-
work of vessel space which is not visible in 2D PS images.
Besides the gray matter and white matter contrast, our DS
volume also shows several continuous white tubular
structures corresponding to blood vessels in the top panel
of Fig. 5a. In the bottom panel of Fig. 5a, we show the
segmented DS volume displaying only the white matter
region, where the white tubular structures are more
prominent and not masked by the gray matter. In Fig. 5c,
we highlight two regions in yellow and green boxes. The
vessel spaces in those regions are rendered with more
transparency and reveal the branching and connectivity of
the vessel network. On the right panel of Fig. 5c, three
orthogonal maximum intensity projections (MIP) of the
DS volume further demonstrate the preservation of the
3D vessel structures. We note that the axial continuity of
our DS volume is currently limited by the axial resolution
(150 µm) imposed by our SC fitting model, which we aim
to improve in the future. To quantify the improved 3D
geometry preservation compared to traditional physical
staining, we performed quantitative analysis in Supple-
mentary Section 15 and Fig. S17. Being able to image
brain samples as large as 4 × 4 × 1 cm3 38, we can easily
extend the aforementioned analysis to large brain areas
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Fig. 5 3D visualization and cross-section views of the DS results on a large unseen tissue block. a The DS output images are stacked along the
z-axis to render the whole digitally stained volume as well as segmented white matter regions. b Orthogonal cross-sectional views of the DS volume.
c Two zoom-in regions of vessel structures in yellow and green boxes from (a) are shown on the left. Three orthogonal maximum intensity
projections (MIP) of the DS volume are shown on the right. All scale bars are 5 mm. The shown sample comes from an unseen subject entirely
independent of training and testing subject set
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with uniform and enhanced contrasts, which could greatly
improve the throughput of brain anatomy study.

Generalization to unseen anatomical regions
To further demonstrate the generalization capability of

our trained DS model, we conducted a pilot study on
different anatomical regions that were imaged by a dif-
ferent S-OCT setup not seen during training. We used the
same fitting model to generate the OCT-SC image in Fig.
6, which shows a sample from the hippocampus region
acquired by a different S-OCT setup. Since our SC fitting
model extracts an intrinsic tissue property and is relatively
insensitive to variations in hardware platforms and sample
conditions, it ensures the robustness of our DS method.
The DS image is inferred by directly inputting the OCT-
SC to the previously trained model. Figure 6 shows the
OCT-SC and DS images, and the reference PS image of an
adjacent section from left to right. We roughly aligned the
field of views of the DS and PS images using a rigid
transformation. On a large scale, the DS process suc-
cessfully transforms the image contrast to match the
anatomical structures found in the PS image. By com-
paring with the anatomy of hippocampus46, we can
identify the alveus (AL) and/or fimbria fomix (FF) layer at

the top, the stratum pyramidale (SP) layer beneath them,
and the stratum radiatum (SR), stratum moleculare (SM)
and the dentate gyrus (DG) layers that encase the Cornu
Ammonis areas (CA1-CA4) of dense neurons. Impor-
tantly, in CA1-CA4 areas, we found bright spots in OCT-
SC images, which are transformed to brown spots in the
DS images. These structures correlate strongly with the
brown spots seen in the PS image and are likely individual
neuron somas. More examples of generalization results
can be found in Supplementary Section 8 and Figure. S8.
Such generalization agrees with our previous work that

discovered a universal correlation between optical scat-
tering and myelin density across the human brain21. This
suggests that a DS-OCT model, even if trained on limited
regions of the human brain, may be effectively employed
in other unseen regions. This significantly decreases the
training effort compared to those that rely on transfer
learning.

