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Abstract
Accurately estimating the overlap between quantum states is a fundamental task in quantum information processing.
While various strategies using distinct quantum measurements have been proposed for overlap estimation, the lack of
experimental benchmarks on estimation precision limits strategy selection in different situations. Here we compare the
performance of four practical strategies for overlap estimation, including tomography-tomography, tomography-
projection, Schur collective measurement and optical swap test using photonic quantum systems. We encode the
quantum states on the polarization and path degrees of freedom of single photons. The corresponding measurements
are performed by photon detection on certain modes following single-photon mode transformation or two-photon
interference. We further propose an adaptive strategy with optimized precision in full-range overlap estimation. Our
results shed new light on extracting the parameter of interest from quantum systems, prompting the design of
efficient quantum protocols.

Introduction
Quantum information processing tasks are normally

accomplished by estimating specific parameters encoded
in the output states instead of the full knowledge of the
states. The estimation of the overlap c ¼ jhψjϕij2 between
two unknown quantum states jψi and jϕi is a quintes-
sential example underlying various applications, including
relative quantum information1–5, entanglement estima-
tion6–9, cross-platform verification10 and quantum algo-
rithms11,12. In particular, state overlap estimation plays a
pivotal role in various quantum machine learning algo-
rithms13,14, such as quantum neural network train-
ing15–19, quantum support vector machine20–25 and
variational quantum learning26–28, in which the state
overlaps serve as cost functions or kernel functions.

However, to date, these applications usually assume the
ability of ideal and precise state overlap estimation with-
out considering the precision and imperfections in rea-
listic experiments, which may limit the performance of
their actual implementations.
The most intuitive way to estimate the overlap is per-

forming full tomography to reconstruct both quantum
states and then calculate the overlap directly. This strategy
can be modified by only performing tomography of one
state jϕi and projecting another state jψi onto the estimate
jeϕi, the success probability of which gives the overlap
between the two states. On the other hand, a widely used
strategy in many quantum protocols19,21,29–32 is a joint
measurement on jψijϕi called the swap test29. Swap test
has been realized in various quantum systems33,34, for
example, with the Hong-Ou-Mandel interference (HOMI)
of photons35–37. There have been efforts to further improve
the implementation of the swap test through variational
quantum approaches to find shorter-depth algorithms38, as
well as to estimate both the amplitude and phase of the
inner product hψjϕi39. Recently, optimal strategy for
overlap estimation has been proposed, achieving ultimate
precision among all possible strategies40. Yet the optimal
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strategy involves formidable experimental costs requiring
joint measurements on all copies of the quantum states.
This gap between theoretical proposals and experimental
capabilities, which restricts the practical implementation of
many quantum protocols, necessitates benchmarking the
attainable precision of overlap estimation strategies feasible
with current technologies.
To bridge this gap, here we experimentally evaluate the

precision of overlap estimation strategies on the photonic
platform. Photonics has emerged as a promising platform
for various quantum information applications including
quantum machine learning41,42, benefited from the devel-
opment of photonic quantum circuits that have already
matured in the implementation of optical neural net-
works43–45. The advantages in high-dimensional encoding
and programmable operations using linear optics can be
readily generalized to implement quantum-optical neural
networks at the single-photon level15,46. Developing tai-
lored overlap estimation strategies with optimized precision
and efficiency is therefore crucial for the development of
photonic quantum machine learning. Moreover, these tai-
lored strategies can be adapted to diverse quantum tech-
nology platforms, broadening their application scope.
In this work, we benchmark four practical overlap esti-

mation strategies suitable for current photonic technologies:
tomography-tomography (TT), tomography-projection (TP),
Schur collective measurement (SCM), and optical swap test
(OST), as illustrated in Fig. 1. By encoding qubit states into
various degrees of freedom (DoF) of photons, we experi-
mentally perform the corresponding measurements with
linear optics and quantify the estimation precision as a
function of the true overlap. Our results demonstrate that
different strategies yield varying overlap-dependent preci-
sion. By comparing performance across different overlap
ranges, we develop an adaptive strategy that combines TP
and SCM strategies to achieve optimized precision across
the full overlap interval. Furthermore, we quantify the con-
tributions of tomography errors or specific measurement
outcome statistics to the final precision for each strategy,
elucidating key performance factors. Extending this analysis
to higher-dimensional states, we discuss the scaling of the
performance of each strategy with respect to state dimen-
sion, highlighting the dimension-independence of SCM and
OST, and analyzing TT and TP performance under different
tomographic measurement schemes including joint and
local measurements. These findings provide insights into the
analysis of overlap estimation precision and help to design
the practical strategy with optimized performance.

