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Abstract

Metamaterials have revolutionized wave control; in the last two decades, they evolved from passive devices via
programmable devices to sensor-endowed self-adaptive devices realizing a user-specified functionality. Although
deep-learning techniques play an increasingly important role in metamaterial inverse design, measurement post-
processing and end-to-end optimization, their role is ultimately still limited to approximating specific mathematical
relations; the metamaterial is still limited to serving as proxy of a human operator, realizing a predefined functionality.
Here, we propose and experimentally prototype a paradigm shift toward a metamaterial agent (coined metaAgent)
endowed with reasoning and cognitive capabilities enabling the autonomous planning and successful execution of
diverse long-horizon tasks, including electromagnetic (EM) field manipulations and interactions with robots and
humans. Leveraging recently released foundation models, metaAgent reasons in high-level natural language, acting
upon diverse prompts from an evolving complex environment. Specifically, metaAgent’s cerebrum performs high-
level task planning in natural language via a multi-agent discussion mechanism, where agents are domain experts in
sensing, planning, grounding, and coding. In response to live environmental feedback within a real-world setting
emulating an ambient-assisted living context (including human requests in natural language), our metaAgent
prototype self-organizes a hierarchy of EM manipulation tasks in conjunction with commanding a robot. metaAgent
masters foundational EM manipulation skills related to wireless communications and sensing, and it memorizes and
learns from past experience based on human feedback.

Introduction

Since the turn of the millennium’~3, metamaterials have
revolutionized the manipulation of waves across scales
and wave phenomena. Starting with passive devices aimed
at exotic wave manipulations like anomalous refrac-
tion' ™, invisibility cloaking®™® or perfect lensing”'®, the
field evolved toward programmable devices'!, in parti-
cular programmable metasurfaces'>'?, aimed at providing
increasingly applied functionalities in areas like wireless
communications and sensing. Latest generations of pro-
grammable metasurfaces are endowed with sensors so
that they can self-adaptively realize a user-defined func-
tionality’*™*°. Currently, a plethora of emerging deep-
learning techniques drives new developments in the
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research on metamaterials, ranging from their inverse
design®®~>* via the post-processing of measured data in
sensing applications to end-to-end optimized metama-
terial devices>>~2°. However, the role of deep-learning in
the field of metamaterials is to date limited to approx-
imating specific mathematical functions that are not
analytically tractable’”?®, At the same time, the meta-
material devices remain to date proxies of human
operators, niched to realizing a predefined functionality,
possibly with the help of the aforementioned deep-
learning tools. The functionality must be chosen by the
human operator and prepared in advance (e.g., via inverse
design or training of an artificial neural network); during
runtime, the functionality cannot swiftly be modified.
Most glaringly, existing metamaterial devices lack the
reasoning and cognitive capabilities with which their
human operators are endowed to understand environ-
mental cues and accordingly plan their actions them-
selves. Ideally, metamaterials would be autonomous
reasoning agents that monitor their surroundings via
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diverse sensing modalities, understand the evolution of
their complex surrounding, self-organize their actions
accordingly across long horizons, and execute their
planned actions (possibly in collaboration with robotic
entities). Advanced wave manipulation skills related to
sensing and wireless communications based on pro-
grammable metasurfaces are clearly a prerequisite for
such metamaterial agents’ sensing modalities as well as
the execution of their planned actions and communica-
tions with robotic entities.

Humans reason in natural language which provides a
powerful high-level abstraction, humans have a broad set of
expertise in diverse domains, and humans are single-shot or
few-shot learners. Recent releases of large-capacity founda-
tion models (LFMs)*’, in particular large language models
(LLMs) like the GPTs***2 BERT®?, Gemma®®, LLaMA®
and Mistral®, broadly attracted public attention because of
their unprecedented abilities to reason in natural language, to
adapt their broad knowledge learned from internet-scale data
to a wide variety of downstream tasks, and to learn unseen
knowledge with a single or a few shots>’. The availability of
pre-trained LFMs makes it possible for downstream users to
fine-tune an LFM for a desired task with very little task-
specific data, or even to merely provide a few context-
clarifying prompts in natural language. LFMs have success-
fully been applied to areas including task planning®®®,
computer code generation‘lo, protein design‘“, and informa-
tion extraction from materials science literature*”. Within the
fields of electromagnetism and metamaterials, first studies
using LFMs already demonstrated the semantic regulariza-
tion of inverse problems®, the fine-tuning of LFMs to
inverse-design metasurfaces*, and the configuration of a
programmable metasurface according to a suitable prompt in
natural language®. Some of these studies provide early
indications that the abstraction to natural language provides
superior generalization and noise-robustness capabilities
compared to more conventional deep-learning tools®™**,
Nonetheless, ultimately these early studies replace artificial
neural networks or other algorithms implementing a specific
functionality by LEMs; the LEMs in refs. “*~* are hence not
used for reasoning in natural language and the metamaterials
in refs. *>~* are not autonomous metamaterial agents. Yet, in
sight of the capabilities and availability of pre-trained LFMs,
the latter appear ideally suited to realize the aforementioned
vision of a metamaterial agent reasoning in natural language.