Discussion
In summary, we developed a novel semi-supervised

learning technique for DS of OCT images for large-scale
volumetric visualization and analysis on human brain
tissue samples. Our technique works by integrating

OCT-SC

1 mm

200 um

200 um

CA2-CA3

SR
SR FF

FF

ALAL

SPSP

DS

SM
SMDG DG

PS

CA4 CA4

CA2-CA3

CA1 CA1

Fig. 6 DS-OCT generalization performance on an unseen hippocampus tissue slice. Examples of OCT-SC, DS, and PS images (of adjacent
sections) on one sample from the Hippocampus region are shown. SP: Stratum Pyramidale; AL: Alveus; FF: Fimbria Fomix; SR: Stratum Radiatum; SM:
Stratum Moleculare; DG: Dentate Gyrus; CA: Cornu Ammonis. The shown slice comes from an unseen subject entirely independent of training and
testing subject set
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label-free S-OCT imaging and an advanced deep
learning DS model. The S-OCT enables imaging of
cubic centimeter-scale brain tissues and preserves
complex 3D tissue geometry across sections. Our semi-
supervised learning method bypasses the need for paired
unstained and stained images and can achieve high-
quality DS using a limited amount of weakly paired
image data for model training. Our deep learning model
is built on an unsupervised CUT model backbone, which
is augmented with two auxiliary tasks. The pseudo-
supervised module reduces the data requirement for
model training by exploiting the correlation between the
OCT-SC and the OD of Gallyas silver stain. The unsu-
pervised cross-modality image registration module
exploits the structural information between the adjacent
tissue sections. By working with a fitted tissue property,
namely the scattering coefficient, from the raw OCT
measurement as the input to the deep learning model, it
greatly enhances the uniformity and generalizability of
the DS results. This is highlighted by our volumetric DS
result on cubic centimeter-scale brain tissue block and
on unseen anatomical regions from different OCT sys-
tems. We believe our OCT DS technique is a promising
solution for large-scale human brain imaging for com-
prehension characterization of brain structure across
scales.
Our work introduces two significant innovations.

Firstly, we present a novel deep learning model tailored
for weakly-paired DS. While supervised and unsupervised
DS methods are well-established for pairable data affected
by mild geometric distortions from physical staining, our
research addresses a critical challenge: the absence of
pairable ground truth data in our specific context. This
challenge arises because physical stained sections, despite
being adjacent, may not correspond precisely to the same
z-plane as OCT images, which are constrained within an
imaging depth of 150 µm, while stained sections are
50 µm thick. This inherent content mismatch is prevalent
in various biomedical imaging scenarios where different
modalities are compared. Our approach capitalizes on
existing data resources without altering current imaging
pipelines, pioneering a new formulation for the weakly-
paired problem setting and proposing a novel methodol-
ogy to address this fundamental issue in biomedical
research where paired data are unattainable.
Secondly, we introduce an enhanced modality—digitally

stained OCT—for volumetric brain imaging. Beyond
merely advancing deep learning model capabilities, we
validate the utility of the DS technique through proof-of-
concept applications. We introduce new evaluation
pipelines and metrics tailored specifically for the Gallyas
silver stain, crucial for neuroimaging in neurodegenera-
tive disease research. Our study demonstrates the
advantages of integrating S-OCT with DS through

preliminary histopathology-based analyses, showcasing
the potential of this combined approach.
We envision that our deep learning framework holds

great potential for a wide range of applications in the field
of DS. There is a growing demand for exploring semi-
supervised learning approaches to effectively harness the
wealth of information contained in unpaired or weakly
paired biomedical images. Obtaining pairs of images with
labels and without labels can be a challenge in many
biomedical contexts. However, it is often easier to obtain
images of samples with slight distortions or adjacent
sections. To leverage these types of datasets, our method
leveraged a novel inverse mapping technique, going from
stained images to label-free modalities, and generated
pairs of images that were pixel-aligned to serve as aug-
mented supervision. Furthermore, we introduced a novel
cross-modality registration algorithm to correct for sam-
ple distortions and account for the complex geometries of
the samples. As a result, our enhanced semi-supervised
learning framework facilitates more straightforward
training on datasets that may be naturally acquired from
routine staining experiments, even when those datasets
are only weakly paired. In essence, incorporating semi-
supervised methods can significantly enhance the effi-
ciency of the “data collection-training-validation” cycle in
the development of DS models.
We discuss several key limitations that impact the