Results
Overlap estimation strategy performance assessment
Given N pairs of two unknown pure qubit states jψi and

jϕi, without loss of generality, these states can be expressed
asjψi ¼ U j0i and ϕj i ¼ U

ffiffi
c

p j0i þ eiφ
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p j1i� �
, where

U 2 SUð2Þ and c represents their overlap. Here, we pri-
marily focus on estimating the overlap between two qubits,
with the high-dimensional cases discussed later. An overlap
estimation strategy denoted by s involves a general positive
operator-valued measure (POVM) fÊðsÞ

k g on all copies of
the quantum states and the estimation of the overlap asecsðkÞ based on the outcome k. Under a specific choice of U
and φ, the mean squared error of overlap is given by
vsðc; N jU; φÞ ¼Pk ½~csðkÞ � c�2Tr½ÊðsÞ

k jΦihΦj�, where |Φ〉
= (|ψ〉|ϕ〉)⨂N. Notably, when the estimator ecsðkÞ is
(asymptotically) unbiased, vsðc;N jU ;φÞ is equivalent to the
variance of ecsðkÞ. To compare the average performance of
strategy s over all possible quantum states, we consider
randomly sampled qubit pairs with a fixed overlap c, where
U is Haar-distributed in SUð2Þ and φ is a uniformly dis-
tributed phase between 0 and 2π. More details can be
found in the Supplementary Information (SI). The preci-
sion of strategy s can be quantified by the average variance

vs c;Nð Þ ¼ 1
2π

Z
U

Z 2π

0
vs c;N jU ;φð ÞdUdφ ð1Þ

where dU is the Haar measure. We observe that the
average variance vsðc;NÞ for each strategy exhibits a
scaling behavior of Oð1=NÞ. To offset the influence of the
copy number N , we introduce the scaled average variance
NvsðcÞ, which only depends on c at large N , as the
performance assessment metric of the overlap estimation
strategy s. Figure 1a illustrates the four practical strategies
for overlap estimation:

Tomography-tomography (TT)
Reconstruct the two quantum states through quantum

state tomography based on mutually unbiased bases
(MUB)47, i.e., measuring the Pauli operators ðσ̂x; σ̂y; σ̂z Þ
on N=3 copies of jϕi and jψi respectively. The estimate
states, jeϕi and jeψi, yield an overlap estimator as ectt ¼
jheψjeϕij2.
Tomography-projection (TP)
Reconstruct jϕi with the same quantum state tomo-

graphy procedure in TT, project the N copies of jψi onto
the estimate jeϕi and record the number of successful
projections k. The overlap estimator is ectp ¼ k=N with
the expectation value ptp ¼ jhψjeϕij2.
Schur collective measurement (SCM)
Perform collective measurement on each of the N pairs

of the qubits jψijϕi and record the number of successful
projections k onto the singlet state jΨ�i ¼ ðj01i �
j10iÞ= ffiffiffi

2
p

, where the probability of successful projection is
p� ¼ ð1 � jhψjϕij2Þ=2. The estimator of overlap is given
by ĉscm ¼ 1 � 2k=N .
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Optical swap test (OST)
Implement a multi- mode HOMI between each of the N

photon pairs encoding the state jψijϕi with the pseudo
photon-number-resolving detectors (PPNRD). The states
will “fail” or “pass” the test and we register k “fail” out-
comes out of N measurements (see the SI for definitions).
The overlap estimator is ĉost ¼ ð1� 2k=NÞ=Γ , where Γ is
the indistinguishability between the internal modes of two
photons (explained later).

We derive the average variances vsðc;NÞ for all the four
strategies (see the SI for derivations). The summary of
these strategies is presented in Table 1.

Photonic implementation of estimation strategies
We experimentally benchmark the aforementioned

overlap estimation strategies using photonic systems. The
experimental setups, depicted in Fig. 1b, consist of state
preparation modules and four measurement modules.
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Fig. 1 Schematics and experimental setups of overlap estimation strategies. a Schematics. Tomography-tomography (TT): Perform quantum

state tomography to reconstruct both states using mutually unbiased bases (MUB) and calculate the overlap between jeψi and jeϕi. MLE: maximum

likelihood estimation. Tomography-projection (TP): jϕi is reconstructed by tomography, and jψi is projected onto the estimate jeϕi. Schur collective
measurement (SCM): Schur transform49 with computational basis measurements with is applied to project the joint state jψijϕi on the Schur bases.
Swap test: Swap test is conducted on the state jψijϕi, where we realize HOMI as the optical swap test (OST). b Experimental setups. Single photons
are generated via spontaneous parametric down conversion. Qubits jψi and jϕi are encoded in the polarization DoF of different single photons in
TT, TP, and OST. In SCM, the two-qubit state jψijϕi is encoded in the polarization and path DoF of the single photon. Tomography module (red
frame) with wave-plates and a beam displacer performs the measurements of Pauli operators σ̂i in TT and TP strategies. Projection module (blue