Here, we propose and experimentally prototype such a
reasoning metamaterial agent which we coin metaAgent.
Our experiments take place in a real-life indoor envir-
onment and emulate an assisted-living context, where
metaAgent assimilates environmental cues via various
sensors (e.g., audio, text, visual, radio) and then inde-
pendently orchestrates its actions accordingly. For
instance, upon receiving audio input revealing that a
human is feeling unwell, metaAgent may decide to
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cascade a variety of EM manipulation tasks using its
programmable metasurfaces to proactively seek out sup-
plementary focused observations. Specifically, this could
involve wirelessly localizing the human and then per-
forming fine-grained monitoring of the human’s respira-
tion and heartbeat. Based on the obtained results,
metaAgent may decide that a robotic entity should be
dispatched to deliver drugs to the human. metaAgent
would then use its programmable metasurfaces to estab-
lish a strong wireless communication channel with the
robotic entity to transmit those instructions. As the robot
moves, metaAgent would constantly wirelessly localize
the robot using a programmable metasurface and adapt
the configuration of a programmable metasurface to
maintain a strong wireless link with the robot. Impor-
tantly, this highly complex multi-task coordination across
long horizons is achieved by metaAgent without any
human intervention. However, metaAgent can learn to
improve based on human feedback in natural language.

On the hardware level, metaAgent’s EM wave manip-
ulation capabilities leverage programmable meta-
surfaces'” which are by now established hardware. The
key contribution of the present work is that the meta-
surfaces are no longer limited to static responses or pre-
defined choices of functionalities. Instead, as highlighted
in Fig. 1, we endow meta-agent with the capability of
reasoning in natural language to enable autonomous
multi-modal multi-task operations which pivotally rely on
EM wave manipulations with programmable meta-
surfaces. To reason in natural language, metaAgent’s
cerebrum features a multi-agent discussion mechanism in
natural language. Each agent has a specific expertise (e.g.,
planning, coding, etc.) and is based on an LFM that has
received a context demonstration, i.e., it has been briefed
in natural language about its role. Importantly, we are
hence not performing gradient updates or fine-tuning of
the LEMs to conceive our LEM-based expert agents. This
remarkably frugal approach is enabled by the public
availability of LFMs and their few shot learning cap-
abilities®’. Moreover, the high-level abstraction of the
multi-agent discussion in natural language may provide
pivotal advantages in terms of generalization and
robustness, as hinted at earlier. metaAgent’s cerebrum
manages perceptual, planning and execution steps in a
hierarchical manner, mirroring the sequential focus of
human attention®.

Results
Operational principle of metaAgent

Our metaAgent is an entity that autonomously engages
with an evolving uncertain environment via intricate
interactions between EM waves, matter and information.
As sketched in Fig. 2a, metaAgent is composed of two
constituting parts: one is the cerebellum for executing
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provided in Methods and Supplementary Note 2

Fig. 1 Conceptual illustrations of a passive metasurface, a computation-enabled active metasurface, and our metaAgent. a Passive
metasurface: one needs to manually change the metamaterial itself, respectively, when the operational environment or demanded task is changed.
b Computation-enabled active metasurface: one needs to manually change the governing algorithms (which could be artificial neural networks).
¢ Our metaAgent: in contrast, the metaAgent is capable of autonomously planning and executing EM wave manipulations in response to an evolving
environment and human feedback because it is endowed with the ability to reason in natural language. Specifically, the metaAgent's cerebrum
features a multi-agent discussion in natural language leveraging state-of-the-art LFMs in order to understand environmental cues, plan suitable
actions and execute them based on EM wave manipulations with programmable metasurfaces. In addition, details about the meta-atom have

Cc Meta-atom

Inductance

specific EM wave manipulation tasks using semantically
programmable metasurfaces (SPMs), and the other one is
the LFM-based cerebrum for delegating a hierarchy of
executable subtasks to the cerebellum (see Supplementary
Note 1). The hardware of SPMs resembles that of con-
ventional programmable metasurfaces'” (see Methods
and Supplementary Note 2), but we specifically use the
terminology SPM here to highlight that the control cod-
ing patterns (which we refer to as semantic coding pat-
terns) embody prompts formulated in high-level natural
language as a result of the reasoning process in metaA-
gent’s cerebrum, rather than a low-level sequence of
binary digits as in conventional programmable
metasurfaces'”.