quality of S-OCT images and the corresponding DS
method. The first limitation arises from the data proces-
sing pipeline of OCT imaging. Coherent scattering results
in speckle noise, which appears as randomly distributed
fine-grained dark or white spots in both OCT and the
derived SC images. These speckle artifacts do not neces-
sarily correspond to actual cortical structures in PS ima-
ges, as shown in Fig. 3, Supplementary Fig. S6 and Fig.
S15. Consequently, visualizing and digitally staining small
vessels, capillaries, and fine axonal fiber structures
become challenging. In terms of evaluation pipeline, when
comparing DS and PS results side-by-side, the inherent
content mismatch, lack of z-alignment and contrast loss
due to speckle noise all contributed to the inconsistencies
of features such as blood vessels. Moreover, the current
~20 µm resolution of our OCT-SC data is insufficient to
resolve delicate structures like single neurons, which are
typically discernible in traditional histology47. To address
this limitation, future work can optimize the OCT-SC
processing pipeline using deep learning techniques to
enhance imaging quality. For example, self-supervised
learning algorithms for speckle suppression can be
developed by utilizing a customized blind-spot denoising
network and a speckle statistics model48. Enhancing the
resolution of SC can be explored by using a deep learning
model similar to ref. 49, which can learn a more accurate
and robust fitting model without relying on local-
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averaging. These improvements can improve the robust-
ness and resolution of our method, allowing for the cap-
ture of finer neuronal structures. The second limitation
relates to stitching artifacts that our current DS model
cannot fully correct, thereby affecting the quality of the
WSI image, as observed in Supplementary Fig. S8. To
address this issue, incorporating a structural prior con-
straint into our DS training framework can potentially
yield better correction of these artifacts. The final lim-
itation concerns the imperfect registration component in
our DS model. The depth range used for fitting the SC
(150 µm) is larger than the physical sectioning thickness
of the PS images (50 µm). Furthermore, sample destruc-
tion during staining process can introduce content mis-
matches. However, our registration network only corrects
for global-scale geometric distortions between adjacent
sections and does not account for potential content mis-
matches between weakly-paired images. Consequently,
the registration process fails to generate pixel-aligned
image data, as shown in Supplementary Fig. S3. To tackle
this issue, further improvements to the deep learning
framework may consider methods to address content
mismatches.
Due to these limitations, our DS-OCT technique cannot

fully replace traditional physical staining in terms of
interpretability. However, the proposed modality offers a
unique combination of the data uniformity and 3D ima-
ging capability of S-OCT with the interpretability asso-
ciated with traditional staining, as illustrated in
Supplementary Fig. S1. By employing deep-learning-based
DS, we enhance the interpretability of S-OCT through
learned properties such as local color mapping and global
contrast enhancement. Additionally, we leverage the
quantitative and distortion-free nature of OCT scattering
coefficients to mitigate the appearance variability and 3D
geometric distortions that are inherent in the traditional
staining process.
Our current study, however, is based on a limited

dataset in terms of both samples and slices, leading to
preliminary generalization results. We plan to conduct
additional experiments and collect a more diverse dataset
to further enrich our findings and refine our method in
the future. It is worth noting that our training and testing
images comprise a mix of normal control and neurode-
generative human brain samples, which hinders the
model’s ability to learn the distinctions between normal
and diseased brain images. To expand our work towards
distinguishing between normal and diseased cases, one
needs to acquire images from a larger set of brain samples
for both conditions. Additionally, we plan to incorporate
multi-modality input, such as polarization information,
into our DS model to increase the imaging sensitivity to
birefringence structures, including myelin fibers17,19.
Another promising modality we aim to integrate with the

S-OCT is two photon microscopy, which allows imaging
of small vessels and myelin fibers based on auto-
fluorescence contrast with reduced noise and improved
resolution38.