frame) registers the successful projections onto jeϕi to estimate ptp in TP strategy. SCM module (orange frame) conducts Schur basis projective
measurements on jψijϕi. OST module (purple frame) utilizes HOMI to obtain the “fail” probability pf of the swap test. (E-)HWP (electronically
controlled) half wave-plate, PR liquid crystal phase retarder, QWP quarter wave-plate, BD beam displacer, NPBS non-polarizing beam-splitter, SPCM
single photon counting module
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Different combination of the state preparation module
and the measurement module forms the corresponding
strategy.
In the TT and TP strategies, we encode the qubit states

jψi or jϕi on the polarization DoF of the heralded single
photons generated through the spontaneous parametric
down-conversion process. The horizontal jHi and vertical
jV i polarizations of the photon represent the computa-
tional bases j0i and j1i, respectively. In both strategies,
measurements of Pauli operators to perform the state
tomography are implemented with one half-wave plate,
one quarter-wave plate, and one beam displacer (BD). The
wave-plates are set into three configurations to implement
the three bases in MUB, followed by two single photon
counting modules (SPCMs) to register the measurement
outcomes. In the TP strategy, a set of electronically-
controlled wave-plates enables the projection of jψi onto
the reconstructed state jeϕi from the state tomography
result of jϕi. The clicks of the corresponding SPCM are
registered as the successful projections.
In the SCM strategy, we encode the first qubit jψi on the

path DoF of a single photon, while the second qubit jϕi is
encoded on the polarization DoF of the photon48. The
encoding basis is j00i ¼ js0ijHi, j01i ¼ js0ijV i, j10i ¼
js1ijHi, j11i ¼ js1ijV i, with s0 (down) and s1 (up) denoting
two path modes of the photon. The POVM in the SCM
strategy involves four projectors which realize the projec-
tions on the Schur bases49: Ê1 ¼ j00ih00j, Ê2 ¼ j11ih11j,
Êþ ¼ jΨþihΨþj, Ê� ¼ jΨ�ihΨ�j with jΨþi ¼ ðj01i þ
j10iÞ= ffiffiffi

2
p

and jΨ�i ¼ ðj01i � j10iÞ= ffiffiffi
2

p
. It is noteworthy

that we only need the outcome probability of Ê� while the
other three are need for the normalization condition (see
Materials and methods). To realize these projectors, as
illustrated at the SCM module in Fig. 1b, the first BD splits
the horizontal and vertical polarization modes of the two
path modes. The horizontal polarization of the s0 path and
the vertical polarization of the s1 path are detected by two
single-photon counting modules (SPCMs), which realize
projectors Ê1 and Ê2. The half-wave plate and another BD,
followed by two SPCMs, implement the projectors Êþ and
Ê� (see the SI for the details).
In the OST strategy, we encode jψi and jϕi on the

polarization DOF of two different photons, where we

regard other modes of the photon as internal modes. The
OST is implemented via a multi-mode HOMI36 for each
pair of the two photons at a balanced non-polarizing
beam splitter (NPBS). After the interference, a combina-
tion of a balanced NPBS followed by two SPCMs is placed
at each output port of the NPBS to function as a PPNRD,
the “pass” outcome of the OST corresponds to the event
that both photons exit the same port of the first NPBS,
while the “fail” outcome corresponds to the coincidence
events that two photons are detected in different output
ports of the first NPBS. Due to experimental imperfec-
tions, the two photons from the SPDC source exhibit
reduced indistinguishability even when they encode the
same qubit state, due to the mismatch of their internal
modes, primarily the spectral mode50. We quantify this
indistinguishability as Γ ¼ 0:965, which is estimated by
the maximum visibility of HOMI. In the SI, we derive the
unbiased overlap estimator and its associated variance in
the presence of Γ. Our analysis confirms the feasibility of
performing overlap estimation using the OST strategy
even in the presence of practical experimental imperfec-
tions, though the precision is reduced.