On the basis of multi-modal inputs (text, voice,
image, microwave signals), metaAgent’s cerebrum
launches an action plan that involves commanding the
SPM for various purposes, including the acquisition of
supplementary sensory data, the commanding of a
robotic entity, etc. This requires an abstract under-
standing of environmental cues such as spoken
instructions, long-horizon reasoning over the required
order of various actions, and knowledge of both the
environment and metaAgent’s capabilities. With
respect to the SPM, the cerebellum can be character-
ized by a function 7,

(IDmeta; C) = m(l, other inputs; KG) (1)

where 7 converts natural-language prompts / and other
inputs based on stored knowledge (in the form of a
knowledge graph (KG) here) into an index IDpet, and
space (or space-time) coding pattern C of the chosen
SPM. Here, the policy function 7 is constructed as a

pipeline, where the natural-language prompts [ and
other inputs from KG are first inputted to LLMs, and
the LLMs generates executable Python code after series
of reasoning. Then, in this pipeline the code generated
by LLMs is executed to control the coding pattern C of
the target SPM via the Field Programmable Gate Array
(FPGA). Of course, the major challenge lies in
representing 7 due to the cross-modality nature of
inputs and knowledge, and the uncertain surrounding
environment. metaAgent’s cerebrum tackles this chal-
lenge by a “chain-of-thought” that is implemented via
discussions in natural language®” of the following four
domain experts (see Methods):

1. Sensing expert. The sensing expert continuously
takes multi-modal data as input and outputs the
semantic result for the planning expert.

2. Planning expert. The planning expert, drawing on
knowledge provided in the memory module,
analyzes the natural-language input from the
sensing expert or the coding expert, and
decomposes it into a series of feasible subtasks.

3. Grounding expert. The grounding expert receives
the planning expert’s list of subtasks and assigns
suitable action functions and associated devices for
each subtask.

4. Coding expert. The coding expert takes as input the
triplet of intended goal, required action function and
devices in natural language, then writes python code
that runs on the host computer using the known
functions.

Whenever an expert’s output causes an error at the
subsequent stage, the former expert is asked to produce a
new output, until the output no longer produces a
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respectively. Additionally, the SPM’s deployment in our lab has been detailed in Fig. S2
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Fig. 2 System configuration and operational principle of metaAgent. a System configuration: the metaAgent takes a collection of SPMs as its
cerebellum, while its cerebrum is composed of a multi-agent discussion between four different domain experts (sensory expert, planning expert,
grounding expert and coding expert). Besides, a memory module is introduced into the cerebrum for saving the knowledge graph, 3D visual-
semantic map and past experiences. See Fig. S1 for further details. b Operational principle: metaAgent autonomously accomplishes the user's
command by taking sequentially the four-step operations: (i) the sensory expert summons the multi-modality sensor data (radio, audio, text, image)
and synthesizes the information in natura language, (i) the planning expert generates a body of executable subtasks, (iii) the grounding expert
assigns each subtask with an action function and associated devices, (iv) the coding expert generates the action policy. The coding expert produces
two types of outputs in natural language: one ‘external’ output for the communication with the external human user, and one ‘inner’ output for
consideration by the planning and grounding experts. See Fig. S3 for further details. ¢, d are two experimental examples of semantic coding patterns.
Here, given the knowledge graph, the semantic coding patterns convey the semantics of the SPM with a given space or space-time coding pattern is
responsible for ‘generating a radiation beam pointing towards the router’ and ‘generating a binary-phase-shift-key modulated signal for Alice’,
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subsequent error. For instance, if the python code gen-
erated by the coding expert produces an error, metaAgent
re-calls the coding expert who will generate an improved
code. As mentioned, the memory module is an important
part of metaAgent’s cerebrum, accessed by the planning
expert, the grounding expert and the coding expert. The
memory module contains an action library and a memory
library (see Methods).

Before considering increasingly complex environmental
cues and situations in the subsequent sections, we illus-
trate the semantic coding patterns for two relatively
simple examples. In Fig. 2¢, the natural-language prompt
“generating a radiation beam pointing toward a router” is
converted into a spatial coding pattern of the 2.4 GHz
programmable metasurface using the KG which contains
information about the location of the router and the
programmable metasurface. The spatial coding pattern is
inverse-designed by the metaAgent using the modified
Gerchberg-Saxton (G-S) algorithm™® (see Supplementary
Note 2 for details). In Fig. 2d, the natural-language
prompt “generating a binary-phase-shift-key modulated
signal towards Alice” is converted into a space-time
coding pattern of the 5.5 GHz programmable metasur-
face. Here, while the location of the 5.5 GHz program-
mable metasurface is looked up by the metaAgent in the
KG, the location of Alice and Bob must be determined
first, and subsequently a suitable space-time coding pat-
tern of the programmable metasurface is inverse-designed
by the metaAgent using again the modified G-S
algorithm.