Materials and methods
Serial-sectioning OCT (S-OCT)
The S-OCT microscope was described previously38. We

used a swept light source (AxsunTech) with 100 kHz
swept rate, a central wavelength of 1310 nm, and a spec-
tral full width half maximum of 110 nm, yielding an axial
resolution of 5.6 µm in brain tissue (mean refractive index
n= 1.4). We used a free-space interferometer and quarter
wave plate (QWP) to illuminate the sample with circularly
polarized light and used two balanced detectors for
measuring orthogonally polarized reflection light. A
variable retarder (VR) placed in the sample arm was used
to compensate for the system birefringence and to recover
precise measurement of sample birefringence. To sample
the spectrum in even-k space, we input the k-clock of the
light source into a high-speed digitizer (ATS9350, Ala-
zarTech), afterwards real-time FFT was carried out using
a Graphic Processing Unit (RTX4000, NVIDIA), and the
spatial-domain data was trimmed to only save the first
1 mm depth. The post-objective power was measured to
be 3.7 mW, achieving a 95 dB SNR in both polarization
channels. We used 1 × 1mm2 FOV with 3 µm lateral step
size and 30% overlap between tiles. The sample was
mounted on XYZ motorized stages which translated the
sample in the X-Y plane to image the whole surface as
well as in the Z plane between the vibratome and objec-
tive. After block-face imaging, a custom vibratome cut off
the 50 µm slices with 0.3 mm/s cutting speed and 3000
rotations per minute (RPM) blade vibrating frequency.

Optical properties estimation with S-OCT
Tissue optical properties were extracted by following

a previously established procedure to analyze the
reflectance intensities of OCT using a nonlinear fitting
method11,12. To summarize, spatial parametrization is
first applied to the confocal parameter across a 3D
OCT image to constrain and reduce the degrees of
freedom in the nonlinear coefficient fitting problem,
resulting in improved confidence in the estimated
optical properties of the sample. Afterwards, a non-
linear least-squares solver is used to estimate the back-
scattering and scattering coefficients from the non-
linear reflectance-vs-depth over about 150 µm depth.
All curve fitting was performed in MATLAB. After
extracting the optical properties for each image tile, the
tiles were stitched using the coordinates generated
during the volumetric reconstruction with ImageJ
software50. The resulting image pixel size is 12 µm due
to a 4 × 4 downsampling.
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Sample preparation
A total of 18 subjects contributed post-mortem samples

to this study, which were grouped based on the origi-
nating subject. 15 individual subjects contributed
15 samples that were used in the training and testing
phases, with each subject providing one sample. The
remaining 3 subjects contributed 6 samples that were
used in the pilot generalization study.
For the training and testing phase, we used the

15 samples obtained from the Boston University Alzhei-
mer’s Disease Research Center (ADRC) brain bank. The
subjects from whom these samples were derived from had
a mean age of 78.8 years, comprising 2 females and 13
males. These samples included five cases with stage VI
Alzhemer’s disease (AD), five cases with stage III and IV
Chronic Traumatic Encephalopathy (CTE), and five age-
matched normal control cases. Each of the 15 samples
corresponded to one OCT imaging volume, which was
scanned by the OCT machine and subsequently sliced to
yield 35 slices (9 for training and 26 for testing). The 9
training slices were drawn from 7 samples, while the 26
testing slices came from 12 samples, with an overlap of
4 samples between the two sets. To ensure slice inde-
pendence and adequate representation across the thick-
ness of the tissue, we selected one slice per millimeter for
this study. Doing so ensured that each slice in the entire
training and testing set was visibly distinct and statistically
de-correlated. Our pre-processing involved non-
overlapping patch cropping on the WSIs to further
make sure that the training and testing data patches
remained independent. This process is further detailed in
the analysis in Supplementary Section 17 and Figure. S19.
For the pilot generalization study, we used OCT data

from 6 samples obtained from 3 human brains, which
were entirely independent of the training and testing
subjects. These samples were collected at the Massachu-
setts General Hospital Autopsy Suite and encompassed
various brain regions, including the cerebellum, hippo-
campus, somatosensory cortex, superior frontal cortex,
and middle temporal area 21. The subjects from whom
these samples were obtained had no history of neurolo-
gical deficits and had a mean age of 53.5 ± 12.0 years,
comprising two males and one female.
All samples were fixed by immersion in 10% formalin