Overlap-dependent precision of strategies
To provide a fair comparison for different overlap esti-

mation strategies, we employ the same number of quantum
states for each strategy. Specifically, we perform the
experiments for 11 overlap values equally spaced in the
range ½0; 1�. For each overlap c, we uniformly and randomly
sample M= 100 qubit pairs jψmðcÞi and jϕmðcÞi, with
jhψmðcÞjϕmðcÞij2 ¼ c and m 2 f1; 2; :::;M g. For each
qubit pair, we collect the measurement outcomes for N ¼
900 copies to obtain an estimated overlap ecm. This data
collection and estimation process is repeated n ¼ 20 times
to give the estimated variance evmðcÞ. By averaging over M
sampled qubit pairs, which is approximately equivalent to
integrate with SUð2Þ in Eq. (1), we obtain the measured
average variance for the strategy. To further determine the
uncertainties of the estimated variance, R ¼ 10 indepen-
dent experiments are conducted, producing a total data set
fffecj;rmgnj¼1gMm¼1gRr¼1 of 100 ´ 20 ´ 10 estimations for each
overlap value of a strategy (see Materials and methods for
details of data processing).

Table 1 Summary of the four overlap estimation strategies

TT TP SCM OST

Measurement σ̂i ; σ̂i σ̂i; jeϕiheϕj Ê� ¼ jΨ�ihΨ�j HOMI, PPNRD

Estimator ec jheψjeϕij2 k/N 1 − 2k/N (1 − 2k/N)/Γ

v(c, N) 4κc(1 − c)/N (2κ + 1)c(1 − c)/N (1 − c2)/N (3 − Γc)(1 − Γ2 c2)/2NΓ2

The average variances vðc;NÞ are derived in the asymptotic limit (N ! 1). fσ̂ ig: three Pauli operators. k : Measurement outcome statistic in corresponding strategy.
κ: scaled average infidelity in the pure qubit tomography based on MUB (see Materials and methods). HOMI Hong-Ou-Mandel interference. PPNRD pseudo photon-
number-resolving detectors. Γ: indistinguishability between the internal modes of two photons in HOMI
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Figure 2a shows the experimentally measured average
variances scaled by the number of copies NvðcÞ for the
four strategies. The results exhibit a clear overlap-
dependent performance for all strategies, aligning well
with theoretical predictions. The average variances of the
two local measurement strategies, TT and TP, show
symmetric behaviors in the entire overlap range. Both
strategies achieve higher precision near c ¼ 0 and c ¼ 1
but lower precision for intermediate overlaps around 0:5.
TP outperforms TT for all values of c, due to the fact that
the tailored projective measurement in TP provides more
overlap information compared with tomography. In con-
trast, the two joint measurement strategies, SCM and
OST, exhibit monotonic behaviors, i.e., they achieve lower
precision for small c but higher precision for large c in
comparison with TT and TP. Notably, SCM and OST are
two different experimental realizations of the destructive
swap test36. Therefore, they are expected to exhibit the
same performance. Yet, the actual performance of OST in
our experiment worse than that of SCM. We attribute this
performance gap to experimental imperfections in the
OST setup, detailed further in the SI. The first factor is the

use of PPNRDs, which introduce extra photon loss and
alter the outcome probability distribution, which is
especially detrimental for small overlaps. The second
factor is the limited HOMI visibility of two photons,
leading to a constant reduction in precision over the
whole range of overlaps. These two factors together
contribute to the reduced OST precision observed in the
experiment. Furthermore, we evaluate the overlap esti-
mator in each strategy by calculating the normalized
Fisher information (FI) per state pair, as shown in Fig. 2b.
The Cramér-Rao bound, defined as the inverse of the FI,
provides a lower bound on the variance of any unbiased
estimator for a parameter51. In the large N limit, the
normalized FI is equivalent to the inverse of corre-
sponding NvðcÞ for each strategy, indicating that their
overlap estimators saturate the Cramér-Rao bound.
Notably, when considering large overlaps, the FI for the
SCM strategy converges towards the quantum Fisher
information40,52, which is the upper bound of FI for all
possible measurement strategies, indicating the SCM
strategy achieves ultimate precision for large overlaps. It
reveals that the collective measurements involving more
copies of states cannot outperform the SCM only invol-
ving a pair of states when the overlap approaches unity.
In fact, the distinct behaviors for the four estimation

strategies arise from the characteristics of their mea-
surements and estimators. Both separable measurement
strategies can be separated into two separable measure-
ment and estimation processes. Therefore, the average
variance can be decomposed into the contribution either
from two state tomography processes (TT), or one state
tomography and the projective measurement (TP). The
contribution of each part is given as (see the SI for deri-
vations)