We have examined the performance of the planning and
grounding experts over open-vocabulary natural-language
commands in a comprehensive series of experiments in
our real-life highly complex laboratory indoor environ-
ment featuring bookcases, desks, chairs, computers,
electronic instruments, wireless routers, and so on. In our
experiments, we consider 100 language commands with
different levels of complexity (see details in Supplemen-
tary Note 7), and each command is implemented 100
times in different settings of our environments. Experi-
mental results are reported in Table 1, revealing that
metaAgent can understand the user’s intention and for-
mulate the correct policy, and that the grounding expert
can obtain a success rate exceeding 97% on average. These
results indicate that our metaAgent is capable of digesting
diverse spoken instructions, converting them into suitable
feasible actions involving the available programmable
metasurfaces.

Experimental results of autonomous EM manipulations
We now provide three representative experimental
results in Fig. 3 to demonstrate the metaAgent’s cap-
abilities in accomplishing the user’s intention through the
autonomous EM manipulation in real-world settings. In
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this section, the user communicates their intention in
natural language; more complex scenarios are considered
in the subsequent section.

First, we consider a relatively simple case to illustrate
the operational pipeline of metaAgent, where a user
somewhere in our laboratory initiates a voice request, i.e.,
‘please check Alice’s breathing status’. In light of Fig. 2b,
the metaAgent, after receiving the command through the
in-built microphone, follows a three-step operation
pipeline: (i) plan a body of subtasks through the planning
expert, (ii) assign each subtask with an action function
and associated devices through the grounding expert, (iii)
implement sequentially the planned subtasks with the
coding expert. For the first step, the metaAgent produces
a task decomposition in natural language: (1) localize
Alice, (2) detect Alice’s breathing rate, (3) end. It is clear
that the original ambiguous instruction has been broken
up into two sequential subtasks that match well the
metaAgent’s capabilities (see Fig. 3a). Afterwards, through
consultation with the grounding expert, the metaAgent
assigns to each subtask an action function and associated
devices from FunctionLibrary and DeviceLibrary, respec-
tively. For subtask-1, the chosen action function and
device are ‘user_localization’ and the 2.4 GHz SPM,
respectively. Similarly, ‘breathing detection’ and the
5.5GHz SPM are chosen for subtask-2. Note that the
metaAgent automatically chooses a set of 20 random
coding patterns for the action function ‘user_localization’
while it chooses the focusing coding pattern for ‘breath-
ing_detection’ in order to suppress unwanted clutter by
boosting the signal-to-noise ratio. These two actions are
sequentially implemented and corresponding results are
reported in the bottom of Fig. 3a, indicating that Alice is
healthy in terms of her respiration rate, i.e., 0.3 Hz. These
results demonstrate that the metaAgent can autono-
mously perform the intended EM manipulation task
without human intervention.

Next, we consider two more challenging cases for which
the voice instruction from the user is ‘my cell phone
cannot get a signal, please help me’ and ‘robot A, please
see me’, where robot A is a mobile robot in our laboratory
environment. These two cases are more challenging than
the first case since the spoken user instruction is more
ambiguous, and the subtasks planned by the metaAgent
are arranged in a more complicated tree structure rather
than a simple sequential manner. As shown in Fig. 3¢, the
metaAgent responds with 5 subtasks: (1) find the router,
(2) localize robot A, (3) establish the wireless link between
robot A and router, (4) localize the user, (5) move robot A
to the user, (6) end. Similar to above, the metaAgent
needs to drive a SPM for implementing a certain kind of
EM manipulation for some subtasks. For instance, for
subtask-4, the 2.4 GHz SPM is utilized while robot A
moves towards the user. Note that the router has been
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Table 1 Success rates of our metaAgent over 100 language commands with different complexities
Instructions Steps Success Rate (%)
TP AS&DA CG TE

simple instructions Where is the table? 1 100 100 100 100
Where is Alice? 1 100 100 100 98
Where is my cell phone? 1 97 100 98 93
Where is robot A? 1 98 100 98 94
Please locate the router. 1 9% 100 98 93
Please check Bob's breathing. 2 98 100 94 20
What happened to Alice? 2 94 100 96 89
Please check Bob's health status. 2 90 98 92 84
Enhance the Wi-Fi signal in the corridor. 3 97 100 98 20
My cell phone cannot get a signal, please help me. 3 98 99 100 88
Average performances of all 50 simple commands 974  99.2 96.9 90.2