for at least two months. The post-mortem interval did not
exceed 24 h. Prior to imaging, the samples were washed in
1X phosphate buffered saline for a month to remove
residual fixation agents and then embedded in 4.5%
agarose for tissue support51. During embedding, the brain
blocks were warmed to 65 °C to allow sufficient penetra-
tion of agarose into the deep sulcus. During imaging, the
brain tissue blocks were mounted in a water bath filled
with Deionized (DI) water. The DI water was changed
every day to remove the debris from cutting that could

degrade the OCT image quality. Following data collection,
the tissue slices were stored in 1X PBS with an anti-
bacterial agent (sodium azide) at a temperature of 4 °C. To
maintain the sequence of the slices, each slice was stored
in an individual glass vial.

Gallyas silver staining and imaging
A total of 35 brain slices were obtained from 15 samples

for our study. To ensure anatomical diversity, at least two
slices were taken per sample, with each slice being sepa-
rated in depth by 1mm. These slices had a thickness of
50 µm and were mounted onto gelatin-coated slides.
Gallyas staining protocol, as described by Pistorio2, was
then employed to process the samples. Modifications
were made to the impregnation and bleaching time to
accommodate the increased thickness of the samples. Due
to the limit of experiment container size, we split the total
35 slices into two batches: the first batch contains small
samples that can fit onto smaller slides (75 × 25mm2),
while the second batch contains wider samples mounted
on bigger slides.
Following the staining process, the samples were cap-

tured in brightfield mode using a 10 × objective (NA=
0.4) and an RGB camera. We utilized the VS-120 slide
scanner designed for 75 × 25mm2 slides for this purpose.
The exposure time was set at 1.73 ms, and the pixel size
was 0.7 µm with a 1 × 1mm2 FOV. For wider samples
from the second batch, imaging was conducted using the
BZ-X microscope under similar settings with image pixel
size of 1.9 µm. The resulting images can be opened in
Olympus Olyvia software and exported as TIFF images for
further processing.

Image processing
Our image dataset consists of two types of images: PS

images from the slide scanner and OCT-SC images
computed from S-OCT. Our anatomist experts visually
inspected the PS images and graded the staining quality
for the first batch. Out of the first batch staining results,
we selected 9 slices that are graded as ideally-stained for
training our DS model. The rest 26 slices are a mix of
ideally-stained and less well-stained slices, since they
contain results from the second staining batch. The PS
WSIs had different sizes depending on the tissue sample,
but they were around the median scale of 36 mm× 48mm
with the pixel size of 0.7 µm/1.9 µm depending on the
batch. To generate the weakly-paired training dataset, we
manually paired the PS images with the OCT-SC images
that had the most similar appearance. Since the sectioning
thickness (50 µm) of PS samples did not match the fitting
thickness used for OCT-SC images (150 µm) and the
depth information of PS samples was not recorded, we
can only pair the PS with the closest adjacent OCT-SC
image sample by qualitatively assessing the similarity of
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tissue features. We then downsampled the PS images
using bicubic interpolation to match the 12 µm pixel size
in OCT-SC images. We also cropped or padded the PS
images to have the same image size as the corresponding
OCT-SC images, which was around 3000 × 4000 pixels for
each sample. We performed this procedure on all PS
images when we compared them with the OCT-SC ima-
ges side-by-side in our results.
The PS images undergo several preprocessing steps to

minimize the effects of sample and staining variations
before they are used for training. The preprocessing steps
include background removal, intensity normalization and
color transfer. The background removal eliminates the
unwanted image artifacts in PS image and is done by
interactive image segmenter in MATLAB. The intensity
normalization adjusts the PS images to balance the vary-
ing illumination levels across different imaging experi-
ments. The brightest pixel (Ir, Ig, Ib) is used to estimate the
illuminant color and the image is scaled by the constant
ð1=Ir; 1=Ig; 1=IbÞ for each color channel, followed by a
range normalization to map the overall image value range
to [0, 1]. The color transfer uses Reinhard method52 to
standardize the staining color variations among experi-
ment, sample and imaging conditions given a target PS
image with a relatively ideal staining as reference.
The OCT-SC images obtained from the fitting algo-