vtomo c;Nð Þ ¼ 2κc 1 � cð Þ
N

ð2Þ

vproj c;Nð Þ ¼ c 1 � cð Þ
N

ð3Þ

respectively, where κ denotes the scaled average infidelity
in the tomography process (see Materials and methods). It
is noteworthy that the inherent error in tomography
process is independent of the overlap c, whereas its
contribution to the overlap estimation variance is overlap-
dependent. Different combinations of the variances in
Eqs. (2 and 3) lead to the overall average variance of the
two strategies, as illustrated in Fig. 3a, b. For the joint
measurement strategies, the overlap is estimated directly
from outcomes of the joint measurements on the qubit
pair. The average variance is directly related to the Fisher
information from the probability distribution of measure-
ment outcomes, as shown in Fig. 3c, d.
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Fig. 2 Experimentally measured scaled average variances NvðcÞ
and the corresponding Fisher information vs the value of
overlap c. a Experimentally determined (markers) and theoretical
(solid lines) NvðcÞ for four overlap estimation strategies with the copy
number N ¼ 900. Vertical error bars represent the uncertainties of
NvðcÞ over 10 runs of the experiments. Horizontal error bars denote
the standard deviation of the exact overlap values for different qubit
pairs generated in the experiments (see “Materials and methods”).
b Normalized Fisher information (FI) per state pair at large N for each
strategy. The black dashed line indicates the quantum Fisher
information (QFI)
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The aforementioned variance results allow us to deter-
mine the number of copies of states required to achieve a
desired precision in overlap estimation. Applying Che-
byshev’s inequality, an overlap can be estimated with an
error bounded by jecs � cj � ε and ensure a probability
exceeding 1� η by using approximately N � f sðcÞ=ηε2
copies of states (see the SI for details). Here, f sðcÞ denotes
the scaled average variance for strategy s. Consequently,
the overlap estimation error ε scales as Oð1= ffiffiffiffi

N
p Þ. The

fact that different strategies exhibit same scaling behavior
for N , justifies the efforts on developing practical strate-
gies to reduce the scaled average variance.

Adaptive overlap estimation strategy
From the above experiments we can conclude that the

optimal strategy among the four investigated ones varies
with overlap value. As a detailed comparison, Fig. 4a
compares the experimentally estimated overlaps ec with TP
and SCM for different c. From this comparison and the
average variances in Fig. 2a, we identify that the average
variances of TP and SCM intersect at overlap ct ¼ 4=11. In
other words, the most efficient strategy among the four
strategies is TP when the overlap c<ct and SCM when
c � ct . Leveraging this observation, we propose a two-step
adaptive strategy that combines TP and SCM strategies, as
illustrated in Fig. 4b. Our simulation results NvðcÞ for the
adaptive strategy are shown in Fig. 4c. In the first step of the
adaptive strategy, the SCM strategy is employed on αN
pairs of states to get a rough estimation ec0, which then

determines the strategy used in the second step. Notably,
the copies of states used in the first step are not used in
tomography process when the second step involves the TP
strategy. Although the estimation variance of the adaptive
strategy slightly deviates from that of the TP strategy when
c<ct due to the resource consumption in the first step, our
adaptive strategy still achieves nearly optimal estimation
precision across the full range of overlap values compared
with the four static strategies.

Overlap estimation of high-dimensional states
The preceding analysis of the average variance of

overlap estimation strategies can be generalized to high-
dimensional and multi-qubit quantum states. Consider
estimating the overlap between two d-dimensional states
in a sufficient-copy scenario (N � d). For separable
measurement strategies, the contribution of tomography
errors to the average variance in this high-dimensional
case is (see the SI for derivations)

vtomo c;Nð Þ ¼ 2κc 1 � cð Þ
ðd � 1ÞN ð4Þ

where κ is the scaled average infidelity of the underlying
pure state tomography approach. For d ¼ 2, this recovers
the result in Eq. (2). The factor 1=ðd � 1Þ in Eq. (4) arises
because, in high-dimensional state spaces, the ratio of the
tomography errors projected onto the subspace spanned by
jψi and jϕi diminishes, thereby reducing their impact on
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normalized Fisher information (FI) are presented in (c) for SCM, and (d) for OST. In (c) “p1 þ p2 þ pþ” represents the sum of the probabilities of the

first three projectors, while p� corresponds to the probability of the last projector Ê� . In (d) pðPÞ and pðFÞ indicate the raw detection probability of
“pass” and “fail” outcomes under the PPNRD setup, respectively. Markers and lines denote experimental and theoretical results, respectively.
Experimentally measured probabilities are estimated from total datasets comprising 180; 000 measurements per qubit pair, and the error bars
represent the standard deviation of the probabilities obtained from different qubit pairs
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overlap estimation. The scaling of κ with respect to d
depends on the specific tomography measurements
employed. When joint measurements across all copies are
allowed, or when arbitrary independent measurements on
each copy are permitted, κ scales asOðdÞ53–55, resulting in a
dimension-independent average variance of Oðcð1� cÞ=NÞ
for both TT and TP strategies. This dimension-
independence holds specifically under the sufficient-copy
condition ðN � dÞ. When the high-dimensional states are
n-qubit states ðd ¼ 2nÞ, restricting tomography to local,
single-qubit measurements leads to κ scaling as
Oðd2logdÞ ¼ Oð4nnÞ56, and a dimension-dependent aver-
age variance of Oð4nncð1 � cÞ=N Þ for TT and TP.
For two joint measurement strategies, both SCM and