complex instructions  Please check the respiration rate of Bob and Alice. 4 94 98 99 87
What are Bob and Alice doing? 4 96 99 98 92
Robot A, please see me. 5 88 98 96 78
Robot A, take me to the corridor. 7 85 96 90 72
Please send this picture to Alice’s computer. 4 89 99 95 86
Let the robot A go to the pillbox and bring me my antihypertensive pills. 8 85 97 91 73
Please bring Bob his antihypertensive pills. 8 78 95 92 71
Let robot A to take the wooden block Bob's holding to Alice. 9 75 95 89 72
Let robots A and B go to room A and the corridor respectively. 10 85 96 93 78
Bob needs help, his pressure is really high. 9 72 96 85 67
Average performances of all 50 complex commands 842 97.8 91.6 723

Steps the number of steps required to complete the instruction, TP task planning, AS&DA action selection and device allocation, CG code generation, TE task execution
In addition, we also report the average performances of all involved 50 simple and 50 complex commands, respectively. Note that only 10 simple and 10 complex

commands are listed here due to the limited space

saved in the memory module (i.e., KG or VSM) so there is
no need for the metaAgent to localize the router using a
microwave sensing technique. More details have been
provided in Fig. 3b, c. The results allow us to conclude
that the metaAgent can understand user’s open-
vocabulary requests, self-organize in order the required
subtasks, and autonomously accomplish a diversity of
human-robot interactions in real-world settings.

Before closing this section, we examine the metaAgent’s
performance in terms of the success rate which char-
acterizes the fraction of times that the metaAgent is able
to successfully complete task planning (TP), subtask
grounding (SG), code generation (CG), and task execution
(TE) based on the user’s instruction in the physical

environment. In our experiments, we consider the 100
language commands listed in Supplementary Note 7, and
each command is implemented 100 times in our lab,
where five participants are invited as the subjects, and
each time the wireless router is placed at a different
random but known location. As shown in Table 1, we can
see that the metaAgent can achieve TE success rates of
90.2% and 72.3% for the simple and complex tasks,
respectively. In order to study the importance of the
specific choice of LLM, we evaluate the effects of different
choices of LLMs on the metaAgent’s performance. While
it is expected that the generative performance of the
language model will improve with better language models,
it is unclear how the LLM size influences the final success
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(see figure on previous page)

Fig. 3 Three selected experimental results of autonomous EM manipulation, where the demanded tasks from a user’s voice commands.
a ‘please check Alice’s breathing status’ : (Top) the graph representation of planned subtasks, where two subtasks are organized in a sequential
manner. For each subtask, the action function, SPM device, and the required semantic coding pattern are marked. For subtask-1, 2.4 GHz SPM and 20
random coding patterns are assigned for reconstructing the 3D human skeleton through the microwave imaging strategy; for subtask-2, 5.5 GHz SPM
and a focusing coding pattern are assigned for remotely detecting the subject’s breathing rate via the microwave sensing technique. (bottom) the
executed results corresponding to planned two subtasks, i.e., the Alice’s location has been marked with red stars in the reconstructed human
skeletons for subtask-1, while a 15 s-length respiration rate is plotted for subtask-2. b ‘my cell phone cannot get a signal, please help me’: (Top) the
graph representation of planned three subtasks. For subtask-1, the router can be easily localized by looking up the knowledge map or visual-semantic
map, and thus there is no need to use the SPM; for subtask-2, the user's cell phone is localized via the beam-scanning strategy, where 3180 focusing
coding patterns are involved; for subtask-3, the wireless link between the router and the user’s cell phone is established and enhanced by using a 2.4
GHz SPM. (bottom) the executed results corresponding to planned three subtasks: the microwave localization of the user’s cell phone for subtask-2,
and a 0.25 s-length wireless signals at the subject for subtask-3. One can see that the wireless signal of the user has been remarkably enhanced.
c robot A, please see me’: (left) the graph representation of planned five subtasks. For subtask-3 and 5, they share the same semantic coding pattern
for the enhanced wireless communication between the router and robot_A. Besides, for subtask-5, it involves the information transfer from
metaAgent to robot_A, which the transferred information is about the user’s localization. (right) the executed results corresponding to four subtasks:
microwave localization of robot_A for subtask-2, microwave reconstruction of user's 3D skeleton for subtask-3, a 0.25 s-length wireless signals at the

subject for subtask-3, and the constellation of wireless communication between robot_A and router