rithm show some artifacts mainly in the background areas
and near the sharp boundaries of the vessel regions,
because the algorithm assumes a constant SC value for
the 150 µm imaging thickness11. To reduce the back-
ground noise and correct the over-smoothed values near
the vessel edges, the OCT-SC images are further pro-
cessed by several steps. First, the background is removed
by applying a histogram-based thresholding method using
the triangle algorithm53, followed by a sequence of
smoothing morphological operations such as erosion,
small object removal and dilation. Next, the pixels with
zero values in the masked image are identified as defective
and are replaced by the local median. Then, the edges of
the vessel regions are detected using a difference-of-
Gaussian (DoG) filter and thresholding. Finally, the outlier
regions with small values compared to the local maximum
are segmented and combined with the edge mask. The
combined mask is smoothed by similar morphological
filters, and the values in the mask are replaced by the local
maximum. The preprocessing pipeline is implemented in
Python using the basic filters and morphological opera-
tors from scikit-image package53.
To generate the training image dataset, we used

PyTorch to create a parallel processing module that can
split the WSIs of different image sizes into smaller patches
during training on the fly. This allows us to dynamically
update the intermediate image tensors that can be input
to different parts of deep learning models to train at

different image scales. The WSIs dataset with different
sizes can then be directly handled by a custom data loader
for standard-size tensor operation. We apply histogram
equalization to the WSIs X to normalize intensity dis-
tribution before feeding them into G. This operation is
consistent with the pre-processing of the pseudo-
supervised learning module (see details in the following
section). We first pad the WSI to the size of multiple
integers of patch size, and then use the tensor unfolding
method in PyTorch to cut the image tensor using a sliding
window into smaller tensors stacked in the batch
dimension. The inverse stitching operation is done simi-
larly using the tensor folding methods.
For creating a 3D visualization of the DS images that

show the volumetric digital staining results, we change the
white-color background of the DS images to black, so that
only the sample region is visible. This is done by con-
verting the DS color images to grayscale and applying a
triangle method threshold to select the foreground pixels.
Then, a morphology smoothing operation is performed to
remove any noise or artifacts. To extract the white matter
masks from the DS grayscale images for highlighting the
white matter regions in the sample, we use a histogram
thresholding method based on the minimum method53

and apply another morphology smoothing operation. The
pixels that are not part of the white matter masks are set
to zero, and the resulting images are stacked in a volume
for 3D visualization. The 3D viewer in ImageJ50 is used to
display the volume. More details on the image processing
procedures are provided in Supplementary Section 9 and
Fig. S9.

Semi-supervised deep learning framework
The proposed framework combines generative adver-

sarial learning, contrastive learning, pseudo-supervised
learning based on self-generated image pairs based on a
biophysical model, and unsupervised cross-modality
image registration.
We denote the OCT-SC images as X and the PS images

as Y. The main framework consists of a DS network G and
a registration network R. The DS network G transforms
grayscale OCT-SC images X into color images that
resemble the color and contrast of PS images Y. The
registration network R takes pairs of unaligned images X
and Y as input and outputs a deformation field ϕ ¼
R X;Yð Þ that can be applied to resample and register Y to
X. We use an auxiliary discriminator network D to
enforce structural similarity between the output DS and
reference PS images by adversarial learning. We also apply
contrastive learning to ensure structural consistency
between the input OCT-SC and output DS images using a
fully connected network f.
Our framework operates on two different image scales:

WSI scale (denoted by upper case letters X, Y) and image
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patch scale (denoted by lower case letters x, y). R is trained
on WSIs, which have a size of about 3000 × 4000 pixels. G,
D, f are trained on image patches, which have a size of
512 × 512 pixels. We design an efficient image processing
module to either split (X, Y) into patches (x, y) or stitch
patches back to WSIs, as detailed in the Image Processing
section. The CUT framework33 is used to jointly train the
networks G, D, and f during the training phase. Addi-
tionally, G undergoes a pseudo-supervised training
scheme and an alternating training process with R, which
are explained below.
The objective of the adversarial learning module is to

enhance the perceptual similarity between the DS output
G(x) and the target modality PS images y. This is achieved
by using an auxiliary discriminator D. The role of D is to
learn to differentiate between the desired modality y and
the generated images G(x). During the training of D, the
PS images y are assigned the label 1, indicating that they
are “true” images. On the other hand, the generated
images G(x) are assigned the label 0, indicating that they
are “false” images. The least-squares generative adver-
sarial network (GAN) loss LGAN(D) is employed to mea-
sure the extent to which D’s outputs align with the binary
labels assigned to both y and G(x). This loss function is
minimized when D becomes proficient at distinguishing
between y and G(x). Conversely, when training G, the
LGAN(G) loss is utilized to promote the fidelity of the
generated images G(x). Minimizing this loss prompts G to
effectively deceive the discriminator D. The training
process alternates between two steps: first, G is fixed while
D is updated using the LGAN(D) loss, and then D is fixed
while G is updated using the LGAN(G) loss:

LGAN Dð Þ ¼ Ey D yð Þ � 1ð Þ2� �þ Ex D2 G xð Þð Þ� � ð1Þ

LGAN Gð Þ ¼ Ex D G xð Þð Þ � 1ð Þ2� � ð2Þ

The contrastive learning module ensures that the image
structures and content present in x is preserved when it is
translated to G(x). We implement G with a ResNet model
and treats the first half of the ResNet layers as the encoder
and the remaining layers as the decoder. The encoder
Genc transforms images from both domains into a com-
mon latent space, and the decoder Gdec generates trans-
lated images from latent vectors. To formulate the multi-
layer patch-wise contrastive loss, we adopt the approach
in (32) to sample the encoded feature maps from both x
and G(x). Each layer and spatial location in the feature
map stack corresponds to a patch of the input image that
covers the corresponding receptive field. We extract
multiple layers of the encoded feature maps, randomly
sample the spatial locations and apply a fully connected
network f to obtain a stack of latent features zs;l ¼
f ðGs;l

encðxÞÞ, where s is the spatial index within [1, S] and l

is the selected layer within [1, L]. We do the same pro-
cessing on image G xð Þ : ẑs;l ¼ f ðGs;l

encðG xð ÞÞÞ Then we
compute a PatchNCE loss using a cross-entropy con-
trastive loss:

LPatchNCEðG; f ; xÞ ¼ Ex

XL

l¼1

XS
s¼1

log
expðzs;l � ẑs;lÞPS
t¼1 expðzs;l � ẑt;lÞ

 !

ð3Þ

This loss function encourages the latent representations
of image patches from x and G(x) that belong to the same
spatial location to have similar content to be close in the
feature space, while pushing away the representations of
patches that are uncorrelated or have different content. By
this internal negative sampling scheme in the feature
space, the model learns to contrast positive and negative
pairs of patches based on their content similarity, which
maximizes the mutual information between the input
image x and the output image G(x). This provides a self-
supervised signal for preserving the content of the image
during the transformation.
The training procedure for pseudo-supervised learning

is formulated as a pixel-wise loss function that minimizes
the discrepancy between the digital stained OD images
G(OD(Y)) and the physical Gallyas-silver stain (PS) ima-
ges Y. This loss function aims to guide G to learn a
mapping that translates images from the OD modality to
the PS modality. By doing so, it provides a “proxy
supervision” for learning the mapping from OCT-SC
modality to the PS modality. To facilitate this training, we
first compute the OD of image Y by

OD Yð Þ ¼ � 1
3

X
c¼R;G;B

log10Y c ð4Þ

Subsequently, we extract patches OD(y) and y from the
processed WSIs and employ an auxiliary pseudo-
supervised loss, defined as:

LPseudoðGÞ ¼ Ey jjGðODðyÞ � yjj1 ð5Þ

However, there exists a mismatch in the intensity values
between X and OD(Y). This domain gap between the
input modalities hinders the model’s direct generalization
on X if it is solely trained on pairs of OD(Y) and Y. To
address this issue, we first apply histogram equalization to
the WSIs of OD(Y) and X before feeding them into G.
This normalization step aims to align the distribution of
intensity range. However, we found that this transfor-
mation alone is insufficient in mitigating the domain gap.
As a result, this learning module is further combined with
the adversarial learning module in the CUT backbone to
mitigate the domain gap between OCT-SC and OD.
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The cross-modality image registration module is trained
in two stages. In the first stage, we pre-train the regis-
tration network R on WSIs of X, Y and OD(Y). The
registration network R takes weakly-paired X and Y as
input and predicts a deformation field ϕ ¼ RðX;Y Þ that
indicates the pixel-wise displacement vectors needed to
perform the non-rigid transformation. To formulate a
cross-modal self-supervised registration loss LIreg , we use
OD(Y) as a surrogate of Y and exploit its correlation with
the input OCT-SC image X. By minimizing the difference
between the registered OD(Y) and X, we indirectly learn
the deformation between Y and X. This training is enabled
by a differentiable resampling layer that performs image
warping denoted by ∘. We also add a total variation (TV)
regularization term to encourage the smoothness of the
learned deformation field. The registration loss during
this pre-training stage is computed at the WSI scale as
follows:

LIregðRÞ ¼ EX;Y jjX � ϕ �ODðY Þjj1 þ jjϕjjTV ð6Þ
where jjϕjjTV is the total variation norm calculated as:

jjϕjjTV ¼
X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϕiþ1 � ϕi;jj2 þ jϕi;jþ1 � ϕi;jj2

q
ð7Þ

In the second fine-tuning stage, we train R and G in an
alternating and collaborative manner. The purpose of
fine-tuning R is to provide pixel-wise weak-supervision
between the registered Y and the DS image G(x), which in
turn helps to fine-tune the DS network G. Using the
coarsely trained G, we can produce G(x) that has the same
image modality as the PS image Y and use a pixel-wise
loss function to perform training. We implement the
following scheme for alternating training. When we fix G,
we train R by comparing the registered PS image Y and
the DS image G(X) at the WSI scale using the loss func-
tion

LIIregðRÞ ¼ EX;Y jjGðXÞ � ϕ �Y jj1 þ jjϕjjTV ð8Þ
When we fix R, we crop the intermediate registered WSI
ϕ �Y into patches ϕy � y and train G at the patch scale by
comparing the registered PS image patch and the DS
image patch G(x) using the loss function

LIIregðGÞ ¼ Ex;yjjGðxÞ � ϕy � yjj1 ð9Þ

Our models are trained on BU Shared Computing
Cluster (SCC) with one Nvidia Tesla P100 GPU. Training
time is 2.87 h for registration network pre-training and
13.6 h for whole model training. Additional details about
the deep learning framework and individual model
architectures are provided in Supplementary Sections 10,
11 and Figs. S10, S11 and S12. A non-learning “DS”

method based on simple inverse color mapping is also
constructed and compared to our DL-based approach in
Supplementary Section 14 and Fig. S16.

Image analysis
The layer differentiation analysis is primarily per-

formed using the open-source ImageJ software pack-
age. The line profiles are computed by selecting the
rectangular region in the center region of interest
(ROI) and aggregating the intensity value along the
horizontal direction. Those profiles are then normal-
ized to [0, 1] by their individual value range for visual
comparisons. The cortical layer boundaries are manu-
ally annotated by identifying the local maxima and
edges according to refs. 40,41. The layer segmentation
on the larger ROI is performed by manual annotation
on layer IV, V, and VI. We used the built-in local
thickness estimation function to generate the local
thickness map and calculated the box plot for the
thickness distribution using Matlab. Two Gyral crest
ROIs and one Sulcus ROI are manually selected.
Additional details about the analysis methods for the
myelin fibers and vessel quantification are provided in
Supplementary Section 13 and Fig. S14.
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