OST can be extended to higher dimensions while main-
taining precision independent of d (see the SI for details).
In the sufficient-copy scenario, allowing joint measure-
ments for tomography yields comparable performance
across all four strategies. However, SCM and OST sig-
nificantly outperform TT and TP for multi-qubit states
when the latter are restricted to local measurements on
each qubit for tomography.
In the limited-copy scenario (N � d), tomography

yields highly inaccurate estimations due to information

incompleteness and substantial statistical errors. There-
fore, the errors of TT and TP strategies deviate sig-
nificantly from the average variances derived in the
sufficient-copy scenario, as the bias becomes non-
negligible. Both vtt and vtp are then dominated by a
constant error scale as Oð1Þ (see the SI for derivations).
This problem is exacerbated by increasing qubit number
n, leading to exponential growth in d and rendering
quantum state tomography infeasible. In these situations,
SCM and OST offer a significant advantage due to their
inherent dimension independence.

Discussion
In this work, we present a comprehensive investigation

of four representative strategies for estimating the
overlap of two unknown quantum states using a pho-
tonic setup. We compare the performance in terms of
the average estimation variance of the separable mea-
surement strategies including TT and TP with that of
the joint measurements strategies including SCM and
OST. Our experimental results demonstrate the superior
performance of the TP strategy over the TT strategy for
all overlap values considered. Moreover, although in
principle the OST strategy matches the performance of
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b Schematic of the two-step adaptive strategy for overlap estimation. In the first step, an initial estimation of overlap ec′ is obtained using SCM with
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the SCM strategy, it exhibits poorer performance in the
presence of experimental imperfections when compared
to the SCM strategy, which indicates that high-
dimension encoded single-photon systems are more
robust against experimental errors. These results reveal
that the optimal strategy among the four varies depends
on the overlap values. To approach the optimal perfor-
mance across the full range of overlaps, we further
design an adaptive strategy combining TP and SCM
strategies. Our experiments with single qubits show that
separable measurements involving tomography achieve
precision comparable to joint measurements performed
on pairs of states. Yet, for quantum states with higher
dimensions and multiple qubits, theoretical analysis
reveals that SCM and OST benefit from dimension-
independence, providing a significant advantage,
whereas TT and TP become highly dimension-
dependent when the number of copies is limited or
only single-qubit measurements are available for tomo-
graphy. By elucidating the overlap-dependent precision
with practical setups, our work provides new insights
into designing measurement strategies for extracting
parameters of interest from quantum states, a vital task
in quantum information applications1–10,17–31.
Several avenues exist for future research to enhance the

strategies presented here. The separable measurement
strategies, TT and TP, can benefit from adaptive quantum
state tomography techniques57–59. The SCM strategy can
be further improved by incorporating collective mea-
surements involving more than one pair of states, sur-
passing the performance of the ideal swap test, as
discussed in40. Moreover, the SCM and OST strategies
can be generalized and applied to higher dimensional or
multi-qubit quantum systems37,60. In practice, the effi-
ciency of all strategies can be improved by utilizing faster
optical systems61,62.
Our work provides an example of striking a balance

between optimized performance and experimental
complexity, aiming to minimize the gap between theo-
retical proposals and experimental attainable perfor-
mance in overlap estimation strategies. Given the
prevalence of overlap estimation in quantum machine
learning algorithms17–31, the optimized estimation
strategies can find immediate applications in quantum
algorithms involving readout of state overlaps as the
cost function or quantum kernel function18–23. State
overlaps quantify the similarity between data points
mapped into the quantum feature space in quantum
kernel methods, which have wide-ranging applications
from data classification to training quantum mod-
els62–68. We anticipate that the strategies explored here,
along with the understanding of their corresponding
precision, can be applied to construct quantum kernels,

learn quantum systems and train quantum neural net-
works, resulting in improved training efficiency and
overall performance.