Table 2 Results of performance analysis for different
large language models

models Success Rate (%)
gpt-3.5-turbo 782
gpt-4 85.1
glm-3 739
glm-4 817

rate. As shown in Table 2, we choose to experimentally
test our metaAgent with four LLMs (“gpt-3.5-turbo”,
“gpt-47, “glm-3” and “glm-4”). We performed these tests
on the aforementioned 100 commands using the different
LLMs; the results show that the “gpt-4” model is the most
effective, reaching 85% success rate, while the other
models achieve >70% success rate. This finding is parti-
cularly exciting because it reveals how an improvement in
the language models translates to a similar improvement
in the metaAgent’s performance. These results hint at a
potential future where the fields of language processing
and metaAgents can collaboratively improve each other
and scale together.

Experimental results for long-horizon human-robot
interactions

Finally, we consider a more realistic scenario to
demonstrate the metaAgent’s capability in the realm of
long-horizon human-robot interactions, where the
metaAgent serves as a personal life assistant, autono-
mously and continuously responding to the live feedback
of an evolving environment and the user’s requests.
Selected experimental results are reported in Fig. 4, and
more results have been recorded in Supplementary Videos
1 and 2. These results demonstrate that our metaAgent is

capable of continuously monitoring the ‘general’ requests
from the user, and making dynamically executable plans
that consider the real-time context of the surroundings.
Here, we mean by ‘general’ that user requests can be
expressed in natural language, body language or vital signs.
In previous sections, we had limited ourselves to requests
in natural language. However, body language and vital
signs are additional important expressions of user requests
or needs. For instance, once the metaAgent perceives the
user’s behavior to be unusual, such as an accidental fall or
abnormal respiration, the metaAgent can rapidly make
decisions and help the user out of danger through con-
tinuous interactions with the user.

We first consider a moderately complex case (see Fig. 4a
and Video S1), where the metaAgent recognizes that a user
accidently falls; the metaAgent then initializes communica-
tions with the user and helps the user out of danger fol-
lowing the user’s language instructions. The results
demonstrate that the metaAgent, as a family life assistant,
exhibits human-level performance, as argued below. First,
the metaAgent can understand the intention that the user
has asked for something by saying ‘my pressure is really
high’, and then guide a mobile robot to bring anti-
hypertensive drugs to the user. In other words, the metaA-
gent can recognize an abnormal feature of the subject in the
observed real-time context. Second, the metaAgent is cap-
able of continuously and autonomously monitoring the user
in a complex indoor environment. Interestingly, the
metaAgent can actively invoke a microwave sensor to
implement a non-line-of-sight sensing task when the subject
is outside the visually monitorable scene, for instance, when
the user walks behind an opaque wall. This is also really
important in scenarios requiring strict privacy preservation
such as in a wash room. It can be observed that the
metaAgent can perceive what the human cannot see by
leveraging unique features of microwave radiation:
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(see figure on previous page)

Fig. 4 Two experimental results of long-horizon human-robot interactions. a The metaAgent recognizes the accidental fall of a user, and
initializes communication with the user to help them out of danger based on their language instructions. (upper left) Excerpt of the protocol of
communications between the human user and the metaAgent. Herein, the outputs of different domain experts in natural language are seen. (upper
right) A sequence of reconstructed 3D human skeletons, based on microwave reconstruction in the sheltered region for privacy preservation, and
based on an optical camera otherwise. (bottom) Some photographic snapshots of the robot. More details have been recorded in Video S1. b The
metaAgent proactively helps the subject out of danger by checking the subject’s vital signs and contacting a medical expert when it determines that
the subject has an emergency and does not communicate with the metaAgent. (left) Excerpt of the protocol of communications between the
human and the metaAgent. (right) Some results of the human-robot interactions: (i) Recognition of the abnormal behavior based on a 30 s-long
sample of Bob's breathing rates, (ii) communicate with the subject, but fails to get the response, (i) proactively monitor the breathing and heartbeat
rates of subject, (iv) call the emergence number or human intervene for helping the subject out of the danger. More details have been recorded in

Video S2

independence of lighting conditions and penetration of
visually opaque layers. In this sense, the metaAgent is cap-
able of outperforming humans. In order to further evaluate
the metaAgent’s performance, we have conducted the
above-described experiments 50 times in our laboratory
environment, and corresponding experimental results have
been summarized in Table S1, where ten participants were
invited to act according to the above scenario, and they
randomly implemented the gesture of falling down some-
where in our laboratory. We observe that the metaAgent can
achieve a planning success rate of 84% and an execution
success rate of 74%, indicating that the metaAgent can
accomplish the intended tasks in an uncertain real-world
indoor environment.