Materials and methods
Precision of separable measurement strategies
In TT and TP strategies, reconstructing the qubit states

relies on the tomography based on MUB measurements
with the prior knowledge that the state is pure. The
tomography fidelity can be quantified by F ¼ jhψjeψij2,
defined as the overlap between the true state jψi and the
reconstructed state jeψi. We consider the average fidelity
F , averaged over the distribution of the reconstructed
state and the unitary U where jψi ¼ U j0i. At the
asymptotic limit (the number of copies N ! 1), the
average fidelity is derived as F ¼ 1� κ=N , and κ ¼
N 1� F
� �

is defined as the scaled average infidelity, with
the analytical value κ ¼ 11=8 for MUB measurements.
Through the error analysis in the tomography process, we
can represent the reconstructed states jeψi as

jeψi ¼ cos χjψi þ sin χeiζ jψ?i ð5Þ

where |ψ⊥〉 = U |1〉, χ and ζ are two error parameters
introduced by the tomography. Furthermore, we derive
the average values for the functions of χ and ζ as:

hðsin χ cos ζÞ2i � hðsin χ sin ζÞ2i � hχ2i=2 � 2κ=N , where
〈·〉 and the overline denote the average over the
conditional probability distribution pðχ; ζjU Þ and the
unitary U, respectively.

In the TT strategy, the other reconstructed state jeϕi has
a similar form to Eq. (5), and the variance for TT can be
expressed with the error parameters χ and ζ . The average
variance can then be shown as

vtt c;Nð Þ ¼ 2 χ2h icð1� cÞ þ O
1

N2

� �
� 4κc 1 � cð Þ

N

ð6Þ

here we keep the leading term.

In the TP strategy, we only need to consider the tomo-
graphy error of the one state jϕi, but together with an
additional error introduced by the projection procedure.

The successful projection probability ptp ¼ jheϕjψij2 can be

shown as the function of parameters χ and ζ in jeϕi. The
average variance for TP strategy is derived as vtp c;Nð Þ ¼
hðptp � cÞ2i þ hptpð1� ptpÞ=Ni, where hðptp � cÞ2i implies

the tomography error and hptpð1� ptpÞ=Ni denotes the
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projection error. The final result for vtp is given by

vtp c;Nð Þ ¼ χ2h ic 1� cð Þ þ c 1�cð Þ
N þ O 1

N2

� �
� 2κþ1ð Þc 1� cð Þ

N

ð7Þ

Generalizing to d-dimensional states, the average var-
iances for TT and TP can be shown as

vtt c;Nð Þ � 4κc 1� cð Þ
ðd�1ÞN

vtp c;Nð Þ � 2κ
d�1 þ 1
� � c 1� cð Þ

N

ð8Þ

where d denotes the dimension of a single-copy state. The
scaled average infidelity κ for high-dimensional state
tomography depends on d and varies with the tomo-
graphy approach. In the SI, we provide detailed deriva-
tions of the average variances and their high-dimensional
generalizations, and also demonstrates that the estimators
used in TT and TP are asymptotically unbiased.

Precision of joint measurement strategies
In a joint measurement strategy, the overlap informa-

tion is extracted directly by performing a POVM fÊig on
the joint state jΦ0i ¼ jψijϕi, with each element Êi asso-
ciated with a measurement outcome i. According to Born
rule, the probability of obtaining the outcome i is pi ¼
Tr Êi jΦ0ihΦ0j
� �

, which depends on the overlap c. Noting
that the joint measurement is static, the precision of the
overlap estimation is bounded by the Fisher information
(FI) derived from the probability distribution as IðcÞ ¼P

i piðd log pi=dcÞ2. In the SCM strategy, the measure-
ments are described by four projectorsfÊ1; Ê2; Êþ; Ê�g,
and the corresponding probability distribution is given by

p1 þ p2 þ pþ ¼ 1þ c
2

; p� ¼ 1� c
2

ð9Þ

where pi ¼ hΦ0jÊijΦ0i. By combining the first three
outcomes into one, we obtain binary outcomes where
the probabilities solely rely on the overlap c. The FI per
state pair is given by Iscm ¼ 1=ð1� c2Þ. The overlap
estimator ecscm ¼ 1� 2k=N , where k is the number of
occurrences of outcome Ê� in N measurements, saturates
the Cramér-Rao bound with the variance

vscm c;Nð Þ ¼ 1� c2

N
ð10Þ

In the OST strategy, the ideal OST yields a binary
outcome of either “pass” or “fail” with the probability of
“fail” outcome given by pf ¼ ð1� cÞ=2. However, due to
experimental imperfections, the outcome probability dis-
tribution deviates from the ideal case. In our experiments,
with the internal mode indistinguishability Γ between two

photons in HOMI and the PPNRD setup, the outcome
probability distribution is given by

pðPÞ ¼ 1þ Γc
3� Γc

; pðFÞ ¼ 2� 2Γc
3� Γc

ð11Þ

where pðPÞ and pðFÞ denote the probabilities that the
PPNRD response the “pass” and “fail” outcomes, respec-
tively. It is worth noting that the PPNRD introduces
photon loss, which must be take into account in precision
comparison. On average, for N state pairs, only N 0 ¼
ð3� ΓcÞN=4 events are detected. To ensure a fair
comparison, we calculate that effective FI per state pair
as Ieost ¼ 2Γ2=ð3� ΓcÞð1� Γ2c2Þ to bound the precision
of OST (see the SI for detailed derivation). Using the
estimator ecost ¼ ð1� 2kf =NÞ=Γ , the variance for the
OST strategy is given by

vost c;Nð Þ ¼ ð3� ΓcÞð1� Γ2c2Þ
2NΓ2

ð12Þ

In these two joint measurement strategies, the outcome
probabilities depend solely on the overlap between the
two states, rather than the specific states themselves.
Therefore, the variance mentioned above is equal to the
average variance in SCM and OST.

Photon source
Frequency-doubled light pulses (� 150 fs duration, 415

nm central wavelength) originating from a Ti: Sapphire
laser (76 MHz repetition rate; Coherent Mira-HP) pump a
beta barium borate (β-BBO) crystal phase-matched for
type-II beamlike spontaneous parametric down conver-
sion (SPDC) to produce degenerate photon pairs (830 nm
central wavelength). The photon pairs undergo spectral
filtering with 3 nm full-width at half-maximum and are
collected into single-mode fibers. The pump power is set
to � 100 mW to ensure a low probability of emitting two-
photon pairs. In TT, TP, and SCM experiments, one of
the photon pair is detected by a SPCM (Excelitas Tech-
nologies), while the other serves as a heralded single
photon. In the OST experiment, both photons undergo
HOMI. Despite the presence of systemic errors and
interference drift, an average maximum HOMI visibility
of 0:965 ± 0:008 is observed.

State preparation
In the TT, TP, and OST strategy experiments, a

combination of an electronically controlled half
wave-plate (E-HWP) and a liquid crystal phase retarder
(LCPR, Thorlabs, LCC1113-B), prepares the horizontal
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polarized photon to the state

jψi or jϕi ¼ cos 2θjHi þ eiα sin 2θjV i ð13Þ
where θ and α denote the E-HWP angle and the relative
phase between two polarizations added by the LCPR,
respectively. In the SCM strategy experiment, we firstly
encode jψi on the polarization DoF of the single photon
and use a BD and HWPs to transfer the polarization-
encoded qubit to a path-encoded qubit. The second qubit
jϕi is then encoded on the polarization DoF of the photon
through a E-HWP and a QHQ (QWP-HWP-QWP) wave-
plate group, resulting in a two-qubit joint state

ψj i 	 ϕj i ¼ cos 2θ1 s0j i þ eiα1 sin 2θ1 s1j i� �
	 cos 2θ2 jHi þ eiα2 sin 2θ2 jV i� � ð14Þ

Here, θ1 and α1 denote the E-HWP angle and the relative
phase from the LCPR used to prepare jψi, and θ2 and α2
denote the E-HWP angle and the relative phase from the
QHQ group used to prepare |ϕ〉.

Data processing and uncertainty quantification
For each chosen overlap c in our experiments, we have a

total data set of estimated overlaps fffecj;rmgnj¼1gMm¼1gRr¼1.
Here, R groups of data are collected by repetitive runs of
the experiments for the TT, OST, and SCM strategies,
while in the TP strategy, the data is generated using the
Bootstrap method from a single group to reduce data
acquisition time. To obtain the estimated average var-
iances evrf gRr¼1, we process the overlap data as

evr ¼ 1
M

XM
m¼1

evrm; evrm ¼ 1
n� 1

Xn
j¼1

ecj;rm � 1
n

Xn
j¼1

ecj;rm
 !2

ð15Þ

The mean and the standard deviation for the average
variance are then calculated as

ev ¼ 1
R

XR
r¼1

evr; δev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r evr � evð Þ2
R� 1

s
ð16Þ

Scaling the results by the copy number N , Nev and Nδev
correspond to the scaled average variance NvðcÞ and the
vertical uncertainty in Fig. 2a. Considering the systematic
errors in state preparation and measurements, the exact
overlaps being measured, between different qubit pairs in
state preparation, may deviate from the target overlap c.
To quantify this uncertainty, we estimate the exact over-
laps from the data for the same pairs of states in large
number of copies to obtain the exact overlap data set
fcmgMm¼1, where cm ¼Pj;recj;rm=nR. The average exact

overlap and corresponding standard deviation are given
by

c ¼ 1
R

XM
m¼1

cm; δc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m cm � cð Þ2
M � 1

s
ð17Þ

Here, c and δc indicate the overlap c (markers) and the
corresponding uncertainty (horizontal error bars) in Fig. 2a.
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