Second, we consider the very complex scenario in which
the metaAgent finds the subject in an emergency but fails to
receive instructions from the subject. In contrast to the
previous scenario, here, the metaAgent proactively helps the
subject out of dangerous by examining the subject’s vital
signs and asking for human intervention, as shown in Fig. 4b
and Video S2. Note that the heartbeat and respiration are
detected by SPM-based microwave sensing. In contrast to
the aforementioned examples based on instructions in nat-
ural language, the present case is more challenging because it
requires the metaAgent to possess the capability of autono-
mous planning based on the real-time environmental cues.
Besides, the metaAgent is required to understand user needs
based on the observed context, and the metaAgent must self-
plan many steps without error, including the robot’s navi-
gation. Furthermore, the metaAgent must understand
chronology and history, from which it can recognize the
subject’s situation, synthesize a brief report on the subject,
and call an emergence number. Table S2 reports the statis-
tical performance of the metaAgent over 50 experiments in
our laboratory with different settings, similar to above, but
the participants are asked to act with slower or faster
respiration. It can be observed from these results that the
metaAgent can achieve a planning success rate of 80%, a
detection accuracy of human respiration of 90%, and an
execution success rate of 78%.

Discussion

To summarize, we presented and experimentally proto-
typed the concept of an EM metamaterial agent reasoning in
natural language. Whereas previously reported metamaterials
were realizing a pre-defined functionality as proxies of a
human operator, we have conceived an autonomous meta-
material entity that reasons in natural language to perceive its
environment, and to plan and execute its actions including
programmable-metasurface-based EM wave manipulations
for sensing and communications. Our experiments in the
context of ambient-assisted living demonstrated our
metaAgent’s capability to understand a variety of environ-
mental cues (spoken instructions, body language, vital signs),
to make long-horizon plans involving interactions with
robots and humans, and to successfully execute the plans
based on the available hardware and EM wave manipulation
skills. Remarkably, the capabilities of the metaAgent even
exceed those of a human assistant because of the metaA-
gent’s microwave perception that can sense through visually
opaque layers and around corners. Our metaAgent’s rea-
soning in natural language was facilitated by a multi-agent
discussion of various domain experts, each based on an LLM
provided with a context demonstration. We observed that
deploying more recent LLMs with more parameters yields a
higher success rate of the metaAgent, which implies that the
metaAgent will be able to harness the expected further rapid
progress on LLMs in the coming years. Looking forward, it
will be important to identify efficient techniques for scaling
up the memory and action libraries while maintaining the
metaAgent’s ability to efficiently formulate policies. One
exciting route may be to guide the metaAgent to autono-
mously learn new skills, akin to children learning new skills
under a teacher’s guidance at school.

Materials and methods
Programmable metasurfaces

Our metaAgent has access to three programmable
metasurfaces operating in frequency bands centered on
2.4 GHz, 5.5 GHz and 9.7 GHz. Here, we briefly describe
these programmable metasurfaces; more details have been
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provided in Supplementary Note 2. The 2.4 GHz meta-
atom features two substrate layers: the top substrate is
F4B with a relative permittivity of 2.55 and a loss tangent
of 0.0019, and the bottom substrate is FR4. A PIN diode
(SMP1345-079LF) is integrated into the top square patch
and connected to the ground plane via a hole. An RF
choke with inductance L =33 nH is used to suppress the
AC coupling to ground. The phase change can be
accomplished by switching the external DC voltage
applied to the PIN diode from 12V to 0V. The whole
programmable metasurface is electronically controlled
with an FPGA-based Micro-Control-Unit (MCU). To
achieve the real-time and flexible control of 768 PIN
diodes, an MCU with size of 90 x 90 mm? is designed and
assembled on the upper rear of the metasurface. In our
work, the adopted CLK is 50 MHz, and the switching time
of PIN diode is about 2.5 us each cycle. Each metasurface
panel is equipped with eight 8-bit shift registers
(SN74LV595APW), and groups of 8 PIN diodes share the
same shift register. We remark that the proposed control
strategy can be readily extended to more PIN diodes by
concatenating more metasurface panels, allowing adjus-
table rearrangement of metasurface panels to meet var-
ious needs. The 5.5GHz meta-atom has the same
structure as the 2.4 GHz except that it scaled down in size.
The 9.7 GHz meta-atom has three substrate layers: the
top substrate is Taconic TLX-8 with a relative permittivity
of 2.55, and the middle and bottom substrates are FR4. A
MADP-000907-14020x PIN diode is integrated into the
top square patch of the 9.7 GHz meta-atom. As opposed
to the 2.4 GHz meta-atom, the RF choke inductance is
replaced with a fan-shaped microstrip line and placed at
the bottom of the meta-atom.

Sensing expert

The sensing expert continuously takes multi-modal data
as input, including sounds recorded by microphones,
images recorded by cameras, text input via a keyboard and
microwave signals captured by software defined radios,
and outputs the semantic result for the planning expert.
The sensing expert selects the appropriate deep neural
networks or other signal processing methods to analyze
and understand the inputs. For image and sound pro-
cessing, models that were pre-trained on large-scale
datasets are utilized. For instance, Xunfei API recog-
nizes speaker identities and speech content, ZED SDK
realizes multi-camera fusion for human keypoint detec-
tion. The microwave sensing is based on multiple pro-
grammable metasurfaces operating in different frequency
bands which can be used to realize diverse sensing tasks
(skeleton keypoint detection, human localization, beha-
vior recognition, breathing and heartbeat monitoring).
The microwave sensing uses the programmable meta-
surfaces to probe the environment and interprets the
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measured signals using artificial neural networks trained
via supervised learning, as detailed in Supplementary Note
8. Note that these sensing algorithms are also shared with
the coding expert. Microwave sensing complements
optical sensing when the latter is ineffective (e.g., around
corners or behind opaque layers) or unavailable (e.g., due
to privacy concerns). Additional details about the sensing
expert are also provided in Supplementary Note 3. The
sensing expert synthesizes their understanding of the
multi-modal input data in natural language and passes it
on to the planning expert.

Planning expert

The planning expert, drawing on knowledge provided in
the memory module, analyzes the natural-language input
from the sensing expert or the coding expert, and
decomposes it into a series of feasible subtasks. The list of
hierarchical subroutines to be executed is then passed on
in natural language to the grounding expert. The planning
expert is based on an LLM provided with a few context
demonstrations, as detailed in Supplementary Note 4. In
addition, the planning expert improves based on human
feedback stored in the memory library.

Grounding expert

The grounding expert receives the planning expert’s list
of subtasks and assigns suitable action functions and
associated devices for each subtask. Each action function
corresponds to one of metaAgent’s EM wave manipula-
tion skills. As detailed in the Methods, an action function
may require the determination of parameters such as the
coordinates of a human or an object, which may be
accomplished by accessing sensor data or actively invok-
ing a particular sensor. Once any pending parameters are
determined, the action function may involve the manip-
ulation of actuators such as robotic entities. Action
functions and involved devices are stored in the memory
module which can be updated to add new skills or modify
the details of existing skills. The grounding expert is based
on an LLM provided with a few context demonstrations,
as detailed in Supplementary Note 5.

Coding expert

The coding expert takes as input the triplet of intended
goal, required action function and devices in natural
language. In particular, the coding expert checks whether
the various required subtasks can be executed in parallel
or require sequential execution. Then, the coding expert
writes python code that runs on the host computer using
the known functions. The coding export produces two
types of outputs in natural language: one ‘external” output
for communication with the human user via the chat tool,
and one ‘internal’ output for consideration by the plan-
ning and grounding experts. The ‘internal’ output is a
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crucial part of the metaAgent’s reasoning in natural lan-
guage via the multi-agent discussion on which the
metaAgent’s autonomous self-organization skills build.
The coding expert is based on an LLM provided with a
few context demonstrations, as detailed in Supplementary
Note 6.

Action Library

The Action library stores the various actions that can be
performed by the SPM for the metaAgent to decompose
and assign tasks. In addition, the name of the executable
device for each specific action performed is also provided.
The action module follows two steps. The first step is to
select an action function from the Action Library. This
action function indexes a specific operations flow.
Meanwhile, the parameters of this action function might
need to be determined. For example, when move-
ToPosition() is selected, there are three undetermined
parameters, namely the coordinates (x, y, z) of the desired
position. This flow contains access to sensor results and
manipulations of actuators, as well as actively invoking a
particular sensor. After the flow ends, the parameters of
the action function will be determined, and then the final
action operation will be executed.

Memory Library

The memory library is utilized to store a priori infor-
mation about the physical environment, but it also
empowers the metaAgent to assimilate knowledge pro-
gressively. For instance, the memory library also stores the
history of user interactions as well as past perceptions of
the environment. Thereby, the metaAgent is capable of
swiftly evaluating alterations in the environment by con-
trasting the latest captured image with preceding ones.
The metaAgent primarily exploits vector databases for the
efficient description and retrieval of memories, thus
enabling the fetching of pertinent memories from exten-
sive repositories by amalgamating similarity searches with
additional parameters.
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